
MODALITY-AWARE ADAPTATION OF CONTRASTIVE
LANGUAGE-IMAGE MODELS

Alexander Long, Thalaiyasingam Ajanthan, Anton van den Hengel
International Machine Learning
Amazon, Australia
{longlex,ajthal,hengelah}@amazon.com

ABSTRACT

Despite their high levels of robustness, Contrastive Language-Image Models (CLIP)
still require some form of downstream adaptation when applied to tasks sufficiently
out-of-domain with respect to their training set. Recent methods propose light-
weight adapters on the model features, primarily focused on the few-shot domain.
All such approaches however, require per-task hyperparameter tuning which ne-
cessitates access to a validation set; limiting their applicability in practice. As
an alternative, we propose Modality Aware Tangent-space Retrieval (MATeR), a
training-free, interpretable adapter which outperforms all recent methods when
per-task hyperparameter tuning is prohibited. MATeR considers the manifold
formed by CLIP embeddings when incorporating out of domain few-shot class
information and its predictions are invariant to the modality gap; representing the
first approach that considers the geometric structure of the CLIP latent space to
inform downstream task adaptation. Additionally, we demonstrate a variant of
MATeR has the ability to significantly increase zero-shot accuracy with only a
handful of unlabelled images, much lower than the number of classes.

1 INTRODUCTION

Multi-Modal Foundation Models encode different modalities into a common vector space which can
then be used in downstream tasks. Such models (Alayrac et al., 2022; Yuan et al., 2021; Li et al.,
2022b; Jia et al., 2021; Radford et al., 2021) have achieved state-of-the art performance on many
previously distinct Computer Vision (CV) tasks (Wang et al., 2022a; Ghiasi et al., 2022), as well as
being at the core of recent image generation models (Ramesh et al., 2022; Crowson et al., 2022),
however such models, and the representations they induce, remain poorly understood.

To better understand such models, we experiment with adapting the originally proposed CLIP
(Radford et al., 2021), on downstream classification tasks while assuming no access to model weights.
CLIP-like models are expensive to train, making the standard online learning paradigm of frequent
retraining difficult and costly. In many cases, the model size makes fine-tuning out of reach for
the majority of researchers, and only inference is possible for downstream use-cases. Due both the
difficulty to distribute, and in an effort to recoup the cost of training such models, many organizations
are moving towards making foundation models available through API calls only. In this scenario,
fine-tuning is not possible as the weights of the model are not shared. Hence, there exists a strong
need to facilitate precise control over such models for downstream use-cases without access to the
full model weights. Due to the broad adoption (Gan et al., 2022) of CLIP in many other approaches,
small, but consistent, increases in transfer accuracy have broad effects across multiple areas, and
hence large practical impact. Finally, understanding the structure of the representation space, which
is necessary when designing adapters with no access to model weights, provides insight that can
improve the training scheme of the base models (Wang & Isola, 2020).

2 RELATED WORK

A recent work (Liang et al.) shows that there exists a modality-gap between the text and image
embeddings in CLIP-like models and zero-shot performance of CLIP is usually superior to few-shot
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Figure 1: MATeR maps raw embeddings from the image modality Z and text modality U to the
tangent space TxM at the modality centers µU , µZ . At inference, a test embedding, ztest, is mapped
to the image tangent space and then copied to the text tangent space. Two k-NN like classifiers are
then used as scorers, and the outputs are ensembled. The transport across the modality gap, ∆gap, is
critical as the magnitude of the gap is larger than the span of embeddings, and hence otherwise only
the image modality influences the scorer. We visualize the modalities as two hemispheres; in reality
the two distributions are present on the same hyper-sphere, with ∆gap orthogonal to U and Z .

(up to 4-shot) accuracy (Radford et al., 2021). To address this deficit, many adaptation approaches are
developed but they rely on task-specific tuning requiring a labelled validation set per task. Popular Tip-
Adapter (Zhang et al., 2021) averages zero-shot logits with a k-NN-like classifier of image encodings
using task-specific mixing coefficients. Tip-X (Udandarao et al., 2022) improves over this using
external information via large text-image datasets and generated images. Differently, CALIP (Guo
et al., 2022) uses an attention mechanism between the token embeddings of the two-modalities and
shows strong performance when the attention layers are learned. Similarly, Elevator (Li et al., 2022a)
proposes improved initialization mechanisms for the projection layer to boost few-shot performance.

An alternative approach is to do prompt engineering via language models (Pratt et al., 2022) or
learning (Zhou et al., 2022; Lu et al., 2022; Wang et al., 2022b). Prompt learning has shown
significant improvements in multiple tasks including few-shot learning (Zhou et al., 2022) and
various continual learning settings (Khattak et al., 2022). Nevertheless, these approaches require
backpropagating through the full pretrained model, making them slow and limiting their applicability.
In contrast, we consider a restricted (and widely applicable) setup where the pretrained models are
treated as black boxes and no task-specific validation set is available.

3 METHOD

3.1 PROBLEM SETUP

Consider a K-shot downstream classification task with dataset D = {(xi, yi)}CK
i=1 with K examples

from each class c ∈ C = {1, 2, . . . , C}. Here, xi ∈ X denotes the i-th training image and yi ∈ C
denotes the associated label. Let S,P ⊂ T be the set of class strings (note there may be multiple
strings per class) and the prompt templates, where T denotes the text domain. We use the standard
human-constructed templates from (Cherti et al., 2022). The text encoder T : T → RD is used to
generate the text encodings corresponding to each combination of class strings and prompt templates.
Let Uc = {us,p

c | s ∈ S, p ∈ P} be the set of text encodings corresponding to class c ∈ C. To create
a single encoding for each class, these encodings are typically combined using some aggregation
function (e.g., mean) uc = aggregate(Uc) where uc ∈ RD. Similarly, image encodings are produced
from raw images X using the image encoder I : X → Z ∈ RD. Note that the dimension, D, of the
label and image encodings is the same. In addition, these encodings are L2-normalized and hence
they lie in the D-dimensional hypersphere. In the following section, we consider this geometry when
designing our adaptation.
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Table 1: Accuracy of methods, averaged over our 29-dataset testbench, to reduce the modality gap for
CLIP-RN50 in the 1-shot case. MATeR is the only approach which increases accuracy over zeroshot.
Rel. Rep. refers to relative representations (Moschella et al., 2022).

Method Zeroshot L2 shifted L2 shifted Rotated Rel. Rep. MATeR
Distance Cosine L2 Cosine Cosine Cosine Tangent L2

Mean 40.18 35.62 33.71 32.41 33.82 41.89
Median 38.84 35.66 28.12 31.51 28.61 43.23

3.2 MODALITY AWARE TANGENT SPACE RETRIEVAL

Modality Aware Tangent Space Retrieval (MATeR) converts the normalized embeddings of each
modality to their tangent-space representations, performs a fixed attention-like operation over each
modality given the test image, and combines the result into a single prediction.

To motivate the use of the embedding space geometry, we first consider only the process of prompt
ensembling. Typically, the aggregation function to combine individual prompt encodings for a given
class is the Euclidean mean followed by L2-normalization. The motivation is to create a single point
uc that is representative of the true class center in the CLIP latent space. Prompt averaging in this
way consistently increases zero-shot accuracy by 2-3% in comparison to simply using the class string
alone (Radford et al., 2021). However, all encodings are restricted to the hypersphere due to the
L2-normalization, while resultant uc is not (as the averaging is performed in euclidean space). Hence,
before post-normalizing, uc corresponds to a point that could not be produced by any encoded text
from T alone. What is desired, is the point on the hypersphere at minimum distance to all other
points in the set. This is the Fréchet mean (Lee & Lee, 2012).

Let (M, ρ) be a Riemannian manifold equipped with an inner-product ρ on all tangent spaces TxM
at x. ρ induces a norm in each tangent space TxM, which we denote as ∥v∥ρ =

√
ρx(v,v) for

any v ∈ TxM. d(x,y) is the geodesic distance. The Fréchet mean µ ∈ M of a set of points
B =

{
x1, · · · ,xt

}
with each xl ∈ M is defined as:

µ = argmin
m∈M

1

t

t∑
l=1

d
(
xl,m

)2
. (1)

The Fréchet mean can be used as a drop-in replacement for the Euclidean prompt averaging to obtain
the class centers uc. This alone results in a minor (0.01-0.5%) but consistent zero-shot accuracy gain
across multiple datasets, model sizes, and pretraining datasets (see Table 2).

In MATeR, we construct a geometry-aware adapter when a small number image embeddings are also
present. The obvious approach is to follow the zero-shot procedure and simply assign the class label
to the closest training embedding (from either modality), however this fails due to the modality gap
(Liang et al.), with the two modalities occupying distinct regions of the embedding space. Due to the
gap, test images are always closest to training images and text encodings (which in the few-shot case
are typically more accurate) have no effect. Naive approaches to reduce the gap which operate in
euclidean space are not effective (Table 1).

The core of MATeR is the use of modality-dependent tangent-space representations. These represen-
tations have two key properties; 1) L2 distances in this space are proportional to distances over the
manifold of original embeddings, 2) They are invariant to the modality gap. These representations
are calculated by converting the normalized embeddings of each modality to their tangent-space
representations via the logarithmic map at the Fréchet mean of that modality.

For a curve γ : [a, b] → M, we define the length of γ to be L(γ) =
∫ b

a
∥γ′(t)∥ρ dt. For x,y ∈ M,

the distance d(x,y) = inf L(γ) where γ is any curve such that γ(a) = x, γ(b) = y. A geodesic γxy
from x to y, is a curve that minimizes this length.

For each point x ∈M and vector v ∈ TxM, there exists a unique geodesic γ : [0, 1] → M where
γ(0) = x, γ′(0) = v. The exponential map expx : TxM → M is defined as expx(v) = γ(1).
The logarithmic map logx : M → TxM is the inverse of expx. The per-modality tangent-space
representations are then;

ẑ = logµZ
(z), û = logµU

(u). (2)
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Figure 2: Left: Few-shot performance. Dashed line indicates mean zero-shot accuracy, LR is the
Linear Regression baseline. Mean accuracy is shown over 29 datasets for various samples per class.
The 50% confidence interval over datasets is shown. Note this is not a measure of error - it captures
the distribution of performance of each method over the range of tasks. Right: Label-only MATeR
vs. zero-shot across multiple architectures. Median accuracy increases 3.6% on average (see Table
4 for numeric results), an improvement comparable to the change in zero-shot accuracy between
ViT-H-14 to ViT-g-14, an additional 400M parameters. Accuracy quartiles are shown over the 29
datasets in our evaluation benchmark, with means as green circles.

Here, ẑ and û are relative to the respective modality centers (i.e., Fréchet means). Intuitively, these
representations can be viewed as modality-relative L2 coordinates of the ‘flattened’ embedding
manifold at each modality center. See Sec. A.3 for additional background to the logarithmic map.

Standard learning algorithms can now be applied to ẑ and û. We use a k-NN-like classifier where
scores are computed over the entire training dataset. For a test image ztest we obtain ẑtest from Eq. (2),
similarly all text and image embeddings are converted to the respective tangent representations. Given
the tangent representations of the images, the score of the test image in the image modality for a
given class is computed as the mean inverse distance to an image of that class.1 Precisely,

azc =
1

K

K∑
j=1

∥ẑtest − ẑjc∥−1
ρ , ∀c ∈ C , (3)

where ẑjc denotes the tangent representation of j-th image belonging to class c. Now, the scores in
image and text domains can be written in vectorized form as:

az = [az1, . . . , a
z
C ] , au = [∥ẑtest − û1∥ρ, . . . , ∥ẑtest − ûC∥ρ] . (4)

We then combine these distances into a single scorer:

fMATeR(ztest) = σ (az) + σ (α au) , (5)

where σ is the softmax function and α > 0 balances the two scores.2 The label with maximum
softmax score is chosen as the prediction. The above scoring function is invariant to the magnitude
of the modality gap as the gap is orthogonal to the span of the modality embeddings (Zhang et al.).
However, the relative dispersion of each modality can still negatively affect the final scorer.

4 EXPERIMENTS

4.1 FEW-SHOT ADAPTATION

We evaluate downstream accuracy for 1, 2, 4, 8 and 16 samples per class for over 29 datasets. All
results are averaged over 5 random seeds. We evaluate over a range of encoders from RN50 to
ViT-g-14. For model details please refer to Sec. C.2. In all cases we report accuracy distributions

1Instead of inverse mean, other functions such as the negative min or inverse min can be used. See Fig. 5.
2In all our experiments α = 2 works well – sharpening the label logits. However, as shown in the appendix

(Fig. 6), α = 2 is far from the optimal value. Additionally, without α (α = 1) MATeR’s performance remains
high.
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Figure 3: Unlabeled ‘less-than-one-shot’ MATeR accuracy with a ViT-B-16 variant on CIFAR100 and
MNIST. The shaded region represents the standard deviation over 10 seeds. Significant improvement
over zero-shot is achieved with only a small number of unlabeled images. In contrast, a linear probe
requires several samples per class to match zero-shot performance.

over datasets rather than point estimates such as the mean, as these can significantly obscure true
performance (Agarwal et al., 2021). Our primary comparison is to linear regression (we sometimes
refer to this as a linear probe) on the image features which remains a strong baseline (Li et al., 2022a)
and requires little tuning. As shown in Fig. 2, MATeR outperforms zero-shot, Tip-Adapter and LR,
for all sample budgets.

We note an additional intriguing result; MATeR’s label-logit only performance is significantly higher
than standard zero-shot (see Fig. 2 right) . That is, fMATeR (Label only)(ztest) = σ (au); this can be
thought of as performing zero-shot on the tangent representations. Images are not considered as
part of this scorer, other than to find the Fréchet mean of the image manifold in order to calculate
ẑtest. Consequently, accuracy does not improve as additional images are provided. When averaged
across all datasets, this approach outperforms standard zero-shot by 5.97% in median accuracy with
the ViT-B-16 backbone. On individual datasets, the improvement is as large as a 21% in absolute
percentage improvement (see Table 5).

4.2 LESS THAN 1-SHOT

MATeR’s strong label-only accuracy leads to an interesting question; is it sufficient to use fewer than
a single sample per class to identify the image manifold Fréchet mean? We carry out the following
experiment to answer this question; we sub-sample the dataset to one image per class then select,
without replacement, n of these C images. Tangent image representations ẑtest are then computed
using the Fréchet mean derived from this subset. As no image labels are provided, the scorer is only
informed by the tangent label encodings. We change n within the range {1, 2, . . . , C} and repeat the
sub-sampling process over 10 random seeds. As shown in Fig. 3, with only a handful of unlabeled
images (10 for CIFAR100 and 3 for MNIST), MATeR is able to significantly improve on zero-shot
accuracy.

This provides MATeR a unique property; less than 1-shot, unlabeled adaptation whereas all other
methods require at least one labelled image per class. In practice, this means for a domain of interest
simply defining the labels to be classified and collecting a small number of (unlabeled) sample images
is sufficient to significantly boost zero-shot performance. Additionally, if we allow the means to be
calculated from the test set, no training images are required at all as the set of unlabeled test images
is sufficient to define the Fréchet mean of the image manifold.

5 CONCLUSION

We introduce MATeR, a lightweight adapter for CLIP-like models that outperforms strong baselines
on a wide variety of datasets and base models. In addition to providing a state-of-the-art approach for
transfer learning for such models, MATeR demonstrates the novel capability of outperforming the
zero-shot accuracy with only a handful of unlabeled images, much fewer than the number of classes.
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A ADDITIONAL BACKGROUND

A.1 MODALITY GAP

The modality gap is an observed phenomenon where CLIP-like models do not perfectly align points
between modalities. Instead, there exists a large, and constant shift, with the two modalities occupying
distinct regions of the embedding space. Liang et al. first observed this phenomenon and demonstrated
empirically that reducing the gap by shifting and re-normalizing one modality towards the other
modalities class center reduces zero-shot accuracy. Zhang et al. show empirically that for many
datasets 1) The modality gap between corresponding image and text embeddings can be approximated
by a constant vector, particularly at the class level and 2) The modality gap is orthogonal to the span
of image embeddings and text embeddings, and image embeddings and text embeddings have zero
mean in the subspace orthogonal to the modality gap.

The modality gap creates a problem when performing downstream classification. Standard (i.e in the
ambient space) 1-NN functions by assigning the class label of the closest point. Given the modality
gap is much larger than the class-to-class distance, this results in label encodings (which inform the
zero-shot model) to never be considered during classification, and a multi-modal, single-index k-NN
reverts to an image-only k-NN. Similar effects distort linear classifiers. Ideally, closing the gap would
allow a combination of text and image encodings to inform classification via a single model.

A.2 ZERO-SHOT CLIP AND TIP-ADAPTER, TIP-X, CALIP

In the standard CLIP zero-shot setting, the class predictions are scored via cosine similarity to the
test image encoding; fzero-shot(ztest) = zTtestU where ztest = I(xtest), U = [u1,u2, . . . ,uC ]

T and uc

is the class encoding. The prediction rule is standard, ypred
test = argmaxc∈C(fzero-shot(z

T
test))

Remarkably, the original CLIP paper found zero-shot performance (where no example images are
provided) outperforms linear probe few-shot classification until 4 images per class are provided
(averaged over multiple datasets). Several works attempt to address this via ensembling few-shot
logits with zero-shot logits, however this is difficult as zero-shot logits model are poorly calibrated
due to the modality gap (see sec. A.1).

Tip-Adapter (Zhang et al., 2021) is a recent method that displays monotonically increasing accuracy
as images are added to the training set.

fTIP-A(ztest) = α exp
(
−β(1− ztestZ

T
)
L+ exp(τ)ztestU

T (6)

where L ∈ RCK×C is a row-wise one-hot matrix indicating the training image class labels,
U = [u1,u2, . . . ,uC ]

T ∈ RC×D and Z = [z1, z2, . . . , zCK ]T ∈ RCK×D, and α and β are hy-
perparameters which modulate the few-shot score distribution. The first term is equivalent to a
distance (in this case cosine similarity as ztest is normalized and Z is row-wise normalized) weighted
k-NN with k = C × K, and logits transformed by an exponential-like activation, summed over
classes, and re-weighted. The second term is the temperature-scaled CLIP zero-shot ‘logits’. The
exp(τ) term is clipped to 100 in the original CLIP training, and Tip-Adapter uses this value in all
experiments.

The α and β terms present a problem in the few-shot case as they have a large effect on prediction
accuracy and must be tuned with a validation set, which is not present. In our implementation, we use
α = 0.5 and β = 1 as global default values (see fig. 4 for impact of this alteration). An alternative
would be to tune these values on a training set of tasks, and evaluate on unseen test tasks, however
we leave this to future work.

TIP-X (Udandarao et al., 2022) adds an additional term that attempts to improve calibration by
making the attention relative to the training image encodings affinity to the test image encodings, via
a KL-divergence term.

fTIP-X(ztest) = fTIP-A(ztest) + γψ(−M)L (7)
where Mij = DKL(σ(ztestU

T ) || σ(ZUT )), σ is the softmax function, and ψ is a re-scales M to
have magnitudes equal to the few-shot logits from Tip-Adapter.

CALIP Guo et al. (2022) is similar;

fCALIP(ztest) = α1ztestU
T + α2ztestσ(A/τ1)U+ α3ztestσ(A

T /τ2)Z (8)
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Figure 4: Tip-Adapter Replication. ‘Tip*’ is our re-implementation with the original per-dataset α
values, Tip* (global alpha) is with α = 1 for all datasets. Re-implementation results are the mean
over 5 seeds, with standard deviation shown as error bars. We were unable to perfectly replicate
Tip’s performance on our version of the datasets and with our inference pipeline. This may be due to
different prompt templates (Tip uses a single prompt), or the fact that Tip uses a small amount of
image augmentation when constructing image features. For the flowers dataset, we do not report
the 16-shot case as not all classes have 16 samples. We do see that both the reported numbers and
the re-implementation improve on the zero-shot performance for any number of samples, across all
datasets. In addition, it is clear that the inability to tune α has a detrimental effect on accuracy.
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Table 2: Fréchet prompt averaging provides a consistent boost in Zeroshot accuracy over various
models and pretraining datasets. Accuracy is averaged over all datasets with > 1 prompt. We also
report the ’None’ case where no averaging is applied, and multiple label encodings per class are
present.

Mean Accuracy Median Accuracy
Model Pretraining Frechet Euclidean None Frechet Euclidean None

RN50 openai 41.35 41.31 40.46 39.54 39.45 39.00
ViT-B-16 openai 48.27 48.24 48.44 49.06 49.05 48.24
ViT-B-32 openai 45.38 45.39 45.18 46.78 46.84 46.03
ViT-H-14 laion2b s32b b79k 59.05 59.04 58.36 62.56 62.56 61.70
ViT-L-14 laion2b s32b b82k 56.98 56.95 56.44 59.60 59.41 58.85

openai 53.90 53.84 52.85 52.94 52.97 51.97
ViT-g-14 laion2b s12b b42k 63.47 63.46 62.91 67.00 67.03 65.62

where A = ZUT .

All approaches also include ‘fine-tuning’ variants, where some parameters in the adapter are unfrozen
and the adapter trained using a standard cross entropy loss.

A.3 RIEMMANNIAN GEOMETRY BACKGROUND AND NOTATION

An n-dimensional manifold M is a topological space that is locally homeomorphic to Rn. The
tangent space TxM at x is defined as the vector space of all tangent vectors at x. For a manifold M,
a Riemannian metric ρ = (ρx)x∈M is a smooth collection of inner products ρx : TxM×TxM → R
on the tangent space of every x ∈ M. The resulting pair (M, ρ) is called a Riemannian manifold.
Note that ρ induces a norm in each tangent space TxM, given by ∥v∥ρ =

√
ρx(v,v) for any

v ∈ TxM.

For a curve γ : [a, b] → M, we define the length of γ to be L(γ) =
∫ b

a
∥γ′(t)∥ρ dt. For x,y ∈ M,

the distance d(x,y) = inf L(γ) where γ is any curve such that γ(a) = x, γ(b) = y. A geodesic γxy
from x to y, is a curve that minimizes this length.

For each point x ∈M and vector v ∈ TxM, there exists a unique geodesic γ : [0, 1] → M where
γ(0) = x, γ′(0) = v. The exponential map expx : TxM → M is defined as expx(v) = γ(1). Note
that this is an isometry, i.e., ∥v∥ρ = d (x, expx(v)). The logarithmic map logx : M → TxM is the
inverse of expx.

B FURTHER RESULTS

B.1 WHY CAN’T WE SIMPLY ROTATE ENCODINGS?

Liang et al. demonstrated that attempting the modality gap by shifting one modality to overlap
the other in L2, then re-normalizing the encoding does not improve accuracy. This is perhaps not
surprising given such a transformation is non-linear and does not preserve inter-modality distance
(we confirm the conclusion holds when L2 is used as the distance to classify in Table 3 however).
A reasonable distance preserving approach is to rotate one modality over to the other by solving an
Orthogonal Procrustes (Gower & Dijksterhuis, 2004) problem that minimizes the distance between
modality pairs. In the one-shot case we have U = [u1,u2, . . . ,uC ]

T and Z = [z1, z2, . . . , zC ]
T ,

R = argmin
Ω

∥ΩU− Z∥F , subject to ΩTΩ = I . (9)

U∗ = RU can then be combined with Z as a single index, and standard classifiers can be applied.
However, in practice this significantly reduces accuracy (see Fig. ??). It is no immediately clear why,
as this is approach is equivalent to subspace alignment (Fernando et al., 2014), as points represent
the Principal Components (PC) in the few shot case as K ≪ D. Using Tangent PCA we show why.
Figures 9, 10 show the cosine similarity of the top 10 text PC’s (rows) with image PC’s (columns),
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Table 3: Mean-shifting baseline with an RN50 encoder, for the 1-shot case only. Classification is
done via minimum l2 distance on various index’s. U ′ is the text encodings mean shifted to lie on
the image manifold; U ′ = U −

(
Ū − Z̄

)
. ‘U ′ and Z’ refers to the case where both encodings are

present in the same index and the standard (closet point) classifier is used. ‘Ensemble Z, U ’ refers to
the case where two index’s are created and queried separately, and their resulting logits are added
with equal weighting. These results differ from previous work (Liang et al.) as they preformed all
classification with inner products only, and hence re-normalized after the mean shift; a non-linear
transform which does not preserve relative distances between classes and reduces accuracy.

Accuracy (5 seeds)
RN50 Z U U ′ U ′ and Z Ensemble Z, U Gain from U ′

cars 23.34% 54.21% 49.37% 35.66% 37.77% -4.84%
country211 4.00% 15.45% 12.66% 6.68% 5.89% -2.78%
fer2013 19.24% 34.62% 45.84% 39.19% 23.57% 11.22%
fgvc aircraft 13.26% 16.92% 16.82% 15.37% 16.47% -0.10%
gtsrb 18.55% 35.15% 25.74% 21.01% 25.53% -9.42%
mnist 38.67% 57.86% 60.84% 57.40% 52.41% 2.98%
renderedsst2 49.26% 55.74% 55.90% 54.37% 49.56% 0.16%
stl10 77.40% 94.21% 94.96% 93.23% 87.73% 0.74%
sun397 29.75% 59.69% 57.70% 37.13% 41.40% -1.99%
voc2007 24.68% 64.31% 56.67% 45.86% 34.09% -7.64%

caltech101 56.08% 83.01% 77.84% 69.22% 71.11% -5.16%
cifar10 45.03% 72.08% 69.04% 65.75% 59.57% -3.04%
cifar100 16.48% 38.84% 35.84% 24.84% 28.54% -3.00%
clevr closest object dist 23.41% 14.20% 22.08% 23.57% 23.87% 7.88%
clevr count all 19.79% 22.34% 16.90% 20.27% 20.47% -5.45%
diabetic retinopathy 17.04% 17.71% 6.47% 9.51% 16.57% -11.24%
dmlab 18.88% 14.76% 14.20% 15.24% 18.05% -0.56%
dsprites label orientation 9.80% 1.33% 2.06% 9.50% 9.32% 0.74%
dsprites label x position 4.32% 3.30% 3.31% 4.18% 4.27% 0.02%
dtd 28.11% 41.97% 40.28% 38.59% 36.69% -1.69%
eurosat 47.45% 40.06% 40.01% 49.21% 52.49% -0.04%
flowers 53.18% 65.88% 51.51% 60.53% 69.06% -14.37%
kitti closest vehicle dist 39.95% 22.22% 22.32% 28.65% 42.13% 0.09%
pcam 65.74% 64.11% 66.54% 67.80% 66.48% 2.42%
pets 33.23% 83.42% 75.00% 57.66% 59.92% -8.42%
resisc45 39.34% 46.25% 46.39% 44.35% 47.99% 0.14%
smallnorb label azimuth 6.70% 5.70% 5.74% 6.60% 6.67% 0.05%
smallnorb label elevation 13.27% 10.88% 10.95% 13.29% 13.24% 0.07%
svhn 11.56% 29.03% 24.77% 18.44% 14.29% -4.26%

Mean 29.22% 40.18% 38.20% 35.62% 35.69% -1.98%
Median 23.41% 38.84% 40.01% 35.66% 34.09% -0.56%

ordered by explained variance. The direction of variance do not align; the embeddings contain
information additional to the class being considered, and this additional information is not consistent
across modalities. Aligning modalities via Orthogonal Procrustes will fit towards these directions of
greater variance, reducing accuracy.

C IMPLEMENTATION DETAILS

We use no image augmentation in all experiments to facilitate comparison. Extending our approach
in include image augmentation is straightfoward and likely to increase performance. For logistic
regression, we use scikitlearn’s implementation with the LBFGS solver and otherwise default hyper-
parameters. Given all datasets are few-shot and hence low-sample, optimizing on CPU is very fast,
and we found no need to learn the classifier on GPU.

To calculate the Fréchet norms and logarithmic maps we use the excellent geomstats (Miolane
et al., 2020) package.
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Table 4: Numerical results for Figure 2 right.

Mean Median
MATeR (Label only) Zeroshot MATeR (Label only) Zeroshot

RN50 40.657 40.205 43.780 39.000
ViT-B-16 46.565 44.697 52.264 46.294
ViT-H-14 54.665 53.908 62.431 58.361
ViT-g-14 54.008 54.618 61.960 62.366

Mean 48.974 48.357 55.109 51.505
Median 50.286 49.302 57.112 52.328
Std. Dev. 6.651 7.068 8.888 10.778

Table 5: MATeR label only accuracy per dataset when using a single shot per class to inform the
Fréchet mean only using the CLIP-ViT-B-16 backbone. Results averaged over 5 seeds.

MATeR (Label only) Zeroshot Difference

Caltech101 86.078 88.562 -2.484
Cars 58.906 64.582 -5.676
Cifar10 91.468 90.760 0.708
Cifar100 69.580 67.480 2.100
Clevr Closest Object Distance 15.594 14.814 0.780
Clevr Count All 27.249 20.371 6.877
Country211 20.812 22.858 -2.045
Diabetic Retinopathy 24.078 3.026 21.053
Dmlab 18.684 15.945 2.739
Dsprites Label Orientation 1.570 2.317 -0.746
Dsprites Label X Position 3.123 2.939 0.184
Dtd 44.383 44.840 -0.457
Eurosat 61.241 54.852 6.389
Fer2013 52.711 46.294 6.417
Fgvc Aircraft 22.550 24.362 -1.812
Flowers 62.333 71.078 -8.745
Gtsrb 46.215 43.413 2.803
Kitti Closest Vehicle Distance 39.716 22.222 17.494
Mnist 67.900 51.390 16.510
Pcam 54.090 51.834 2.256
Pets 81.168 87.364 -6.196
Renderedsst2 56.716 60.461 -3.745
Resisc45 63.171 59.603 3.568
Smallnorb Label Azimuth 5.541 5.646 -0.105
Smallnorb Label Elevation 10.808 11.374 -0.566
Stl10 98.275 98.263 0.013
Sun397 60.835 64.290 -3.455
Svhn 34.854 27.559 7.295
Voc2007 70.735 77.704 -6.970

Mean 46.565 44.697 1.868
Median 52.711 46.294 6.417
Std. Dev. 27.535 29.523 -1.989
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Table 6: Mean zero-shot performance across architectures and pretraining methods for all datasets
with > 1 prompt (N = 18). Fréchet averaging results in a minor, but consistent gain over the
euclidean mean re-projected to the unit hyper-sphere. This is expected as prompt templating should
not spread label encodings across a large area (at least, not greater than the inter-modality class-to-
class distance).

Model, Pretraining Fréchet Euclidean w/ L2-Norm

RN50, openai) 41.35 41.31
ViT-B-32, openai 45.38 45.39
ViT-B-16, openai 48.27 48.24
ViT-L-14, openai 53.90 53.84
ViT-L-14, laion2b s32b b82k 56.98 56.95
ViT-H-14, laion2b s32b b79k 59.05 59.04
ViT-g-14, laion2b s12b b42k 64.08 64.06

Mean 52.71 52.69
Median 53.90 53.84

Table 7: Comparison of Fréchet prompt averaging with the standard approach by mean zero-shot
performance for CLIP-RN50 broken down by dataset. Only datasets with multiple prompt templates
are listed.

Prompt Averaging Method Frechet Linear Reprojected Difference
Dataset

Caltech101 83.007 83.007 0.000
Cars 54.334 54.210 0.124
Cifar10 72.080 72.080 0.000
Cifar100 39.000 38.840 0.160
Country211 15.445 15.445 0.000
Dsprites Label Orientation 1.267 1.325 -0.058
Dtd 41.915 42.021 -0.106
Eurosat 40.074 40.056 0.019
Fer2013 34.675 34.620 0.056
Fgvc Aircraft 16.922 16.922 0.000
Gtsrb 35.154 35.154 0.000
Pcam 64.114 64.111 0.003
Resisc45 46.286 46.254 0.032
Smallnorb Label Azimuth 5.720 5.695 0.025
Smallnorb Label Elevation 10.947 10.881 0.066
Stl10 94.213 94.213 0.000
Sun397 59.687 59.687 0.000
Svhn 29.375 29.034 0.341

Mean 41.345 41.309 0.037
Median 39.537 39.448 0.002
Std. Dev. 26.372 26.381 0.096
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Figure 10: Alignment of the principal components between normalized the text and image encodings
with an ViT-L-14 (224) openai model.
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Table 8: Baseline zero-shot accuracy (%) for various OpenAI pretrained models. Predictions are
made based on the closest label embedding (averaged over prompt templates), using maximum cosine
similarity.

Dataset RN50 ViT-B-16 ViT-B-32 ViT-L-14

Caltech101 82.68 85.95 82.68 89.87
Cars 59.27 71.73 63.60 80.09
Cifar10 78.92 94.12 91.72 96.68
Cifar100 50.46 70.44 66.16 78.06
Clevr Closest Object 27.84 27.13 29.14 30.24
Clevr Count All 33.19 35.11 34.10 36.69
Country211 18.77 24.16 20.47 30.17
Diabetic Retinopathy 61.79 63.12 61.45 63.47
Dmlab 30.21 33.05 30.83 37.02
Dsprites Label Orientation 82.22 72.13 67.53 81.88
Dsprites Label X Position 48.23 48.12 50.69 38.60
Dtd 61.91 66.54 61.54 70.59
Eurosat 85.85 90.70 89.20 94.00
Fer2013 59.88 63.51 60.53 63.37
Fgvc Aircraft 29.73 42.18 32.88 49.56
Flowers 81.67 89.71 83.63 97.45
Gtsrb 63.56 72.28 69.61 84.71
Kitti Closest Vehicle 47.04 54.37 56.97 50.59
Mnist 95.77 96.80 96.44 98.10
Pcam 71.33 73.22 73.01 76.60
Pets 74.32 82.88 78.26 90.08
Renderedsst2 61.72 62.22 59.53 67.00
Resisc45 83.10 90.56 87.25 93.13
Smallnorb Label Azimuth 14.02 13.38 13.03 12.26
Smallnorb Label Elevation 28.75 26.95 28.85 25.14
Stl10 96.14 98.90 98.08 99.44
Sun397 100.00 100.00 100.00 100.00
Svhn 34.62 42.94 31.56 50.75
Voc2007 70.37 77.96 75.28 81.94

Mean 59.77 64.49 61.86 67.84
Median 61.79 70.44 63.60 76.60
Std. Dev. 24.69 25.26 25.17 26.37
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Figure 11: Visualization of why naive mean shifting, and rotation to reduce the modality gap fails on
3D on dummy data. Here, we set the intrinsic dimentionality of the modalities to 1, and normalize.
‘Text’ is shown as orange points and ‘images’ as blue points. For easy of visualization we link each
point to it’s closet point across the modality gap. Modality means and links to the origin is also
show (heavy black lines). Orthogonal Procrustes computed on the mean points (red) fails due to the
undercontrained nature of the rotation (2 points in 3d space), and rotation over additional axis occurs
which destroys the relative distance between points. Mean centered shifting (green) does better, but
is distorting as the translation occurs in l2.

C.1 DATASET SELECTION

The 29 datasets were chosen so as to facilitate comparison to prior work, but also to cover a range of
zero-shot and few-shot performance. STL10, for example, was included due to CLIP’s 94.8 percent
zero-shot accuracy even when using an RN50 based architecture. Additionally, the datasets present
not only domain shifts but task shifts such as distance estimation (KITTI), counting (Clevr Count
All) and orientation estiation (Smallnorb, Dsprites). The datasets contain a varying number of classes
from 397 for SUN397 to binary classification in the case of Renderedsst.

In VTAB, we use KITTI v3.3.0 not 3.2.0 due to incompatibility with latest verison of task-adaptation
lib. Original CLIPBaselines lib uses 3.2.0. We were unable to evaluate on the SUN397 vtab version
due to an undecodabel image. We use the pytorch datasets SUN397 version instead to complete the
VTAB evaluation set. All prompt templates and dataset label string representations are obtained from
LIAON’s CLIPbenchmark.

C.2 MODEL DETAILS AND PREPROCESSING

We adopt the same input input transforms used in pretrain for various models and ensure consistency
between train and test, with fixed-constant normalization (per model), bi-cubic interpolation to the
model input size, and center cropped.

D COMPUTATION

A disadvantage of the retreival approach is that computational complexity of the inference step scales
logarithmically with downstream dataset size (although this is somewhat balanced by the fact training
is free). In the few-shot case this is almost never a problem unless there are huge numbers of classes.
For large datasets, there may be practically a minor slowdown, however we observed for all datasets
in this paper, this was minor. In short; we did not find it to be a major concern.
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Table 9: Dataset details. Lower datasets are the VTAB (Zhai et al., 2019) versions.

Dataset Abbreviation Test size Number of classes
Stanford Cars cars 8,041 196
Country211 21,100 211
Facial Emotion Recognition 2013 fer2012 7,178 7
FGVC Aircraft 3,333 100
GTSRB 12,630 43
MNIST 10,000 10
RenderedSST2 1,821 2
STL10 8,000 10
SUN397 108,754 397
Pascal VOC 2007 Classification voc2007 14,976 20

Caltech-101 6,085 102
CIFAR-10 cifar10 10,000 10
CIFAR-100 cifar100 10,000 100
CLEVR Object Distance 15,000 6
CLEVR Counts 15,000 8
Diabetic Retinopathy 42,670 5
DMLAB 22,735 6
DSPRITES Orientation 73,728 40
DSPRITES Position 73,728 32
Describable Textures dtd 1,880 47
EuroSAT 5,400 10
Oxford Flowers 102 flowers 6,149 102
KITTI closest vehicle distance 711 4
PatchCamelyon pcam 32,768 2
Oxford-IIIT Pets pets 3,669 37
RESISC45 6,300 45
SmallNORB Azimuth 12,150 18
SmallNORB Elevation 12,150 9
SVHN 26,032 10

Table 10: Base model details. GMAC refers to number of Giga Multiply–ACcumulate operations.
We use the implementations of Ilharco et al. (2021).

Name Embedding Dimension Layers Heads Parameters (M) GMACs
RN50 1024 - - 102 9.16
ViT-B-32 512 12 8 151 7.40
ViT-B-16 512 12 8 150 20.57
ViT-L-14 768 12 12 428 87.73
ViT-H-14 1024 24 16 986 190.97
ViT-g-14 1024 24 16 1370 290.74
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Given we only require forward passes for all experiments, with no finetuning of the base encoder,
we were able to perform all experiments on a single G5.16x instance in the AWS cloud. We cache
features for both the images and the various label-prompt combinations.
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