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Abstract—Composed Image Retrieval (CIR) is the task of
retrieving images matching a reference image augmented with
a text, where the text describes changes to the reference image
in natural language. Traditionally, models designed for CIR have
relied on triplet data containing a reference image, reformulation
text, and a target image. However, curating such triplet data often
necessitates human intervention, leading to prohibitive costs. This
challenge has hindered the scalability of CIR model training even
with the availability of abundant unlabeled data. With the recent
advances in foundational models, we advocate a shift in the CIR
training paradigm where human annotations can be efficiently
replaced by large language models (LLMs). Specifically, we
demonstrate the capability of large captioning and language
models in efficiently generating data for CIR only relying on
unannotated image collections. Additionally, we introduce an
embedding reformulation architecture that effectively combines
image and text modalities. Our model, named InstructCIR, out-
performs state-of-the-art methods in zero-shot composed image
retrieval on CIRR and FashionIQ datasets. Furthermore, we
demonstrate that by increasing the amount of generated data,
our zero-shot model gets closer to the performance of supervised
baselines.

Index Terms—Composed Image Retrieval, Multimodality re-
trieval

I. INTRODUCTION

The objective of composed image retrieval [13], [24] is to
search for an image that aligns with both a reference image
and a textual input detailing the desired alterations to that
reference. This allows users to modify an image-based search
query with natural language, facilitating a clear articulation
of intent. Such capabilities have wide-ranging applications,
including e-commerce, recommendation systems, and search
engines.

The effectiveness of recent CIR methods [6], [10], [13],
[35], [47] largely depends on the pre-trained vision and
language models such as CLIP [39] and BLIP [28], which uti-
lize contrastive semantic matching. Nonetheless, these models
need to be finetuned specifically for CIR using triplet data
containing reference images, reformulation texts, and target
images. This reliance on human-annotated triplet data hinders
the scalability of CIR models. Additionally, the scarcity of
triplet data can impede fine-grained reformulations across the
interrelated visual and text modalities.

In contrast, two parallel studies, Pic2Word [41] and ZS-
CIR [3], introduced the zero-shot composed image retrieval
task by leveraging image inversion techniques [17]. Both

This work was completed by Yiqun during his internship at Amazon,
Australia.

Fig. 1. Performance curve versus current zero shot composed image
retrieval benchmarks, where grey dashlines - - indicates supervised baselines
as intuitive references. Our zero-shot model (shown in purple) closes the gap
with supervised baselines with increasing amount of generated data.

methods convert the reference image into a single text token
and apply reformulation in the text domain. However, this
transformation of images to singular text tokens may result
in substantial loss of intricate visual details, leading to sub-
par zero-shot performance.

A concurrent work, TransAgg [34], suggests the use of an
LLM (ChatGPT) to produce training data from existing image
caption datasets. Yet, this approach remains reliant on pre-
existing image-caption paired data and uses generically trained
image and text encoders while only optimizing an aggregation
layer. Moreover, TransAgg has been explored only on a limited
data scale.

Our approach further relaxes the data requirement by solely
relying on unannotated image collections. We hypothesize that
given an arbitrary image pair, one can generate the natural
language description of the difference by utilizing large vision
and language models, effectively replacing human annotations.
To this end, we first leverage the LLaVa model [33] to generate
captions for a randomly sampled image pair. Subsequently,
we utilize an LLM to delineate the differences between these
captions. This technique enables the formation of triplets in
a zero-shot manner, relying exclusively on unannotated image
collections.

Additionally, we introduce a simple, yet effective joint
embedding reformulation architecture that fuses the image and
text modalities using cross-attention at multiple levels. Such a
latent fusion design enables fine-grained image manipulations
using text and has been used in text-guided image genera-
tion [9], [40], [49]. Nevertheless, this embedding reformula-
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Fig. 2. InstructCIR workflow. Given an image pair {xa,xb}, captions are
generated by the LLaVA model. Next, the LLM generates the natural language
description of the differences between these captions. Then, the reference
image and the generated difference text are fused at multiple levels and the
model is trained to minimize the embedding distance with respect to the target
image.

tion approach has not been used in the CIR domain to our
knowledge and outperforms late fusion techniques as well as
direct pixel-space manipulations as shown in our experiments.
Our contributions are three-fold:

• We introduce a scalable framework for training CIR mod-
els that relies solely on unannotated image collections,
replacing the need for paired image-caption data and
human annotations.

• We introduce a simple, yet effective latent fusion archi-
tecture to effectively combine image and text modalities
for CIR.

• Our model sets the state-of-the-art on zero-shot CIR
benchmarks and closes the gap between zero-shot and
supervised settings aided by efficient data scaling; See
Fig. 1.

II. INSTRUCTCIR

This section presents a detailed overview of our zero-
shot triplet data generation pipeline (Sec. II-A) and model
architecture (Sec. II-B). Section II-C elaborates on the training
process as well as objective functions for composed image
retrieval.

A. Zero-Shot Triplet Generation

A comprehensive workflow of our approach is depicted in
Fig. 2. Initially, an image pair is randomly selected from the
provided image collection. This pair is then transformed into
textual descriptions via image captioning. Subsequently, the
LLMs are prompted with these generated captions to produce
the reformulation text that describes the difference between
the captions.

a) Image Captioning:: One key component in ensuring
zero-shot CIR only depends on the given image collection is
to convert images into a sufficiently detailed text description.
We prompt a powerful visual instructed large language model

TABLE I
THE UPPER PART DENOTES PROMPTS USED TO CONVERT IMAGES INTO

TEXTS. THE LOWER PART INDICATES TEXT PROMPTS USED FOR
REFORMULATING FROM IMAGE CAPTION A TO CAPTION B.

LLM 

❄

Visual 
Encoder

Prompts
<Token><Token>…You are a helpful 
language and vision assistant, you are able to 
understand the visual content, and assist the 
user with a variety of tasks using natural 
language. Describe the image as detail as 
possible 

Reformulation Prompt:

You have two captions for two images, image A and image
B, you are supposed to write a reformulation text describing
changing from image A to image B. caption A: {Caption
A} caption B: { Caption B } answer should be concise
and within 12 words, only contain normal words, do not
use special characters. Difference:

(LLaVA1 [33]) to convert the sampled image pairs into a text
pair. The prompt for the captioning model is provided in the
top part of Table I, and example results are shown in Fig. 3.
The image is tokenized and encoded through a ViT model and
is fed into an LLM as context tokens. The LLM generates the
detailed image caption given visual tokens and task prompts.
The examples on the Fashion200k dataset show that, although
LLM may generate common descriptions such as “posing for
a photography shot”, “a woman is wearing”, it still accurately
describes key elements of the given image, such as the object
(e.g.., shirt, dress), style (e.g.., strapless, off-the-shoulder, split
style), color, etc..

b) Reformulation with LLMs:: Utilizing the high-quality
image captions obtained as above, our approach leverages
an LLM fine-tuned from vicuna 33B checkpoint2 to gener-
ate reformulated text-prompts in a zero-shot manner. The
language model is fine-tuned using low-rank adaptation fine-
tuning (LORA) [25] with 10 epochs. The fine-tuning seed
data is obtained by prompting ChatGPT-4 in zero-shot. Here,
directly prompting ChatGPT-4 is also feasible to generate
reformulation data. Here we fine-tuning our own model for
the feasibility of the ablation study. We employ the prompt
structure illustrated in Table I, which is crafted without prior
training specific to this task. Illustrative examples of generated
reformulation texts are presented in Fig. 3. These highlight the
efficacy of our data generation pipeline. Rather than merely
presenting experiment outcomes, we delve deeper to discern
the influence of various language models on the performance
metrics.

B. Model Structure

Our proposed architecture capitalizes on a streamlined yet
potent framework; a layer-by-layer text-guided embedding

1https://huggingface.co/liuhaotian/llava-v1.5-13b
2https://huggingface.co/lmsys/vicuna-33b-v1.3

https://huggingface.co/liuhaotian/llava-v1.5-13b
https://huggingface.co/lmsys/vicuna-33b-v1.3
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Examples on FashionIQ Dataset

The image features a woman wearing a white shirt and a black
leather pencil skirt. She is posing for the camera, standing with her
hands on her hips. The woman is wearing a gold belt, which adds
a touch of elegance to her overall appearance.

The image features a woman wearing a gray skirt and a green shirt.
The woman is positioned in the center of the frame, with her skirt
covering most of her lower body. The overall scene appears to be
a casual and comfortable setting.

The image features a woman wearing a black dress with a necklace
around her neck. She is standing in front of a mirror, possibly posing
for a picture. The dress appears to be a short, black dress with a
neckline that accentuates her necklace.

The image features a woman wearing a white dress, which appears
to be a strapless, off-the-shoulder, split style. The dress has a unique
design, with a row of buttons running down the front. She is holding
a handbag, and the scene exudes elegance and sophistication. The
overall style of the dress is elegant.

Reform Changed white shirt and skirt to short black dress, added necklace. Reform From gray skirt and green shirt to elegant white strapless split dress.

Examples on CIRR Dataset

The image features a brown, shaggy dog standing on a dining table
next to a bowl of food. The dog appears to be looking at the camera,
possibly waiting for its owner to take a picture. The scene captures
the dog’s curiosity as it stands near the bowl.

The image features a white house with a thatched roof, giving
it a charming and rustic appearance. The house is situated on a
lush green field, surrounded by a beautiful garden. The garden is
adorned with a flag, adding a touch of patriotism to the scene.

The image features a large, fluffy, and furry dog lying on a white
countertop. The dog appears to be a Chow Chow, with its distinctive
appearance and long, shaggy fur. The dog is positioned in the center
of the scene, occupying a significant portion of the countertop.

The image features a group of seals sitting on a sandy beach. There
are at least four seals visible in the scene, with one seal sitting
prominently in the foreground and the others scattered around the
beach. The seals appear to be enjoying their time on the sand,
possibly resting or socializing with each other.

Reform Dog moved from dining table to white countertop, now lying down. Reform House with garden and flag changes to seals on a sandy beach.

Fig. 3. Caption results by prompting visual LLMs on Fashion200k and NLVR, where accurate information and unrelated information is highlighted in different
color. Though unrelated information exists, it still suggests zero-shot image-text conversion is feasible with LLMs. Reform corresponds to the reformulation
text generated for the images in the same column.
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Fig. 4. Model structure of proposed embedding reformulation network. The
text embedding is injected into the visual transformer through cross-attention
layer by layer.

reformulation network, as illustrated in Fig. 4. This de-
sign is inspired by in the latest advancements in generative
image manipulation [8], [40] where models adeptly utilize
text instructions to guide image generation. Although the

generated images are visually plausible, they fail on recall
metrics (as shown in Table II) due to overly strict pixel-to-
pixel correlations. Instead of the pixel space, we harness the
joint latent space [1] to perform the instructed embedding
reformulation.

We modify each transformer block of the ViT model [14]
by introducing cross attention from the text encoder. Our
text encoder is the same as CLIP [39], which takes text
instruction as input and outputs an embedding sequence. In
each ViT block, one self-attention layer is first applied on
visual embeddings and cross-attention is utilized to inject the
text instruction on embeddings, where the text embeddings are
treated as K and V and image embeddings as queries Q. Then,
an MLP layer combined with layer norm [2] and residual
connection is utilized to aggregate the features. Several such
reformulation blocks are stacked to get the final output. On
the top of the encoder, a predictor is used to obtain the final
embedding for retrieval. For the target images, which do not
have an instruct prompt, we use a null-text token as the text
input. This enables us to embed both the source and target
images within a shared model architecture. Additionally, the
target encoder is updated using an exponential moving average
similar to I-JEPA [1].

C. Composed Retrieval Training

We train the joint-embedding reformulation network
by minimizing the distance between the reformulated query
embeddings and the target embeddings. For a fair comparison,
we maintain the model size consistent with preceding models
which are similar to the CLIP model. For a given query with
an image pair xa,xb, we obtain the associated captions Ca, Cb



using the LLaVa model. Subsequently, the reformulation LLM
produces the reformulation text tab in a zero-shot fashion,
defined as tab = LMMdiff(Ca, Cb).

Subsequently, the reformulated embedding er is extracted
by our proposed encoder and a predictor. Formally,

er = gθ(zr, ϕt(tab)), where zr = fθ(xa, tab), (1)

and ϕt(·) is the pre-trained text encoder. The predictor gθ(·) is
a MLP projection layer based on concatenated image and text
embeddings {zr, ϕt(tab)}. Detailed description of the encoder
fθ(·, ·) is provided in the model structure section (Sec. II-B
and Fig. 4). The target embedding is extracted using the same
function with the null-text token embedding instead of input
text, et = gθ(zt, ϕt(∅)), where zt = fθ(xb, ∅), Here, er, et ∈
Rd where d is embedding dimensionality.

Our training objective is to minimize the distance between
the query embedding er and the target embedding et for a
given triplet {xa,xb, tab} from the zero-shot pipeline. Simul-
taneously, we maximize the distance between er and embed-
dings of other target images within the batch. To accomplish
this, we utilize a batch-centric contrastive loss:

Lcontr =
1

B

B∑
i=1

−log
exp{τ · κ(eir, eit)}∑B
j=1 exp{τ · κ(eir, ejt )}

, (2)

Here, eir, eit denote the embeddings of the reformulation
encoder and the target encoder for the i-th triplet, κ(·, ·)
denotes the cosine similarity, τ > 0 is a temperature parameter
that controls the range of the logits, and B is the number of
triplets in a batch. Both text encoder and the reformulated
image encoder are updated during the alignment training.

Given reformulated embeddings, we further boost the per-
formance by fusing the pure text embedding with the refor-
mulated embedding using the following settings from most
of the previous papers [6], [36], [37]. Given the reformulated
embedding er, we calculate the final embedding as follows:

ef = λer + (1− λ)ϕt(tab), (3)

where λ is the trained hyper-parameter weight to combine
original features from two sides. After the whole network is
trained, this combiner weight is fine-tuned using the same
Lcontr by fixing backbone weights and replacing er with ef in
Equation 2.

III. RELATED WORK

a) Composed Image Retrieval (CIR):: Composed image
retrieval (CIR) retrieves images using a reference image-text
pair [15], [16], [47], with applications in fashion [48] and
scene composition [35]. Traditional methods merge latent
embeddings [29]–[31] from both modalities to form retrieval
queries. Techniques range from TIRG’s gating and residual
connections [47] to VAL’s transformer-based hierarchical de-
sign [10]. Wu et al. [48] employ a custom transformer for
early image-language fusion. In contrast, Goenka et al. [18]
use BERT [12] for image-text-tag unified coding, while Han et
al. [22] pre-train a model using a vast fashion dataset. Modern

CIR approaches, like CLIP4CIR [7] and BLIP4CIR [36],
leverage pre-trained visual-language models and apply late
fusion. CASE [27] enhances this by adding external data.
Candidate-R [37], aiming for peak performance, re-ranks
retrieval candidates, albeit at a much higher computational
cost. Notably, all these strategies require source-prompt-target
triplets for training, and the high cost of obtaining such data
constrains CIR’s broader application.

b) Zero-Shot Compsed Image Retrieval:: The concept
of zero-shot composed image retrieval has recently gar-
nered significant attention. Two contemporaneous studies,
Pic2Word [41] and ZS-CIR [3], utilize image-caption datasets
to train networks that represent images as singular tokens,
thus facilitating cross-modal retrieval in the text domain. Com-
poDiff [19] leverages a modified diffusion-denoising model to
iteratively refine search queries and introduces a new dataset,
SynthTriplet18M. This dataset comprises images synthesized
through the prompt-to-prompt model [23], guided by corre-
sponding captions.

Our concurrent work, TransAgg [34], harnesses ChatGPT
combined with human-translated templates on selected image
caption data from LAION [42], yielding impressive results.
Distinctly, our approach aims to achieve zero-shot image
retrieval relying solely on image distribution. By integrating
image captioning models with large language models (LLMs)
and capitalizing on scaling potential, InstructCIR sets new
benchmarks in the realm of composed image retrieval.

IV. EXPERIMENTS

In this section, we provide comprehensive experiments to
illustrate the state-of-the-art performance of InstructCIR on
both zero-shot and supervised composed image retrieval.

A. Setup

The reformulation network is modified from CLIP pre-
trained ViT-L/14 and injects cross attention to each layer. The
cross-attention layer is initialized with Xavier [26] initializa-
tion. The cross-attention layer has the same heads as the main
backbone. The training data is sampled from Fashion200k [21]
and NLVR [45] which respectively have 280k and 21.4k
images. For the Fashion200k dataset, we randomly sample
image pairs under the same meta class 3, while for NLVR
we sample the whole dataset. For the image caption model,
we directly used LLaVA Vicuna 13B pre-train weights. We use
our own language model with 33B as the text reformulator,
also, we provide a comparison with different language models
in supplementary.

Since the unique combination is scalable, we creating image
pairs from 16k up to 500k to report the performance curve. The
model is trained with AdamW [38] optimizer, with learning
rate 2× 10−6, weight decay 0.1, batch size 32. The model is
implemented using PyTorch and trained with eight A100 GPU
instances.

3Fashion200k has five meta classes: dresses, jackets, pants, skirts, tops.



TABLE II
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART ZERO-SHOT METHODS (AND WITH SUPERVISED BASELINES). HERE, ⋆ INDICATES DATA ARE
SAMPLED FROM SUBSETS OF THE FASHION200K AND NLVR DATASETS. FOR ZERO-SHOT METHODS, EVALUATION METRICS ARE FROM THE SAME
MODEL ACROSS TWO DATASETS. FOR SUPERVISED METHODS, EVALUATIONS ARE FROM THE BEST MODELS RESPECTIVELY ON EACH DATASET. †

DENOTES THE TRAINING SCALE IS ADDITIONAL TO THE ORIGINAL CLIP PRE-TRAINED MODEL. CANDIDATE R50/100 IS MARKED GREY AS IT REQUIRES
A MUCH HIGHER COMPUTATIONAL COST. RESULTS INDICATE THAT OUR INSTRUCTCIR REACHES STATE-OF-THE-ART PERFORMANCE ON BOTH

ZERO-SHOT AND SUPERVISED BENCHMARKS. WE SELECT THE BEST PERFORMANCES IN EXISTING METHODS FOR FAIR COMPARISON. THE FIRST
SECTION RESULTS (IMAGE OR TEXT ONLY) ARE WITH THE SAME CLIP-L14 ARCHITECTURE AS OUR METHOD.

#Sample
Scale

CIRR FashionIQ

Methods Zero-Shot Data Source R@1 R@5 R@50 RSubset@1 R@10 R@50 Average

Image Only + CLIP-L14 ✓ CLIP [39] - 8.42 23.81 61.03 22.98 6.33 15.21 10.78
Text Only + CLIP-L14 ✓ CLIP [39] - 22.98 46.83 82.36 63.88 19.05 37.82 28.63
Image-Text Sum. +CLIP-L14 ✓ CLIP [39] - 11.71 35.06 77.49 32.77 24.60 43.21 33.91
InstructPix2Pix +CLIP-L14 ✓ CLIP [39]/ LAION [43] - 22.03 47.81 83.52 61.67 9.86 19.63 15.03

Zero Shot Benchmarks

PALAVRA [11] ✓ PerVL [11] ∼1m. 16.62 43.49 83.95 41.61 19.76 37.25 28.51
Pic2Word [41] ✓ CC3M [44] 3m. 23.90 51.70 87.80 - 24.70 43.70 34.20
SEARLE-XL-OTI [3] ✓ COCO (CIRCO) [32] 118k.† 24.87 52.31 88.58 53.80 27.61 47.90 37.76
CompoDiff w/T5-XL [19] ✓ SynthTriplets18m [44] 18m. 19.37 53.81 90.85 28.96 37.36 50.85 44.11
CASE Pre-LaSCo.Ca. [27] ✓ LaSCo [27] 360k.† 35.40 65.78 94.63 64.29 - - -
TransAgg ✓ LAION [43] 32k† 37.87 68.88 93.86 69.79 34.64 55.72 45.18
COVR [46] ✓ WebVid- [46] 1.6m† 39.28 68.22 94.65 - 27.70 44.63 36.15
InstructCIR (Ours) ✓ LAION [43] 300k† 38.56 69.21 95.21 68.22 36.56 56.33 46.89
InstructCIR (Ours) ✓ Fashion200k [20]/ NLVR [45]⋆ 300k† 39.28 69.62 95.88 69.87 37.32 56.84 47.08

Compared to Supervised Learning.

CLIP4CIR [4] × CIRR/FashionIQ - 38.53 69.98 95.93 68.19 38.32 61.74 50.03
BLIP4CIR+Bi [36] × CIRR/FashionIQ - 40.15 73.08 96.27 72.10 43.49 67.31 55.40
CASE Pre-LaSCo.Ca.† [27] × CIRR/FashionIQ - 49.35 80.02 97.47 76.48 48.79 70.68 59.74
Candidate F [37] × CIRR/FashionIQ - 44.70 76.59 97.18 75.02 46.15 69.15 57.65
Candidate R50/100 [37] × CIRR/FashionIQ - 50.55 81.75 97.18 80.04 51.17 73.13 62.15
COVR [46] × CIRR/FashionIQ - 50.41 80.96 97.64 - 49.40 70.98 60.19
InstructCIR (Ours) × CIRR/FashionIQ - 50.70 81.61 98.27 76.10 49.03 70.96 60.00

TABLE III
COMPARISON ON CIRCO DATASET

Backbone Method K = 5 K = 10 K = 25 K = 50

B/32
SEARLE-OTI 7.14 7.83 8.99 9.60

SEARLE 9.35 9.94 11.13 11.84
InstrucCIR 10.23 10.98 12.07 13.88

L/14

Pic2Word 8.72 9.51 10.64 11.29
SEARLE-XL-OTI 10.18 11.03 12.72 13.67

SEARLE-XL 11.68 12.73 14.33 15.12
InstructCIR 12.94 13.84 15.62 16.34

B. Zero-Shot Quantitative Evaluation

a) Baselines:: To illustrate the efficiency of our proposal,
we provide a comparison with a wide range of zero-shot CIR
baselines. CLIP [39] and PALAVRA [11] provide baselines
that utilize frozen vision-language pretraining models. We
respectively evaluate text only, image only, and direct embed-
ding summation (Image-Text Sum.) to report the performance
of each modality. Pic2Word [41] and SEARLE [3] represent
realizing zero-shot CIR by converting an image into a single
text token. Moreover, we provide an image editing baseline
by using InstructPix2Pix [8] to edit reference images towards
the target image with text prompt then applying pure image
retrieval. CompoDiff [19] represents a diffusion-based gener-
ative model on latent space. CASE [27] and TransAGG [34]
suggest using LLMs to generate reformulation data but rely
on image-text pairs.

b) Performance:: The zero-shot evaluation is conducted
across two datasets with the same model weights, Fash-
ionIQ [48] (fashion) and CIRR [35] (real-life scenarios) in
Table II.

The first sector provides an intuitive understanding of
zero-shot performance by using raw model analysis. Text-
only and image-text summation using CLIP [39] exceed the
performance of early baseline PALAVRA [11] and image only.
For recent works, Pic2word [41] and SEARLE [3] introduce
2.09% to 7.09% performance improvement on recall metrics.
CompoDiff [19] reaches highest 37.36% top 10 recall (R@10)
on FashionIQ while failing to reach competitive performance
on CIRR. TransAgg [34] and CASE further boost performance
by introducing pretraining data.

While just given image distribution, InstructCIR reaches
recall 38.18%, 69.62%, and 95.88% respectively on
R@{1, 5, 50} on CIRR dataset. Using the same model, In-
structCIR reaches recall 36.91% and 55.84% respectively on
R@10 and R@50 on the FashionIQ dataset. Results demon-
strate that our InstructCIR reaches new state-of-the-art per-
formance across two major datasets.

c) Extensive Zero-Shot Performance on Benchmark
CIRCO: We have now compared our method (InstructCIR)
with two other zero-shot methods on an extensive dataset pro-
posed recently called CIRCO [3]. The observation is similar to
other datasets, that our approach clearly outperforms previous
methods even on the CIRCO dataset. We will include these
results in the revised manuscript.



TABLE IV
ABLATION STUDY ON DIFFERENT MODELS, REFORMULATION LLMS, AND DATA DISTRIBUTION WITH ZERO-SHOT SETTING. 33B∓ DENOTES OUR OWN

LANGUAGE MODEL WITH 33 BILLION PARAMETERS. CIRR⋆ AND FASHIONIQ⋆ DENOTES JUST UTILIZING IMAGES FROM GT DATASET WITHOUT
ANNOTATION BUT CREATING ZERO-SHOT REFORMULATION USING OUR PIPELINE. 33B∓-GT DENOTES WE USE SUPERVISE DATA TO FINE-TUNE THE

LANGUAGE MODEL. INSTRUCTCIR OUTPERFORMS TRANSAGG WITH RESPECTIVE TO THE QUALITY OF GENERATED DATA AS WELL AS THE
MODEL ARCHITECTURE.

#Reform
LLM

CIRR FashionIQ
Model Backbone Images Caption #Scale R@1 R@5 RSubset@1 R@10 R@50

TransAgg
CLIP L/14 TransAgg LAION Temp. 32k 33.04 64.39 63.37 32.63 53.65
CLIP L/14 TransAgg LAION ChatGPT 32k 32.67 64.05 62.98 32.45 53.15
CLIP L/14 Fashion/NVLR LLaVa 33B∓ 32k 33.26 65.67 64.05 32.91 53.41

InstructCIR CLIP L/14 TransAgg LAION 33B∓ 32k 35.58 67.85 66.87 33.52 54.07
CLIP L/14 Fashion/NVLR LLaVa 33B∓ 32k 35.83 68.04 66.93 33.78 54.82

Scaling-Up Experiments with Zero-Shot Pipeline

InstructCIR

CLIP L/14 CIRR⋆ LLaVa 33B∓ 3.6k 34.74 65.83 66.43 32.21 53.19
CLIP L/14 FashionIQ⋆ LLaVa 33B∓ 5.9k 33.08 65.98 66.38 33.64 54.62
CLIP L/14 Fashion/NVLR LLaVa 33B∓ 32k 35.83 68.04 66.93 33.78 54.82
CLIP L/14 Fashion/NVLR LLaVa 33B∓ 65k 36.72 68.49 67.03 34.85 55.16
CLIP L/14 Fashion/NVLR LLaVa 33B∓ 95k 36.92 68.64 68.34 35.94 55.78
CLIP L/14 Fashion/NVLR LLaVa 33B∓ 200k 38.04 69.56 69.45 36.64 56.18
CLIP L/14 Fashion/NVLR LLaVa 33B∓ 300k 38.86 69.62 69.87 37.32 56.84
CLIP L/14 Fashion/NVLR LLaVa 33B∓-GT 300k 41.32 72.55 71.01 38.92 58.43

C. Supervised Quantitative Evaluation

To underscore the efficiency of our proposed embedding
reformulation network, we benchmarked it using standard
supervised learning on two prominent CIR datasets: Fash-
ionIQ [48] (fashion-centric) and CIRR [35] (reflecting real-
life scenarios). Unlike the zero-shot setting, which evaluates a
single model across both datasets, the supervised benchmark
trains optimized models for each dataset before evaluation.

It’s worth noting that the Candidate Re-ranking process,
which refines results from the top 100 retrieved candidates,
incurs additional computational costs. Hence, we’ve high-
lighted Candidate R100 in grey. In the CIRR evaluation, our
InstructCIR outperforms most preceding benchmarks, even
surpassing the Candidate R100 in the Recall@K metrics. For
the RecallSubset@K metric, while Candidate R100 achieves
the peak performance, both CASE and our proposal are
closely competitive for the second-best score. In the FashionIQ
evaluation, InstructCIR ranks slightly below CASE, with Can-
didate R100 securing the third spot. These results suggest that
our network architecture is on par with the state-of-the-art
when compared against supervised baselines, underscoring the
efficacy of our model design.

D. Ablation Study

TransAgg [34] and our model significantly outperform pre-
vious models as these two models both utilize LLMs to create
reformulated text prompts. The difference is that TransAgg
utilizes existing image caption dataset, but InstructCIR creates
captions given the image distribution. We further conducted
detailed ablation studies in Table IV to help people understand
the performance improvement.

a) Architectural Efficiency:: In this section, we provide
an ablation study on architecture efficiency compared to con-
current work TransAgg [34]. The first sector of Table IV
compares TransAgg [34] with our model by exchanging

TABLE V
ABLATION STUDY ON ARCHITECTURAL DESIGN ACROSS CIRR AND
FASHIONIQ WITH ZERO-SHOT SETTING. CROSS-ATTENTION-BASED

LATENT FUSION YIELDS THE MOST BENEFIT.

CIRR FashionIQ
Model #Scale R@1 R@5 R@10 R@50

InstructCIR 32k 35.83 68.04 33.78 54.82
+w/o EMA 32k 35.04 67.85 33.16 54.23
+w/o CrossAtt. 32k 28.45 59.33 24.53 45.67

training data. By controlling data scale the same (32k),
TransAgg R@{1, 5} of CIRR dataset respectively increases
from 32.67%, 64.05% to 33.26%, 65.67%. This suggest the
efficiency of zero-shot data creating pipeline of InstructCIR.
Also, while using the TransAgg data training, our embedding
reformulation network also could reach 35.58%, 67.85% on
CIRR R@{1, 5}, which is still higher than previous model.
This observation suggests that, while using the same data
with the same scale of model, our methods outperforms
TransAgg clearly. The improvement is compared smaller on
the FashionIQ dataset, but the conclusion still stands.

Table V provides an ablation study on architectual design.
The model is trained with InstructCIR data with a data scale of
32k samples. When removing EMA [1] update, the CIRR R@1
and FashionIQ R@10 drop slightly from 35.83% to 35.04%
and from 33.78% to 33.16%. When further removing both
EMA and cross attention to perform embedding reformulation,
which is the original CLIP model, the average recall drops
significantly by 6.59% ∼ 8.52% on both CIRR and Fashion
IQ. This suggests the design efficiency of the proposed em-
bedding reformulation network. We conducted a supervised
CIR comparison in Section IV-C, which further illustrates the
architectural efficiency by comparing with previous methods
with the same training data.



Fig. 5. Qualitative results on FashionIQ dataset. For each given reference image and text instructions, we visualize the top 10 retrieved candidates. Here,
green boxes □ denote reference images, and red boxes □ denotes target images indicated by ground truth label.

b) Language Model Reformulation:: To illustrate how
performance improvements related to pure image distribution
we sampled from Fashion200k and NLVR. We directly take
the images from the supervised dataset, FashionIQ, and CIRR
and abandon the annotations. The images are fed through the
zero-shot pipeline to train the model. Results in Table IV
suggest that, although these two datasets show a slightly better
performance on data (3.6k and 5.9k) closer to their own
distribution, the differences are not significant and they still
fall short of models with larger data scales. This suggests the
good salable property of InstructCIR.

c) Scaling-Up:: The lower part of Table IV reports the
scaling-up experiment of InstructCIR. The performance rises
from 35.83% R@1 to 38.86% R@1 on the CIRR dataset
when scaling from 32k to 300k. The findings indicate good
scalability, demonstrating that as the data scale increases, so
too does performance.

Furthermore, to obtain an approximate empirical perfor-
mance upper bound, we augment our approach with semi-
supervised data. By utilizing triplet data from the CIRR [35]
and the FashionIQ [48] datasets, we further boost the language
model by leaking information from the ground truth. This ex-
ploration is critical, as it provides a trajectory of performance
enhancement: starting from a zero-shot scenario and progres-
sively approaching supervised benchmarks. With the help of
the boosted language model, the performance could further rise
to 41.32% R@1 on the CIRR dataset and 38.92% R@10 on
the FashionIQ dataset, indicated as 33B∓-GT in Table IV. This
performance is even comparable with advanced supervised
baselines CLIP4CIR [5] and BLIP4CIR [36].

d) Test Domain Variance:: InstructCIR employs LLMs
to generate text instructions in a zero-shot manner for training
purposes. To showcase the generalization ability of Instruct-

TABLE VI
ABLATION STUDY BY REPLACING GT TEXT INSTRUCTIONS BY

GENERATED TEXT INSTRUCTIONS. SMALL DIFFERENCE INDICATE THE
DOMAIN GAP BETWEEN GENERATED AND GT REFORMULATION TEXTS IS

SMALL.

CIRR FashionIQ
Image Test Text R@1 R@5 R@10 R@50

GT GT 35.83 68.04 33.78 54.82
GT Generated 37.45 68.31 33.92 54.87

∆ +1.62 +0.27 +0.14 +0.04

CIR in real-world test distributions, we have conducted an
ablation study, presented in Table VI. In this study, while
retaining the images from the ground truth (GT), we replaced
the text GT with generated texts. Our hypothesis was that
by using generated texts closer to the training distribution,
the model would exhibit improved performance. Indeed, this
change led to an increase in top-1 recall (R@1) as seen in
Table VI. However, only marginal differences were observed
for R@5, R@10, and R@50 metrics. Such results underscore
the robust generalization capabilities of our proposed data
creation pipeline.

E. Qualitative Analysis

To provide a clear understanding of the retrieval perfor-
mance, we present visualizations of the retrieval results on the
FashionIQ dataset (Figure 5) and CIRR dataset (Figure 6. For
each reference image (highlighted with green boxes) paired
with text prompts (displayed as the title of each line), we
showcase the top 10 retrieved candidates. The target image’s
ground truth is marked with red boxes on each line.

It’s widely recognized that metric-based evaluations can
sometimes diverge from human judgments. This is because



Fig. 6. Qualitative results on CIRR dataset. green boxes □ denote reference
images and red boxes □ denotes GT label.

there may be multiple reasonable results beyond just the
ground truths. For instance, in the middle-right line of our
visualization, all retrieved results adhere to the prompt “Has
floral design and has flowers and is blue”. However, the ground
truth only indicates one of these valid candidates. Common
failures occur when the original reference images still appear
among the top 10 retrieved candidates. This is especially
prevalent when the reference image captures comprehensive
human attributes, like a face.

V. LIMITATIONS

Achieving optimal results requires sampling image pairs
that have complementary features but maintain certain shared
characteristics. When images with excessive dissimilarity are
chosen, LLMs tend to falter, often generating descriptions that
encompass both images rather than high-quality reformulation
text prompts. However, such extreme scenarios are uncommon
in CIR, where reference and target images usually differ
only at a fine-grained level. Experiments show that these
dissimilarities are tolerable as the training scale increases,
without causing significant negative impacts on the model.

VI. CONCLUSION

This work explores achieving zero-shot composed image
retrieval based solely on an unannotated image collection. Our
approach involves transforming images into detailed captions
and then generating reformulated text prompts within the
text domain. With the support of advanced large language
models, this data-creating approach is not only efficient but
also scalable, without requiring pre-existing caption data.
Leveraging this scalable pipeline, InstructCIR reaches new

state-of-the-art in the zero-shot domain. Furthermore, our
proposed embedding reformulation network also attains state-
of-the-art results in supervised benchmarks, underscoring the
efficacy of our design.

REFERENCES

[1] Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal
Vincent, Michael Rabbat, Yann LeCun, and Nicolas Ballas. Self-
supervised learning from images with a joint-embedding predictive
architecture. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15619–15629, 2023. 3, 6

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer
normalization. arXiv preprint arXiv:1607.06450, 2016. 3

[3] Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Alberto
Del Bimbo. Zero-shot composed image retrieval with textual inversion.
arXiv preprint arXiv:2303.15247, 2023. 1, 4, 5

[4] Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto
Del Bimbo. Conditioned and composed image retrieval combining and
partially fine-tuning clip-based features. In CVPR Workshops, 2022. 5

[5] A. Baldrati, M. Bertini, T. Uricchio, and A. Del Bimbo. Conditioned and
composed image retrieval combining and partially fine-tuning clip-based
features. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2022. 7

[6] A. Baldrati, M. Bertini, T. Uricchio, and A. Del Bimbo. Effective con-
ditioned and composed image retrieval combining clip-based features.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022. 1, 4

[7] Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto
Del Bimbo. Effective conditioned and composed image retrieval
combining clip-based features. In CVPR, pages 21466–21474, 2022.
4

[8] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instruct-
pix2pix: Learning to follow image editing instructions. arXiv preprint
arXiv:2211.09800, 2022. 3, 5
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