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ABSTRACT

Incomplete tabular datasets are ubiquitous in many applications for a number of
reasons such as human error in data collection or privacy considerations. One
would expect a natural solution for this is to utilize powerful generative models
such as diffusion models, which have demonstrated great potential across image
and continuous domains. However, vanilla diffusion models often exhibit sensitiv-
ity to initialized noises. This, along with the natural sparsity inherent in the tabular
domain, poses challenges for diffusion models, thereby impacting the robustness
of these models for data imputation. In this work, we propose an advanced dif-
fusion model named Self-supervised imputation Diffusion Model (SimpDM for
brevity), specifically tailored for tabular data imputation tasks. To mitigate sen-
sitivity to noise, we introduce a self-supervised alignment mechanism that aims
to regularize the model, ensuring consistent and stable imputation predictions.
Furthermore, we introduce a carefully devised state-dependent data augmenta-
tion strategy within SimpDM, enhancing the robustness of the diffusion model
when dealing with limited data. Extensive experiments demonstrate that Sim-
pDM matches or outperforms state-of-the-art imputation methods across various
scenarios.

1 INTRODUCTION

Tabular data are ubiquitous across industries and disciplines, including but not limited to finance As-
sefa et al. (2020), healthcare Hernandez et al. (2022), and environmental sciences Judson et al.
(2009). In real-world scenarios, tabular data often contain missing values for many reasons, such
as human error, privacy considerations, and the inherent challenges associated with data collection
processes Muzellec et al. (2020). For instance, some characteristics of a patient might not be accu-
rately documented during their visit Alaa et al. (2017); Jarrett et al. (2022). The presence of missing
data significantly impacts the quality of tabular datasets, introducing bias and rendering a majority
of machine learning methods inapplicable.

To handle the missing data problem, data imputation is a promising solution that aims to esti-
mate missing values based on the observed data Osman et al. (2018). Existing data imputation
methods usually use statistical algorithms Farhangfar et al. (2007), shallow machine learning al-
gorithms Troyanskaya et al. (2001); Van Buuren & Groothuis-Oudshoorn (2011), and deep neural
networks Muzellec et al. (2020); Kyono et al. (2021) to complete missing data. Among them, deep
generative model-based imputation models exhibit competitive performance owing to their capabil-
ity in modeling the data manifold, which helps complete the missing elements Yoon et al. (2018);
Mattei & Frellsen (2019). Presently, diffusion models Ho et al. (2020); Yang et al. (2022), the lead-
ing deep generation models, have shown remarkable capabilities in generating data across diverse
types, including images Croitoru et al. (2023), audio Kong et al. (2021), and time-series data Rasul
et al. (2021). Building on these achievements, recent studies have used diffusion models for tab-
ular data generation Kotelnikov et al. (2023); Lee et al. (2023); Kim et al. (2023), as well as data
imputation Zheng & Charoenphakdee (2022); Jolicoeur-Martineau et al. (2023).

∗This work was completed while the author was an intern at Amazon.
†These authors made equal contributions to this work.
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In this research, we identify that vanilla diffusion models are suboptimal for tabular data imputa-
tion. Specifically, we pinpoint two key mismatches, namely objective mismatch and data scale
mismatch, between tabular data imputation tasks and other scenarios where diffusion models excel.
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(a) With different Gaussian noises
(red) as initialization, the diffusion
model generates diverse and inaccu-
rate imputation (blue).
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(b) The limited data samples lead
to poor imputation results (higher
RMSE) and unstable performance
(higher variance).

Figure 1: Motivating experiments on
UCI Power dataset. (a) Given a data
sample, the imputation results by
diffusion model with different Gaus-
sian initialization at the first diffu-
sion step. (b) The imputation per-
formance under different numbers of
training samples.

These mismatches potentially contribute to the degradation in
data imputation performance of diffusion models.

Firstly, the inherent mismatch in learning objective between gen-
eration and imputation problems can severely impede the impu-
tation performance of diffusion models. Specifically, diversity
is a key objective of the generation problem, which requires the
generated data to vary significantly while maintaining relevance
to the given context. Diffusion models being sensitive to the
initial noise (xT ) at the generation stage helps generate diverse
samples – different noise usually leads to different generated
samples. Conversely, the objective of the imputation task is ac-
curacy rather than diversity, requiring the imputed data to closely
resemble the singular ground-truth values. In this case, the sen-
sitivity to the initial noise results in a large variance in imputed
results, hurting accuracy. As shown in the motivating example
in Fig. 1(a), given identical observation (−0.03 and 0.13), the
vanilla diffusion model generates diverse imputed values, lead-
ing to substantial gaps between imputed values and the ground-
truth.

Moreover, the much smaller data scale of tabular data com-
pared to other domains (e.g., image) also hinders diffusion mod-
els from comprehending the data manifold, yielding subpar data
imputation models. For example, CIFAR-10 is a relatively small
image dataset, but it still has 60k samples, supporting the dif-
fusion models to capture data patterns Kulikov et al. (2023). In
contrast, tabular data usually have only a few thousand or even
hundreds of samples, making it much more difficult for diffusion
models to capture the true data distribution, resulting in overfit-
ting. An example in Fig. 1(b) shows the negative impact of data
samples on imputation effectiveness.

To improve the performance of diffusion models on tabular data
imputation tasks, we introduce an advanced diffusion model
termed Self-supervised imputation Diffusion Model (SimpDM
for short). By integrating self-supervised learning techniques
into tabular diffusion model, we address the aforementioned mis-
match issues. Specifically, to tackle objective mismatch, we introduce a self-supervised alignment
mechanism to regularize the output of the diffusion model. The key idea is to encourage the dif-
fusion model to provide consistent and accurate imputation for the same observed data, enhancing
the stability of imputation results. Furthermore, to handle data scale mismatch, we introduce state-
dependent augmentation, a perturbation-based data augmentation strategy that is carefully designed
for tabular data imputation tasks. With data augmentation, we extend the training set, improving
the robustness of the diffusion model. Meanwhile, an effective augmentation can also ensure the
effectiveness of the self-supervised learning framework. To verify the imputation capability of our
SimpDM model, we conducted extensive experiments on 17 benchmark datasets across multiple
missing data scenarios. The empirical results highlight the strong imputation performance of Sim-
pDM compared to state-of-the-art methods.

2 PRELIMINARIES

This section provides the definition of tabular data imputation and diffusion models. For literature
review, we refer the readers to Appendix A.
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2.1 PROBLEM DEFINITION

Let X = {x[i]}ni=1 denotes the feature matrix of a complete tabular dataset, where the i-th row x[i] is
a d-dimensional feature vector of the i-th sample. Each feature can be numerical or categorical. The
missing data problem can be modeled by a binary mask matrix M ∈ {0, 1}n×d, where M[i,j] = 1

indicates the entry X[i,j] is missing, otherwise M[i,j] = 0. The observed incomplete data matrix
can be represented by

X = X(obs) ⊙ (1n×d −M) +∅n×d ⊙M, (1)

where ∅n×d is an n × d matrix of null (missing) values, X(obs) contains the observed entries that
are from X, ⊙ is the element-wise product and 1n×d is an n×d matrix containing 1 for every entry.
Given X, the goal of tabular data imputation is to estimate an imputed data matrix X̂ where the
missing entries of X are filled, which can be written by

X̂ = X(obs) ⊙ (1n×d −M) + X̂(imp) ⊙M, (2)

where X̂(imp) contains the imputed entries. The objective is to learn X̂ that is as close as possible
to X.

2.2 DIFFUSION MODELS

Diffusion models Sohl-Dickstein et al. (2015) are deep generative models derived from a forward
and reverse Markov process. The forward process q is to gradually disturb a sample x0 into a noisy
sample xT , while the reverse process p is to denoise and generate the sample x̂0 from xT :

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1) ,

pθ (x0:T ) := p (xT )

T∏
t=1

pθ (xt−1 | xt) ,

(3)

where pθ (xt−1 | xt) is parametrized by a neural network whose parameter is θ. Here θ can be
optimized by minimizing the variational upper bound on the negative log-likelihood:

Lvb = Eq[DKL [q (xT | x0) ||p (xT )]︸ ︷︷ ︸
LT

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

+

T∑
t=2

DKL (q (xt−1 | xt,x0) ||pθ (xt−1 | xt))︸ ︷︷ ︸
Lt−1

].
(4)

We can describe the evolution of the distributions with the following forward and reverse process
equations

dxt = xtdt+
√
2dw, (5)

dxt = (xt − 2∇x log pt) +
√
2dw, (6)

where w corresponds to Brownian motion and pt is the law of the random variable xt. Gaussian
diffusion models Ho et al. (2020) have forward and reverse processes characterized by Gaussian
distributions:

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
,

q (xT ) = N (xT ; 0, I) ,

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) ,

(7)

where Gaussian noise is added to the sample following a variance schedule βt ∈ (0, 1). Using
equivalences between score matching and error matching in Hyvärinen & Dayan (2005), Ho et al.
(2020) further propose a simplified objective function for model optimization:

Lddpm = Et,x0,ϵ

[
∥ϵ− ϵθ (xt, t)∥2

]
, (8)
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where ϵθ is a neural network aiming to predict the Gaussian noise ϵ, which can be used to generate
x̂0 during inference.

To deal with categorical data, multinomial diffusion models Hoogeboom et al. (2021) define a cate-
gorical distribution that perturbs the data with noise over K classes:

q (xt | xt−1) = Cat (xt; (1− βt)xt−1 + βt/K) ,

pθ (xt−1 | xt) =

K∑
x̂0=1

q (xt−1 | xt, x̂0) pθ (x̂0 | xt) ,
(9)

where Cat(·) is a categorical distribution.

3 METHODOLOGY

In this section, we present SimpDM, a self-supervision improved diffusion model for tabular data
imputation. The overall training pipeline of SimpDM is demonstrated in Fig. 2. In Sec. 3.1, we first
introduce the base diffusion model specially constructed for tabular data imputation. We then extend
the base model to SimpDM by introducing two pivot designs, i.e., state-dependent self-supervised
alignment (Sec. 3.2) and data augmentation (Sec. 3.3). Finally, we discuss how to apply SimpDM
to mixed-type tabular data in Sec. 3.4.

3.1 DIFFUSION MODEL FOR TABULAR DATA IMPUTATION

We first introduce a Gaussian diffusion model for imputing tabular data with numerical features.
Note that the vanilla diffusion models Ho et al. (2020) are mainly designed for data generation,
making it difficult to apply them directly to imputation tasks Lugmayr et al. (2022). Therefore,
we implement a series of modifications to adapt the diffusion model effectively for tabular data
imputation.

Hybrid input data. A major characteristic of the data imputation problem is that the data is partly
accessible. In other words, we have the observed entries to guide the estimation of the missing ones.
To involve the observed entries in model input, we use a “hybrid input data” design in SimpDM.
More precisely, the model input consists of both the ground-truth values from observed entries and
the initialized/estimated values for the missing entries, combined together. Such a design, similar to
RePaint Lugmayr et al. (2022) for image inpainting, allows the diffusion model to effectively lever-
age known information to infer missing data while preserving consistency across various samples in
the input space.

MLP-based diffusion model. As tabular data is usually low-dimensional and with few data sam-
ples, complex network model architectures are prone to overfitting and rather unnecessary. Since
previous study Kotelnikov et al. (2023) shows that a shallow MLP-based diffusion model is ade-
quate for tabular data generation, in SimpDM, we use a plain MLP as our model, without U-net
architecture and cross-layer shortcut. The simple model architecture not only substantially reduces
the computational cost of our method but also guards against overfitting the limited data. The learn-
able embedding of diffusion step t is added to the latent representation at the first layer. Notably, we
further introduce the missing mask as an extra input condition of the diffusion model. In particular,
we use a learnable projection layer to map the missing mask vector to a mask embedding, and then
add the mask embedding into the first-layer latent representation. The mask embedding enables the
diffusion model to discern the status of the hybrid input, aiding in making accurate imputations.

Pseudo missing training strategy. In the setting of data imputation problem, a key challenge
is that the ground-truth values of missing entries are unknown during training procedure Kyono
et al. (2021). That is to say, we cannot acquire supervision signals from these entries for model
training. To address this challenge, we develop a “pseudo missing” training strategy inspired by
CSDI Tashiro et al. (2021). Firstly, during the training phase, we pad the values of missing entries
to their respective column-wise average values, which can be regarded as an estimation via mean
imputation. Then, in each training iteration, we sample a pseudo missing mask to remask a partition
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Figure 2: The overall pipeline of the training procedure of SimpDM. Given a training sample x and its missing
mask m, the first step is to apply average padding for the missing entries and sample the pseudo mask mp

and condition mask mc. In self-supervised alignment, we sample different t and ϵ at two channels, and then
run the diffusion model at each channel. Apart from the diffusion model loss Ldm, we use a self-supervised
alignment loss Lsa to minimize the distance of the predictions at two channels. We further use a state-dependent
augmentation strategy to perturb the model’s input according to the states (GT, MS, or PM) of each entry.

of observed entries. Subsequently, we merge the original missing mask and pseudo mask to create
the condition mask of the current training iteration. For the entries where the condition mask equals
1, we add Gaussian noise ϵ to them based on the sampled diffusion time step t. As for the remaining
entries, which act as “observed data” in the current iteration, we maintain their original values. In
this case, we can train the model by denoising the pseudo missing entries since their ground-truth
values are accessible.

Value prediction and loss calculation. In vanilla Gaussian diffusion models Ho et al. (2020), pre-
dicting the Gaussian noises of diffusion (Eq. (8)) has been shown to be effective for data generation.
However, in the context of tabular data imputation, our empirical findings suggest that predicting
the missing values can result in improved imputation performance compared to predicting noises.
Hence, we directly let the model predict the ground-truth values of the missing entries. When com-
puting the loss function, we solely calculate the loss on the pseudo missing terms, directing the
model’s attention toward completing the missing data.

To sum up, the training process of Gaussian diffusion model for tabular data imputation can be
expressed by:

Ldm = Et,x0,ϵ,mp

[
∥(x0 − xθ (x̃t, t,mc))⊙mp∥2

]
, (10)

x̃t = x0 ⊙ (1d −mc) + xt ⊙mc, (11)

where mp and mc = m+mp are the pseudo mask and condition mask respectively, x̃t is the hybrid
model input, and xθ is the MLP-based model. During inference time, we can initialize the missing
entries by q(xT ) and set condition mask mc = m directly. Before each inference denoising step,
we execute Eq. (11) to ensure the observed data is embedded in the model input.

3.2 SELF-SUPERVISED ALIGNMENT

With the diffusion model introduced in Sec. 3.1 (we denote it as “base model” in the rest of this
paper), we can complete missing entries with recurrent denoising processes. Nevertheless, the base
model struggles to achieve optimal imputation performance due to the inherent target mismatch
between imputation and generation tasks. Specifically, to achieve the diversity target in generation
tasks, diffusion models are sensitive to the initial noise xT . With varying initial noises, the generated
data should exhibit diversity. However, this sensitivity contrasts with the goals of data imputation
tasks, which require precise prediction of missing values rather than diversity. To further improve
the imputation performance, we design a self-supervised alignment mechanism to suppress this
sensitivity.

Concretely, in the training procedure of SimpDM, we construct two parallel channels to run the
diffusion model for each sample. The two channels share the same pseudo mask and condition
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mask. For each channel, we sample its diffusion step (denoted by t1 and t2) and diffusion noise
(denoted by ϵ1 and ϵ2) respectively. With different t and ϵ, we can execute the forward diffusion
process to generate xt1 and xt2 , and finally acquire the corresponding hybrid inputs x̃t1 and x̃t2 via
Eq. (11). Since they have a shared condition mask, the observed data in x̃t1 and x̃t2 are identical. As
the example shown in Fig. 2, both of the two channels have an observed value −0.45. Differently,
due to the disparity between xt1 and xt2 , the pseudo missing and real missing entries in x̃t1 and x̃t2
exhibit notable differences.

Recalling that our goal is to suppress the sensitivity to diverse noisy inputs. In particular, given
two input data with the same observed entries (i.e., x̃t1 and x̃t2 ), the outputs of the diffusion model
should be close to each other. Motivated by this, we acquire their corresponding outputs x̂1 =
xθ (x̃t1 , t1,mc) and x̂2 = xθ (x̃t2 , t2,mc), and try to minimize the difference between them with
a self-supervised alignment loss Lsa(x̂1, x̂2). At the same time, we calculate the basic loss of the
diffusion model (Eq. (10)) at two channels, writing the final loss function of SimpDM as:

L = Ldm1(x̂1) + Ldm2(x̂2) + γLsa(x̂1, x̂2), (12)

where γ is a tunable trade-off hyper-parameter for Lsa. In practice, we have several options for
Lsa, such as MSE loss, contrastive loss Chen et al. (2020), and Sinkhorn divergence Muzellec et al.
(2020). Considering its empirical performance (see Sec. 4.4) and high efficiency, we employ MSE
loss for self-supervised alignment in SimpDM.

3.3 STATE-DEPENDENT DATA AUGMENTATION

Another significant challenge in tabular data imputation is the limited size of the dataset, which
might not offer adequate information for diffusion models to learn the data manifold effectively.
Consequently, the model can lean towards overfitting due to data scarcity, diminishing the overall
robustness of diffusion models. To address this problem, data augmentation emerges as a promising
solution, creating extra synthetic samples from the original ones Shorten & Khoshgoftaar (2019);
Kulikov et al. (2023). Despite various data augmentation methods designed for image data, most of
them cannot be applied to tabular data, which motivates us to produce a well-crafted augmentation
strategy for our target scenario.

To augment tabular data, data perturbation with random noises (e.g., uniform, Gaussian, or oth-
ers) can be a simple yet effective strategy Sathianarayanan et al. (2022). Nevertheless, this simple
strategy may not fully adapt to the diffusion model for SimpDM where input entries are missing or
already noisy. Specifically, weak perturbations might minimally affect the missing or uncertain in-
put entries since they are already noisy. However, increasing the perturbation strength significantly
shifts the augmented data away from the original data distribution.

On the basis of Gaussian noise-based data perturbation, we propose a state-dependent data augmen-
tation. The core idea is to perturb entries in different states with different strengths (i.e., Gaussian
variance). Concretely, given an input vector of SimpDM, each entry can be in three “states”: ground-
truth state (GT) where mc = 0, pseudo missing state (PM) where mp = 0, and missing state (MS)
where m = 1. For entries in different states, their certainties can be quite different: for a GT entry,
the data is fully reliable; for a PM entry, its certainty is moderate, since this entry is generated by
adding ground-truth data with t-related noise; for a MS entry, it has the lowest certainty because we
know nothing about the truth value of this entry. In our state-dependent data augmentation strategy,
we propose to define the perturbation strength p according to states. Concretely, for entries with
lower certainty, we will allocate a higher perturbation strength to it. Formally, in training phase,
Eq. (11) can be rewritten by:

x̃t = x0 ⊙ (1d −mc) + xt ⊙mc + ξ ⊙ p,

p = (1d −m)× pGT +mp × pPM +m× pMS ,
(13)

where ξ is a zero-centered perturbation noise vector, p is the perturbation strength vector, pGT ,
pPM , and pMS are the perturbation strengths for the corresponding states that satisfy pGT < pPM <
pMS . With state-dependent augmentation, we can generate more reliable training samples for model
training without disrupting the original data distribution. As a result, the model robustness can be
boosted; Also, data augmentation can further facilitate self-supervised learning by amplifying the
diversity within the data across two channels. The overall algorithm and complexity analysis of
SimpDM is demonstrated in Appendix B and C, respectively.
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Table 1: Imputation performance comparison in terms of RMSE. The best and runner-up performance are high-
lighted by bold and underline, respectively. “Rank” indicates the average rank of the corresponding method.
“OOM” indicates Out-Of-Memory on a 16GB GPU.

Method IR YA HO DI BL EN GE CO YE AI WR AB WW PH PO EC CA Rank
mean .263 .297 .247 .460 .165 .354 .316 .226 .119 .290 .130 .195 .105 .162 .197 .319 .146 11.7
kNN .143 .263 .135 .334 .129 .241 .297 .175 .116 .251 .093 .131 .081 .134 .157 .296 .142 5.2
MF .143 .247 .146 .458 .120 .229 .311 .178 .112 .238 .098 .146 .086 .137 .151 .365 .119 6.1
MICE .145 .281 .185 .447 .134 .261 .337 .200 .129 .293 .107 .142 .092 .178 .163 .361 .129 10.2

OT .139 .274 .166 .326 .144 .247 .308 .175 .116 .273 .100 .150 .087 .157 .187 .318 .143 8.2
MIRACLE .136 .256 .163 .357 .116 .229 .303 .172 .112 .258 .094 .129 .087 .156 .144 .314 .118 4.9
GRAPE .134 .245 .138 .319 .119 .237 .298 .138 .114 .229 .090 .131 .098 .124 .134 .307 .100 3.5
IGRM .120 .239 .136 .324 .118 .186 .303 .124 .116 .180 .086 .136 .098 .123 OOM OOM OOM 3.2

MIWAE .132 .267 .157 .375 .128 .253 .352 .189 .124 .252 .114 .130 .086 .163 .158 .341 .129 7.6
GAIN .135 .253 .160 .394 .154 .270 .324 .220 .124 .258 .114 .149 .102 .169 .163 .345 .131 9.9
TabCSDI .137 .259 .158 .364 .137 .261 .300 .248 .120 .247 .099 .149 .095 .160 .153 .325 .129 7.8
FD .139 .251 .159 .379 .135 .259 .302 .193 .119 .246 .103 .147 .098 .160 .163 .336 .129 7.7

SimpDM .108 .232 .134 .294 .109 .219 .289 .137 .111 .202 .087 .120 .073 .117 .132 .305 .106 1.4

3.4 EXTENDING TO MIXED-TYPE DATA

Previous subsections introduce the Gaussian diffusion version of SimpDM for pure numerical tab-
ular data. In practice, we can easily extend SimpDM to mixed-type data via the following simple
modifications for categorical features.

At the diffusion model stage, we introduce multinomial diffusion process for categorical features,
while keeping Gaussian diffusion process for numerical features. Similar to TabDDPM Kotelnikov
et al. (2023), each categorical feature can be assigned a K-dimensional prediction head (where K
is the number of categories), followed by a Softmax function. The cross-entropy loss is used to op-
timize the categorical output. For self-supervised alignment, we minimize the output scores of each
prediction head. For state-dependent data augmentation, we use random state transformation Hooge-
boom et al. (2021) as the perturbation for categorical data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate the imputation performance on 17 real-world datasets across various do-
mains from the UCI Machine Learning repository Asuncion & Newman (2007) and Kaggle, in-
cluding Iris, Yacht, Housing, Diabetes, Blood, Energy, German, Concrete, Yeast, Airfoil, Wine-red,
Abalone, Wine-white, Phoneme, Power, Ecommerce, and California. We use the first two letters of
each dataset name to indicate it for simplification purposes. The statistics of datasets are given in
Appendix D.

Baselines. We compare SimpDM with three groups of methods: 1) shallow methods, includ-
ing mean imputation, kNN imputation Troyanskaya et al. (2001), miss forest (MF) Stekhoven &
Bühlmann (2012), and MICE Van Buuren & Groothuis-Oudshoorn (2011); 2) deep methods, in-
cluding OT Muzellec et al. (2020), MIRACLE Kyono et al. (2021), GRAPE You et al. (2020),
and IGRM Zhong et al. (2023); 3) deep generative methods, including MIWAE Mattei & Frellsen
(2019), GAIN Yoon et al. (2018), TabCSDI Zheng & Charoenphakdee (2022), and ForestDiffusion
(FD) Jolicoeur-Martineau et al. (2023). Among them, TabCSDI and FD are also based on diffusion
models.

Experimental details. In our major experiments, we simulate the default data missing setting
as missing with complete random (MCAR) scenario with 30% missing ratio. We use Root Mean
Squared Error (RMSE) as our evaluation metric, which is commonly used in previous works Kyono
et al. (2021); Muzellec et al. (2020). We report the averaged test accuracy over 5 runs of experiments.
We reproduce baselines based on HyperImpute package Jarrett et al. (2022) or their corresponding
official source codes. We perform grid search to select the key hyper-parameters of SimpDM and
the baselines. Further implementation details are in Appendix E. Discussion of run time are in
Appendix G.

7



Accepted at the ICLR 2024 Workshop on GenAI4DM

4.2 PERFORMANCE COMPARISON

YE AB WW PO
Dataset

0

0.05

0.1

0.15

0.2

R
M

SE

(a) MAR

YE AB WW PO
Dataset

0

0.05

0.1

0.15

0.2

(b) MNAR

kNN MF MIRACLE GRAPE IGRM SimpDM

Figure 3: Performance on MAR and MNAR scenarios.

The performance comparison in the default set-
ting is illustrated in Table 1 (more detailed re-
sults are in Appendix F). From the results, we
have the following observations. 1) SimpDM
outperforms all the baselines on 11 datasets
while achieving runner-up results on the rest 6
datasets. The consistent superiority of a ma-
jority of datasets highlights the adaptability and
robustness of our method in addressing miss-
ing data imputation challenges. 2) Compared
to diffusion model-based methods (i.e., TabCSDI and FD), SimpDM has significantly better perfor-
mance, indicating the effectiveness of self-supervised alignment and state-dependent augmentation.
3) Among generative methods, two diffusion model-based approaches perform slightly better than
the GAN/VAE-based methods. This observation demonstrates the potential of diffusion models in
addressing imputation problems. 4) Deep learning-based methods, such as MIRACLE, GRAPE, and
IGRM, show competitive performance, indicating the superior capability of deep neural networks in
data completion. 5) In the realm of shallow methods, kNN and MF exhibit strong performance, un-
derscoring their superior capability in tabular data imputation. 6) Compared to the strongest baseline
IGRM, SimpDM requires less memory, indicating the efficiency and scalability of our approach.

4.3 DIFFERENT MISSING SCENARIOS AND RATIOS
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Figure 4: Performance under different missing ratios.

To investigate the generalization ability in vari-
ous missing situations, we conduct experiments
on different missing scenarios (i.e., missing
at random (MAR) and missing not at random
(MNAR)) and missing ratios. For the sake of
space, we compare SimpDM with five highly
competitive baselines, namely kNN, MF, MIR-
ACLE, GRAPE, and IGRM. The experiments
are conducted on four datasets, namely, Yeast
(YE), Abalone (AB), Wine-white (WW), and
Power (PO).

Different missing scenarios. We conduct ex-
periments to assess the effectiveness of Sim-
pDM in both MAR and MNAR scenarios, with
results detailed in Fig. 3. The figures demon-
strate that SimpDM consistently surpasses all
representative baselines in both scenarios, high-
lighting its robust generalization capabilities.
Conversely, certain baselines exhibit suboptimal and unstable performance in certain cases.

Different missing ratios. To verify the robustness of SimpDM across varying degrees of data
missingness, we alter the missing ratios from 0.1 to 0.7, assessing its imputation performance across
diverse scenarios. As depicted in Fig. 4, SimpDM consistently demonstrates optimal or competitive
performance across various missing ratios. Notably, in situations of severe data absence, SimpDM
exhibits more substantial performance gains compared to the deep baselines.

4.4 ABLATION STUDIES
Table 2: Ablation study for the key components.

Variant YA DI EN YE WR AB WW PO
Base model .294 .307 .286 .149 .100 .163 .089 .169
+SA .243 .298 .232 .118 .091 .130 .076 .140
+AUG .241 .297 .241 .123 .092 .132 .077 .149

SimpDM .232 .294 .219 .111 .087 .120 .073 .132

Effect of key components. To examine the
contributions of two key components in Sim-
pDM, namely self-supervised alignment (SA)
and state-dependent augmentation (AUG), we
conduct ablation experiments on our base
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model and its two variants, each incorporating one of these components. From the results in Ta-
ble 2, we can find that both SA and AUG yield substantial performance enhancements for the base
model. Furthermore, SA demonstrates a more pronounced impact on performance across the major-
ity of datasets. Finally, we can witness that SimpDM, which incorporates both of these techniques,
exhibits the best performance.

Table 3: Ablation study for self-supervised losses.

Variant YA DI EN YE WR AB WW PO
Base model .294 .307 .286 .149 .100 .163 .089 .169
+SA (CL) .261 .307 .251 .121 .095 .138 .081 .151
+SA (SK) .259 .295 .259 .134 .092 .148 .080 .154
+SA (MSE) .243 .298 .232 .118 .091 .130 .076 .140

Effect of different self-supervised losses. In
SimpDM, self-supervised alignment loss is
a critical component to eliminate the unex-
pected diversity of imputation results. We
explore three self-supervised alignment loss
types: MSE loss, contrastive loss (CL) Chen et al. (2020), and Sinkhorn divergence (SK) Muzellec
et al. (2020) (refer to Appendix xx for definitions), evaluating their respective effectiveness. As illus-
trated in Table 3, MSE loss attains the optimal results on 7 out of 8 datasets and exhibits competitive
performance on the remaining one. We attribute the superior performance of MSE loss to its consis-
tency with the objective of aligning the imputation results of two channels. Simultaneously, CL and
SK losses also yield improvements, underscoring the effectiveness of self-supervised alignment.

Table 4: Ablation study for augmentation strategies.

Variant YA DI EN YE WR AB WW PO
Base model .294 .307 .286 .149 .100 .163 .089 .169
+AUG (strong) .298 .384 .280 .139 .127 .172 .099 .184
+AUG (weak) .296 .306 .290 .149 .099 .165 .090 .171
+AUG (SD) .241 .297 .241 .123 .092 .132 .077 .149

Effect of different augmentation strategies.
To verify the effectiveness of state-dependent
(SD) augmentation, we compare it with two
plain data augmentation strategies that perturb
all entries with strong or weak strengths. From
Table 4, we can see that weak data augmenta-
tion does not deeply affect the performance, whereas strong data augmentation tends to have a
negative impact since it distorts the distribution of the original data. Conversely, state-dependent
augmentation brings improvement by applying customized perturbation strengths to each entry ac-
cording to its state and certainty.

4.5 QUALITATIVE ANALYSIS
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Figure 5: (a) Imputation results from different initialization.
(b) t-SNE visualization of ground-truth&imputed data.

Case study. We perform a case study
experiment on a sample from the Power
dataset (the same one as Fig. 1(a)) to inves-
tigate whether SimpDM can deliver sta-
ble imputation results from diverse initial
noises. From Fig. 5(a), it is evident that
SimpDM yields both increased stability
and enhanced accuracy. This improvement
can be attributed to the integration of the
self-supervised alignment mechanism.

Visualization. Using t-SNE algorithm Van der Maaten & Hinton (2008), we visualize the distri-
bution of the original Iris dataset and the data imputed by the base model and SimpDM respectively.
In Fig. 5(b), we observe a significant overlap between the distribution of data imputed by SimpDM
and the original data distribution, which suggests that SimpDM adeptly captures the data manifold.
In contrast, the base diffusion model struggles to match the data distribution.

5 CONCLUSION

In this paper, we introduce a novel variant of diffusion models, termed SimpDM, designed for tab-
ular data imputation. To enhance the imputation capabilities of the diffusion model, we propose
a self-supervised alignment mechanism aimed at reducing its sensitivity to noise, thereby improv-
ing the stability of imputation results. Simultaneously, to address discrepancies in data scale, we
present a state-dependent augmentation strategy that generates synthetic data during model train-
ing, which aims to bolster the robustness of SimpDM. Extensive experiments showcase the superior
performance of SimpDM across various scenarios.
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A RELATED WORK IN DETAIL

A.1 TABULAR MISSING DATA IMPUTATION

Tabular data imputation is an essential research topic to handle the missing data problem. Early
solutions use statistical algorithms to estimate missing entries according to the mean, median, or
mode estimation of observed data Farhangfar et al. (2007). Besides statistical methods, shallow
machine learning methods such as kNN imputation Troyanskaya et al. (2001), MICE Van Buuren &
Groothuis-Oudshoorn (2011), and missForest Stekhoven & Bühlmann (2012) are also effective to
complete the missing data.

To further exploit the potential of deep learning techniques, recent studies use deep neural networks
for data imputation Jarrett et al. (2022). For instance, Muzellec et al. Muzellec et al. (2020) propose
training deep imputation model by minimizing the optimal transport distance between two groups
of data, while Kyono et al. Kyono et al. (2021) use deep models to discover the causal structure un-
derlying data for data imputation. Graph neural networks are also adapted to data imputation since
they are capable of modeling inter-sample correlation You et al. (2020); Telyatnikov & Scardapane
(2023); Zhong et al. (2023). Within deep methodologies, generative model-based approaches stand
out for their remarkable performance. Specifically, GAIN Yoon et al. (2018) harnesses GAN while
MIWAE Mattei & Frellsen (2019) utilizes VAE as their backbone, enhancing their imputation capa-
bilities. Several recent studies also attempted to apply diffusion models to tabular data imputation
tasks Zheng & Charoenphakdee (2022); Jolicoeur-Martineau et al. (2023); Ouyang et al. (2023).
Nevertheless, these approaches tend to underestimate the inherent disparity between data imputa-
tion and diffusion models, resulting in suboptimal imputation performance.

A.2 DIFFUSION MODELS

Diffusion models Sohl-Dickstein et al. (2015) are a generative paradigm that strives to approximate
the target distribution through the endpoint of a Markov chain. This chain initiates from a specified
parametric distribution, usually a standard Gaussian. Each step of this Markov process is executed
by a deep neural network that learns the inversion of the diffusion process. DDPM Ho et al. (2020)
bridges the gap between diffusion models and score matching approaches Song & Ermon (2020),
showcasing powerful capability of diffusion models in image generation. So far, diffusion models
have made great success in the generation tasks on various domains, such as image Dhariwal &
Nichol (2021), text Hoogeboom et al. (2021), audio Kong et al. (2021), time-series Rasul et al.
(2021), and graph Xu et al. (2022).

Given the formidable capabilities of diffusion models, recent studies attempt to leverage diffusion
models to handle learning tasks on tabular data. For instance, TabDDPM Kotelnikov et al. (2023)
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Algorithm 1 SimpDM Training
Input: Sample x, missing mask m

1: mp ∼ Bernoulli((1n −m)× rm)
2: mc = mp +m
3: for k = 1, 2 do
4: tk ∼ Uniform({0, . . . , T})
5: ϵk ∼ N (0, I)
6: ξk ∼ N (0, I)
7: Calculate x̃tk via Eq. (13)
8: x̂k = xθ (x̃tk , tk,mc)
9: Calculate Ldmk

via Eq. (10)
10: end for
11: Calculate Lsa = MSE(x̂1, x̂2)
12: Calculate overall loss L via Eq. (12)
13: Update model xθ by taking gradient descent step on L

Algorithm 2 SimpDM Imputing
Input: Sample x, missing mask m

1: xT ∼ N (0, I)
2: for t = T, · · · , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: Calculate x̃t via Eq. (11)
5: xt−1 = 1√

αt

(
xθ (x̃t, t,m)

)
+ σtz

6: end for
7: x̂ = x⊙ (1n×d −m) + x0 ⊙m
8: return x̂

is a representative method that combines Gaussian and Multinomial diffusion models together to
generate mixed-type tabular data. CoDi Lee et al. (2023) and STaSy Kim et al. (2023) also show
impressive capability in tabular data synthesis. Inspired by the success of diffusion models in image
inpainting Lugmayr et al. (2022) and time-series imputation Tashiro et al. (2021), researchers start
to discover the potential of diffusion models in tabular data imputation Zheng & Charoenphakdee
(2022); Jolicoeur-Martineau et al. (2023); Ouyang et al. (2023). This paper further delves into this
research direction, enhancing diffusion models for imputation from a novel perspective.

B ALGORITHM OF SIMPDM

In this section, we provide the training and inference algorithms of SimpDM with the example of a
single data. In practice, we employ mini-batch-based training. Here we use Gaussian noise as the
example of perturbation and employ MSE loss as the self-supervised alignment loss.

The training algorithm of SimpDM is summarized in Algorithm 1. In the first step, we sample the
pseudo mask mp for the missing training strategy. The condition mask can be computed by adding
mp and the original missing mask m. After that, we run the diffusion model on two channels
(k = 1, 2) respectively. In each channel, we sample the diffusion time step tk and noise ϵk first.
Then, we conduct the state-dependent augmentation with an extra sampled perturbation ξk (Line
6-7). With the perturbed input, we obtain the imputed data with the diffusion model (Line 8) and
calculate the diffusion model loss Ldmk

accordingly (Line 9). Once we obtain the imputed data by
two channels (x̂1 and x̂2), we calculate the self-supervised alignment loss Lsa. Finally, we can add
the losses together and train the diffusion model xθ via gradient descent.

The inference (imputation) algorithm of SimpDM is demonstrated in Algorithm 2. Similar to the
vanilla diffusion model, we first initialize xT with random Gaussian noise, and then recursively run
the denoising iteration with the diffusion model. Differently, in each iteration, we set the observed
entries to the ground-truth values (Line 4) before each denoising step, which ensures the observed
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Dataset #Samples #Numerical Feat #Categorical Feat
Iris 150 4 0
Yacht 308 6 0
Housing 506 12 1
Diabetes 520 1 15
Blood 748 4 0
Energy 767 8 0
German 1,000 7 13
Concrete 1,030 8 0
Yeast 1,484 8 0
Airfoil 1,503 5 0
Wine-red 1,599 11 0
Abalone 4,177 7 1
Wine-white 4,898 11 0
Phoneme 5,404 5 0
Power 9,568 4 0
Ecommerce 10,999 3 7
California 20,640 8 0

Table 5: The statistics of datasets, including the number of samples, numerical features, and categorical fea-
tures.

Method Iris Yacht Housing Diabetes Blood Energy German Concrete Yeast
mean .2634±.0054 .2970±.0072 .2471±.0140 .4595±.0134 .1654±.0036 .3535±.0019 .3163±.0185 .2255±.0017 .1185±.0009
KNN .1428±.0057 .2630±.0057 .1352±.0123 .3339±.0084 .1287±.0033 .2408±.0022 .2968±.0217 .1746±.0032 .1164±.0036
MF .1428±.0139 .2472±.0086 .1458±.0150 .4579±.0134 .1201±.0047 .2291±.0039 .3106±.0261 .1776±.0032 .1122±.0011
MICE .1454±.0142 .2805±.0080 .1852±.0162 .4470±.0144 .1337±.0045 .2606±.0024 .3374±.0207 .2004±.0018 .1286±.0003

OT .1393±.0108 .2742±.0051 .1657±.0174 .3255±.0096 .1442±.0033 .2466±.0025 .3078±.0197 .1747±.0043 .1164±.0008
MIRACLE .1364±.0183 .2560±.0084 .1633±.0161 .3573±.0488 .1157±.0028 .2294±.0023 .3027±.0214 .1719±.0028 .1118±.0013
GRAPE .1343±.0206 .2450±.0104 .1382±.0172 .3187±.0097 .1194±.0067 .2365±.0071 .2981±.0191 .1380±.0064 .1144±.0012
IGRM .1197±.0123 .2391±.0077 .1363±.0175 .3235±.0127 .1182±.0047 .1863±.0049 .3032±.0206 .1240±.0038 .1161±.0013

MIWAE .1323±.0160 .2669±.0027 .1572±.0111 .3750±.0223 .1280±.0047 .2528±.0012 .3515±.0185 .1894±.0068 .1236±.0012
GAIN .1353±.0131 .2526±.0082 .1601±.0167 .3942±.0166 .1537±.0099 .2702±.0097 .3242±.0199 .2203±.0021 .1241±.0033
TabCSDI .1365±.0058 .2588±.0062 .1577±.0153 .3636±.0132 .1374±.0058 .2611±.0047 .2997±.0223 .2477±.0036 .1198±.0009
FD .1392±.0058 .2509±.0081 .1592±.0106 .3789±.0044 .1346±.0040 .2592±.0053 .3024±.0309 .1927±.0016 .1192±.0017

SimpDM .1083±.0087 .2324±.0141 .1338±.0119 .2937±.0031 .1088±.0046 .2194±.0053 .2889±.0194 .1366±.0008 .1107±.0010

Method Airfoil Wine-red Abalone Wine-white Phoneme Power Ecommerce California Average Rank
mean .2898±.0024 .1298±.0060 .1952±.0011 .1051±.0087 .1622±.0007 .1966±.0007 .3193±.0066 .1463±.0003 11.7
KNN .2513±.0018 .0931±.0013 .1305±.0006 .0811±.0042 .1344±.0009 .1571±.0015 .2959±.0113 .1419±.0004 5.2
MF .2379±.0023 .0980±.0025 .1461±.0021 .0858±.0066 .1369±.0010 .1512±.0012 .3654±.0105 .1186±.0005 6.1
MICE .2929±.0015 .1071±.0028 .1420±.0010 .0920±.0076 .1780±.0006 .1631±.0014 .3606±.0079 .1292±.0007 10.2

OT .2726±.0039 .0998±.0040 .1499±.0018 .0865±.0070 .1573±.0008 .1871±.0011 .3177±.0067 .1426±.0004 8.2
MIRACLE .2577±.0024 .0942±.0027 .1293±.0012 .0865±.0070 .1559±.0006 .1442±.0010 .3142±.0056 .1175±.0005 4.9
GRAPE .2289±.0045 .0897±.0033 .1314±.0061 .0982±.0198 .1237±.0012 .1338±.0016 .3071±.0082 .0997±.0006 3.5
IGRM .1797±.0033 .0860±.0027 .1358±.0063 .0981±.0206 .1228±.0011 OOM OOM OOM 3.2

MIWAE .2517±.0020 .1138±.0000 .1302±.0023 .0864±.0074 .1633±.0015 .1578±.0028 .3405±.0104 .1285±.0005 7.6
GAIN .2581±.0019 .1140±.0044 .1493±.0113 .1024±.0076 .1685±.0027 .1626±.0050 .3450±.0119 .1311±.0007 9.9
TabCSDI .2473±.0026 .0994±.0078 .1487±.0035 .0952±.0079 .1600±.0015 .1526±.0020 .3250±.0112 .1287±.0010 7.8
FD .2458±.0020 .1026±.0026 .1468±.0013 .0976±.0118 .1596±.0014 .1633±.0011 .3357±.0087 .1289±.0004 7.7

SimpDM .2024±.0046 .0873±.0016 .1204±.0012 .0727±.0056 .1165±.0004 .1320±.0009 .3051±.0111 .1056±.0006 1.4

Table 6: Imputation performance in terms of RMSE with standard deviation. “OOM” indicates Out-Of-
Memory on a 16GB GPU.

values can well guide the imputation process. Finally, the imputed data x̂ can be obtain by combining
x and the final estimation x0 (Line 7).

C COMPLEXITY ANALYSIS

We study the time complexity of a single training epoch of SimpDM, given a tabular dataset with
n samples and d dimensions. For the sampling of pseudo mask, Gaussian noise, and augmented
perturbation, their complexities are all O(nd). For the diffusion model, the time complexity is
O(ndh(d+ dhL)), where dh and L are the latent dimensions and the layer number of MLP, respec-
tively. For the diffusion model loss and the MSE self-supervised alignment loss, the complexities
are also O(nd). Note that if we use more complex self-supervised alignment loss (e.g., contrastive
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loss or Sinkhorn loss), the complexity can be higher to O(n2d), which severely reduces the running
efficiency. After eliminating the smaller terms, the training time complexity of SimpDM becomes
O(ndh(d+ dhL)).

For the testing phase of SimpDM, the complexity is also similar to vanilla diffusion models. In
specific, the complexity is O(ndT ) for the whole process, since we require T diffusion time steps
for data refinement.

To sum up, this complexity of SimpDM scales linearly with both n and d, resembling the computa-
tional costs of vanilla diffusion models.

D DATASET

We conduct the experiments on 17 datasets from the UCI Machine Learning repository Asuncion
& Newman (2007) and Kaggle, including Iris, Yacht, Housing, Diabetes, Blood, Energy, German,
Concrete, Yeast, Airfoil, Wine-red, Abalone, Wine-white, Phoneme, Power, Ecommerce, and Cali-
fornia. The statistics of datasets are provided in Table 5.

E IMPLEMENTATION DETAILS

E.1 HYPER-PARAMETER SETTING

We select some important hyper-parameters through grid search, and keep the rest insensitive hyper-
parameters to be fixed values. Concretely, the grid search is carried out on the following search
space:

• Diffusion steps: {10, 50, 100}
• Training epochs: {10000, 20000, 30000}
• Learning rate: {0.001, 0.0001}
• The number of layers: {3,4,5}
• Hidden dimensions: {256, 512, 1024}
• Trade-off parameter of self-supervised alignment loss γ: {0.2, 0.5, 1, 3, 5, 10}
• Perturbation strengths [pGT ,pPM ,pMS]:
{ [0.0001,0.08,0.1], [0.0001,0.4,0.5], [0.001,0.8,1], [0.001,2,3] }

E.2 COMPUTING INFRASTRUCTURES
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Figure 6: Runtime per training
epoch on different datasets (n× d).

We run all experiments with an Amazon Web Service (AWS)
EC2 instance with the instance size g4dn.xlarge, which fea-
tures a 4-core CPU, 16 GB Memory, and a Nvidia T4 GPU with
16 GB GPU Memory.

F DETAILED EXPERIMENTAL RESULTS

Table 6 complements the Table 1 in the main paper with standard
deviation.

G RUNTIME OF SIMPDM

We present the runtime of each training epoch of SimpDM on different datasets. All the experiments
are conducted on an Amazon EC2 server (see Appendix E.2) and with a fixed-size MLP diffusion
model (with 3 layers and 256 hidden units). The experimental results are illustrated in Fig. 6. The
figure clearly illustrates that the training time of SimpDM exhibits a linear relationship with both
the number of samples n and the number of dimensions d. This observation aligns seamlessly with
our analysis detailed in Appendix C. Also, the training cost of SimpDM is quite small (with few
milliseconds for each epoch), indicating the high running efficiency and scalability of our method.
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