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Abstract

Self-supervised learning (SSL) aims to produce useful feature representations
without access to any human-labeled data annotations. Due to the success of
recent SSL methods based on contrastive learning, such as SimCLR, this problem
has gained popularity. Most current contrastive learning approaches append a
parametrized projection head to the end of some backbone network to optimize the
InfoNCE objective and then discard the learned projection head after training. This
raises a fundamental question: Why is a learnable projection head required if we
are to discard it after training? In this work, we first perform a systematic study
on the behavior of SSL training focusing on the role of the projection head layers.
By formulating the projection head as a parametric component for the InfoNCE
objective rather than a part of the network, we present an alternative optimization
scheme for training contrastive learning based SSL frameworks. Our experimental
study on multiple image classification datasets demonstrates the effectiveness of
the proposed approach over alternatives in the SSL literature.

1 Introduction
The ultimate goal of self-supervised learning (SSL) is to obtain generalizable features from the
information inherent to massive amounts of unlabelled data in a task-agnostic manner. These features
can then be used to perform various downstream tasks using only a minimal amount of supervised
training and a small set of task-specific label data. The SSL task is typically formulated as contrastive
learning, where the idea is to learn features that remove the effect of data augmentations applied to
the input data. Here, the intuition is that data augmentations cover the style space, which is often
irrelevant to the downstream tasks. As one can imagine, prior knowledge of the downstream tasks is
necessary to design meaningful data augmentations, and even then, it is a challenging problem.

Nevertheless, contrastive SSL methods are successful in many applications [3, 5, 24]. An important
architectural choice in the majority of these methods is the use of a multi-layer perceptron (MLP)
appended to the network (i.e., projection head) to project the backbone features into a low dimensional
space before applying the contrastive loss. This projection head is discarded after training as the
projected features have been found to be inferior in terms of generalization performance and the
backbone features are directly used for the downstream tasks [2]. Despite its practical importance,
the role of the projection head in SSL methods is not well-understood.

In this work, we attempt to empirically understand why a learnable projection head is required if
we are to discard it after training? We would like to highlight two important observations: First, the
projection head is a low-rank mapping. Second, the null space of the projection head is useful for
generalization. Based on these observations, we hypothesize that the projection head implicitly learns
to choose a subspace of features to apply the contrastive loss. This subspace selection addresses the
shortcomings of the contrastive loss (e.g., sub-optimal data augmentations), however, this property
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Figure 1: t-SNE plots for SimCLR trained models on CIFAR-10 using ResNet-50 with different projection
head configurations in (a), (b) and (c). (d) Rank of projection head output space (Z) and backbone
encoder output space (H), obtained using PyTorch (matrix_rank).

emerges as a side-effect. In particular, the implicit subspace selection enables the projection head
output to minimize the contrastive loss, while allowing backbone to learn generalizable features.

Based on this hypothesis, we argue that the data-dependent subspace selection should be considered
as part of the SSL loss function and this behavior should be enforced rather than relied upon. To
this end, we formulate self-supervised learning as a bilevel optimization problem. Here, at each
training step, the inner-optimization selects the best subspace for the contrastive loss (by optimizing
the projection head) and the outer-optimization performs gradient descent on the backbone network.

We perform several experiments on CIFAR-10, STL-10, TinyImageNet, and ImageNet datasets with
SimCLR [2] and SimSiam [6] to understand the role of the projection head. Later, we evaluate our
modified optimization scheme for SSL on CIFAR-10, CIFAR-100 and TinyImageNet datasets with the
SimCLR method. Our results, obtained by viewing the projection head as part of the loss, show better
generalization over SimCLR and validates the hypothesis on the role of the projection head.

2 Preliminaries and Notations
Given a dataset D = {xi}ni=1 and data augmentations T , the SSL learning problem can be written as:

min
f,g

L(g◦f ;D, T ) ≜ E
x,Bx∼D
t1,t2∼T

[
ℓ(z1, z2;Zx)

]
, (1)

where zj = g◦f(tj(x)) for j ∈ {1, 2}, Zx = {g◦f(tj(y)) | y ∈ Bx, j ∈ {1, 2}}. Here, g denotes
the projection head, f is the (feature) encoder, Bx is a mini-batch sampled from D that does not
include x, and ℓ is the example-wise contrastive loss function. While there are various contrastive
loss functions exist [23], InfoNCE [2] is the most popular. The contrastive loss encourages the
embeddings of two augmented views of the same training example to be closer while pushing
embeddings of other training examples apart. In practice, f and g in Eq. (1) are parametrized using
neural networks and ming,f denotes minimizing the parameters of the respective neural networks.

Let us denote the backbone features by h = f(x) ∈ Rm and the projection head output as z =
g(h) ∈ Rd, where m ≥ d in practice. Moreover, let H ⊆ Rm and Z ⊆ Rd be the vector spaces
spanned by the backbone features and projection head outputs, respectively. Once trained, the
projection head g is stripped away [2] and the backbone feature h is used for the downstream tasks.

3 A Closer Look at the Role of the Projection Head
We start by conducting an empirical study on various choices of projection heads available for
contrastive learning on multiple datasets such as CIFAR-10, STL-10, TinyImageNet and ImageNet
using SimCLR [2] and SimSiam [7] method. We provide experimental details for the study in
Section C in Appendix. As shown in [2], non-linear projection head consistently yields better
performance than linear projection head and identity projection head. Specifically, this raises a
non-trivial question how does the projection head aid the training of SSL objective. To this end, we
first analyse the rank of the learned feature spaces obtained via different projection heads.
Feature Representation with Different Projection Heads. To further analyse the representation
quality of backbone features learned with various projection head configurations, we present t-
SNE [27] plots in Fig. 1 with different projection heads using SimCLR training on the CIFAR-10
dataset. Although, the feature representations learned directly on the backbone features (no projection
head) are more tightly clustered, the issue of “feature collapse” is easy to observe. Whereas a non-
linear projection head yields features spread across the whole space with less evidence of “feature
collapse”.
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In order to validate this hypothesis, we further provide the rank for the output of the projection head
and the network backbone features in Fig. 1 (d). This clearly shows that while all projection head
variants yield low-rank backbone features, the rank of H for the no projection head case is lower than
the non-linear projection head configuration. Another consistent observation reveals that the rank of
projected features (Z) is consistently lower than that of the backbone features (H). This indicates
that the contrastive learning loss tends to result in low-rank outputs Z .

Furthermore, there is a clear correlation between the quantity rank(H)− rank(Z) (which we call
rank deficit) and the generalization performance. Specifically, the rank deficit from H to Z increases
from no projection head (0), to linear (1173), to the non-linear projection head (1307) (refer to Fig.
1 (d)). The same order is apparent in the linear evaluation performance in [6]. We further analyse
the generalization performance of the null space of the projection head to understand the additional
information in H ignored by the projection head.
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Figure 2: Linear evaluation accuracy on differ-
ent datasets using various feature components.

Null Space Analysis for Linear Projection. For
simplicity, we consider the linear projection head
without the bias term and analyse the generaliza-
tion performance of its null space (i.e., the sub-
space of H which is completely ignored by g). Let
A ∈ Rd×m be the weight matrix of the linear pro-
jection head g, where m is the dimension of the
backbone features (h) and d is projection head out-
put dimension (z). Therefore z = Ah and we
intend to understand how A decomposes the back-
bone feature space. To this end, any vector h ∈ Rm

can be written as a sum of two orthogonal com-
ponents h = hr + hn such that hr ∈ R(AT ) and
hn ∈ N (A), where R(A) and N (A) are the range
(i.e., column space) and the null space of A, respectively. Precisely, hr = A+Ah and hn = h− hr,
where A+ is the right inverse, i.e., A+ = AT (AAT )−1. Note that any vector in the null space maps
to 0 and therefore would be ignored when using z for the downstream tasks. To analyse the null
space, we use the above decomposition to obtain the component corresponding to the null space for
each feature vector h. We then evaluate the performance of different components hr, hn, h and z
over pre-trained SSL models on different datasets (SimSiam for ImageNet and SimCLR for all other
datasets) in Fig. 2. While the full backbone feature h is the best performing, the null space hn is
competitive and except in ImageNet, it outperforms the projection head output z. Even in ImageNet,
the null space is significantly better than the random classification. This clearly shows that the null
space has useful information for generalization without any direct influence on the contrastive loss.

From the above analysis, we want to highlight the following observations: (1) The null space of the
projection head is generalizable and sometimes it performs better than the projection head output z.
Refer to Fig. 2. (2) There is a clear positive correlation between the rank deficit from H to Z (i.e.,
rank(H)− rank(Z)) and the generalization performance of the backbone features. We hypothesize
that the learnable projection head is a way of mitigating the shortcomings of the contrastive loss.
Specifically, the projection head implicitly learns to select a subspace of the features H and (non)-
linearly map them to Z to apply the contrastive loss. In this way, the contrastive loss is minimized on
Z , which is encouraged to become style-invariant (hence, sensitive to the sub-optimal choice of data
augmentations), whereas the backbone features H are not forced to be style-invariant and as a result
can generalize better. In this work, we intend to make use of the above interpretation regarding the
role of projection head to improve the SSL framework.

4 Self-Supervised Learning with Adaptive Contrastive Loss
As discussed in the previous section, if the projection head g chooses the best subspace to apply the
contrastive loss and is also stripped away after training, then we believe that g should be considered
as a part of the loss function rather than a part of the network. Specifically, we argue that the SSL
objective should be treated as the best contrastive loss that can be obtained by searching over all
(fixed-dimensional) subspaces of the features. As such we define the new objective for SSL as
L⋆(f ;D, T ) ≜ ming L(g◦f ;D, T ), allowing us to re-write the SSL objective in Eq. (1) as:

min
f

L⋆(f ;D, T ) = min
f

min
g

L(g◦f ;D, T ) . (2)
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Note that if we have access to the minimization oracle of L, then the optimization problems described
by Eq. (1) and Eq. (2) are equivalent. However, such an oracle does not exist in practice. As such, we
propose an iterative optimization algorithm for the above formulation.
Iterative Optimization. Notice that in Eq. (2) we have separated the optimization with respect to g
and f , and the iterative updates can be written as:

gk+1 = argmin
g

L(g◦fk;D, T ) , (3)

fk+1 = fk − η∇fL(g
k+1◦fk;D, T ) ,

where k denotes the iteration number, η > 0 is the learning rate, and ∇fL denotes the gradient of L
with respect to the parameters of f . This bilevel optimization is computationally expensive as the
inner-optimization (wrt. g) needs to be solved for every iteration of the outer optimization (wrt. f ).

Therefore, for computational efficiency, we resort to a stochastic optimization strategy where for
each iteration k a mini-batch of data Dk ⊂ D is used instead of the whole dataset. However, this
could lead to g quickly overfitting to the small mini-batch, leading to sub-optimal results. To alleviate
such overfitting and allow stability, we resort to a truncated optimization with a proximal term by
fixing the number of iterations to the inner optimization and use momentum based gradients. Such an
approximation is common in deep learning (e.g., [11]). Our final iterative updates can be written as:

gk+1 ≈ argmin
g

L(g◦fk;Dk, T ) + λ
∥∥g − gk

∥∥2
2

l steps of SGD,

fk+1 = fk − η∇fL(g
k+1◦fk;Dk, T ) 1 step SGD, (4)

where any standard stochastic gradient descent (SGD) algorithm can be used. Here, λ > 0 is the
strength of the proximal term and ∥·∥22 denotes the L2 norm.

Note that the optimization with respect to g can be performed quickly as it is a small MLP, and run for
a small number of iterations (typically, l ≤ 10 in our experiments). Then, the updated gk+1 is used to
compute the gradient with respect to the backbone network parameters. Overall, the computational
complexity of one iteration of our algorithm is the same as the standard back-propagation.
Practical Benefits. According to Eq. (4), it is clear that at every iteration of our algorithm, we first
update the loss parameters g (via inner-optimization) and use the updated loss to perform gradient
descent on f . In this way, the most recent update on g (i.e., gk+1) is immediately propagated to
f . Therefore, based on our hypothesis in Sec. 3, our approach modifies the loss to improve its
generalizability (i.e., selects the best subspace to apply the contrastive loss for each mini-batch) and
takes a gradient step on the updated loss.

5 Comparisons against Baselines

Methods CIFAR-10 CIFAR-100 TinyImageNet

KNN Linear KNN Linear KNN Linear

No Projection 85.69 88.07 47.67 54.78 28.20 35.04
SimCLR [2] 87.43 91.11 56.10 68.01 38.44 50.64
Random Proj. 86.57 90.75 51.81 63.25 32.88 46.40
DirectCLR [18] 86.93 90.19 52.23 65.20 33.08 46.71
Ours 88.53 91.97 58.08 69.12 40.48 51.72

Table 1: Comparisons against SimCLR on CIFAR-10/100
and TinyImageNet datasets using ResNet-50 architecture.

As a proof of concept, we provide the ex-
perimental evaluations of our proposed
optimization scheme against the stan-
dard training regime of SimCLR frame-
work on CIFAR-10/100, and TinyIma-
geNet datasets in Table 1. As explained
above, we use both linear evaluation and
KNN based evaluation to show these com-
parisons. Our approach achieves better
generalization performance using both
these evaluations consistently on CIFAR-10/100 and TinyImageNet datasets. Infact our method
reaches near optimum linear evaluation accuracy at just 500 epochs, which the standard SimCLR
training procedure can achieve after nearly double the training cost. This empirically demonstrates
the capability of faster convergence of our alternative optimization scheme. The performance gain
of our method over the SimCLR trained using non-linear projection head is especially significant
(≈ 2% on CIFAR100 and TinyImageNet dataset) in case of KNN evaluation.

We also compare our method against alternative mechanism to a standard approach of performing con-
trastive learning using non-linear projection head in Table 1. Our method consistently performs better
than recently proposed method namely DirectCLR [18] as well alternative approach of performing
SimCLR with a fixed randomly initialized projection head.
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Appendix

A Related Work
Self-supervised learning (SSL) literature has become increasingly popular in the last few years with
the promise of boosting performance in various application domains where obtaining large volumes
of unlabeled data is cheap, including vision and language. Due to space constraints, we briefly discuss
previous works that are closely related to our work and/or inspired our thinking, and we refer the
interested reader to the surveys [19, 17, 23] for a comprehensive study.

Here, we mainly consider example-wise contrastive learning approaches, which can be categorized
into methods that require explicit negative samples [2, 3, 15, 5, 10, 29] and those that are negative-
sample-free [13, 7, 31]. In the former methods, for a given input sample, all other samples in the
mini-batch are regarded as negatives and the loss is encouraged to pull various augmentations of the
same sample together in the feature space while pushing the features from the other samples (i.e., the
negatives) apart. This has two main issues. First, the notion of negative samples is unclear without
the label information; and, second, these methods require large mini-batches to compute effective
statistics for training.

Different strategies have been explored to obtain better positive and negative samples to apply the
contrastive loss within the SSL framework [8, 9] On the other hand, the latter methods circumvent the
requirement of negative samples altogether by introducing asymmetry in the network architecture [13,
7] or by modifying the loss function [31]. In both types of methods, the projection head is an integral
part of the architecture design and it is discarded after training. This is true even for SSL approaches
that do not use example-wise contrastive learning [1, 22].

6



There are some efforts to theoretically understand the SSL methods [30, 14], the role of data aug-
mentation [28, 26], and some empirical analyses of the contrastive loss [4] and the predictor in
the so-called BYOL framework [25]. Nevertheless, to the best of our knowledge, there is no work
that attempts to understand the role of the projection head in the learning process, or indeed, why
generalizability improves when it is stripped away for downstream tasks.

Closest to our work is the concurrent work DirectCLR [18], which shows that the projection head
becomes low-rank due to strong data augmentations that distort the content information in the input
data. Nevertheless, their final approach is to directly optimize the backbone features with a fixed
projection head. Whereas we empirically show a trainable projection head enhances performance
and introduce an improved optimization scheme for SSL. Even though DirectCLR is a concurrent
work, we compare it in our experiments and demonstrate that while a fixed projection yields better
generalization in the early stages of training, a learnable projection head eventually outperforms it.

B Limitations

This work is the first of a kind study on the role of the projection head in the SSL training and thus it
has certain limitations and open questions for future research. Although contrastive learning-based
SSL has made significant progress in the pre-training domain, the underlying procedure remains more
so as a black-box system. Some recent attempts [30, 14] have been made in this direction but we
believe there is still a gap between the theoretical understanding of contrastive learning-based SSL
and its empirical success.

Our work mainly attempts to understand the behavior of SSL training by means of extensive empirical
analysis, though the theoretical understanding of the projection head remains part of the aforemen-
tioned future work. Even though our proposed alternative optimization scheme has been shown to
yield better generalization capabilities, we do not provide any theoretical guarantees for the success
of our method in this paper. The proposed method aims to improve the trainability of the projection
head and in turn SSL training procedure.

Our observations are consistent on multiple small-scale or large-scale datasets but the alternative
optimization scheme has been considered only on small-scale datasets namely CIFAR-10, CIFAR-100
and TinyImageNet. Nevertheless, the observations and analysis that we presented in this paper
provide a foundation for further work, and we believe they are valuable to other researchers in the
field.

C Experimental Details

Datasets and Networks. In order to showcase the better trainability via the proposed method,
we perform experiments on image classification datasets such as CIFAR-10, composed of 32 × 32
images with 10 and 100 classes, respectively, and TinyImageNet [21], a reduced version of ImageNet,
composed of 200 classes with images resized to size 64× 64, consisting of 100K training images
and 10K testing image. We use ResNet-50 [16] network architecture to evaluate the SSL frameworks.

Training and Evaluation Hyperparameters. For all datasets, the output dimension for projection
head d = 128, except ImageNet where d = 2048. We use the ResNet-50 backbone with m =
2048 and experiment with different projection heads. We describe the different projection head
configurations used for these experiments below.

• No Projection Head: The projection head is simply removed from the original training framework
and the loss is directly optimized on the backbone features h.

• Linear Projection Head: A linear layer with bias term is used for projecting backbone features into
a lower-dimensional subspace.

• Non-Linear Projection Head: A 2-layer MLP with ReLU non-linearity and batch normalization is
used. The hidden layer dimension is 512 for all the datasets except ImageNet where it is 2048.

For both the datasets, we use the Adam optimizer [20]. We compared our method with arguably
the most popular current SSL method, SimCLR [2]. For our proposed optimization scheme, we use
the same learning rate with five inner optimization steps. All the experiments are performed using
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InfoNCE loss with a temperature scale value of 0.5. We use 500 epochs with learning rate 10−3 and
weight decay 10−6 for both CIFAR-10 and TinyImageNet. We use a mini-batch size of 256 images
for CIFAR-10 dataset and 512 images for TinyImageNet dataset. All the experimental comparisons
are performed with non-linear projection head or linear projection head. The dimension of the hidden
layer of the non-linear projection head g is 512. The output of the embedding size is 128 for both
CIFAR-10/100 and TinyImageNet dataset. All the experiments are performed using NVIDIA Tesla
V100 GPUs.

For the purpose of evaluating the generalization capabilities of pre-trained features learned using SSL,
we employ KNN based evaluation with 200 neighbours and linear evaluation where a linear layer
is trained on pre-trained backbone features. For linear evaluation, we train the linear layer for 200
epochs using Adam optimizer with learning rate 10−3 and weight decay 10−6 for both CIFAR-10/100
and TinyImageNet.

Augmentations used. Similar to SimCLR, to generate the augmented pairs we extract crops with
a random size from 0.2 to 1.0 of the original area and a random aspect ratio from 0.75 to 1.33 of
the original aspect ratio for TinyImageNet. For CIFAR-10/100, we randomly extract the crops of size
32× 32. We apply grayscaling to the samples with the probability 0.2 for CIFAR-10/100 dataset and
0.1 for TinyImageNet dataset. We use color jittering with brightness, contrast, saturation, and hue
configuration of (0.4, 0.4, 0.4, 0.1) with probability 0.8. We also apply horizontal flipping to the
image pairs with 0.5 probability.

D Analysis on Different Procedures to Obtain the Projection Head

We now provide an experimental comparison on different possible fixed projection heads that can be
used to replace a trainable projection head to further validate that a trainable projection head indeed
aids in better training of SimCLR training procedure and similar benefits cannot be achieved with a
fixed projection head. In this study, we resort to KNN evaluation for comparative analysis and linear
projection heads and employ ResNet-50 architecture. Our analysis on different projection heads can be
divided into fixed projection head and moving projection head. We now discuss the multiple variants
of different projection head schemes that we use for this study.

Fixed Projection Head. In this setting, we keep the projection head parameters fixed throughout the
training procedure of SimCLR. The fixed projection head can be obtained in the following variations:

• Random Initialization: A linear projection head obtained via standard network initialization [12] is
employed in this case.

• SimCLR based pre-training: Here, we evaluate a fixed projection head obtained at the end of
standard SimCLR training. Note, the idea here is to evaluate if there exists an optimal projection
head that can be used in the training procedure of SimCLR as a fixed projection head (but possibly
suboptimal with respect to the current backbone network parameters).

• DirectCLR: This is a recent concurrent work [18] where the proposed fixed projection head takes
the form of a fixed low-rank diagonal matrix and is shown to outperform a trainable linear projection
head. Their proposed fixed projection head essentially translates into SimCLR objective onto a
subset of backbone features h.

Moving Projection Head. In the standard training procedure of SimCLR framework, projection
head parameters are updated in the same backward pass as the backbone encoder. Although, as
shown via our proposed approach that this objective can achieve more efficiently via an alternating
optimization scheme. We now present some other alternatives for the training of the projection head
which are described below.

• PCA based Projection: Since our empirical observation demonstrates the projection head is
low-rank. It is straightforward to estimate the projection head using principal components of H.
Therefore, to evaluate the efficacy of principal components as projection head, we perform PCA
at the end of each epoch on a subset of the training dataset and use top-k or bottom-k principal
components as fixed projection head during the next epoch.
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Methods KNN Accuracy

Fixed
No Projection 28.20
Random Init 32.88
DirectCLR [18] 33.08
Pre-trained SimCLR 32.98

Moving

PCA top-128 32.19
PCA bottom-128 31.58
Slow-Single 33.06
Slow-Optimal 32.29

Trainable SimCLR [2] 38.44
Ours 40.48

Table 2: Experimental comparisons for KNN evaluation using different types of fixed, moving, and
trainable linear projection head used for SimCLR pre-training on TinyImageNet dataset using ResNet-
50 architecture. Note, both trainable versions of projection head consistently outperform all the
fixed and slow moving alternatives and our proposed optimization scheme outperforms the standard
SimCLR training procedure.

• Slow updates on Projection: Another alternate optimization is via optimization of g in an optimiza-
tion setting where g is optimized separately at the end of each epoch via optimization on the subset
of dataset until convergence, namely Slow-Optimal or via optimization as a single step update via
accumulated gradients of g during the training epoch of f , namely Slow-Single.

We present the experimental comparisons of KNN accuracies with above explained projection heads
using SimCLR objective on TinyImageNet dataset in Table 2. Consistent to our observations in
Table 1, our proposed optimization scheme performs better than standard SSL optimization scheme
even for linear projection head. It is also clear from these comparisons that trainable projection head
outperforms various forms of slow-moving or fixed projection heads.

In fact, our observations are contradictory to DirectCLR [18], which claims a fixed linear projection
head can outperform a trainable linear projection head. Though, all the fixed projection head do
outperform SimCLR trained model without projection, DirectCLR performs similar to the projection
head setting where a fixed randomly initialized projection is employed. Interestingly, a pre-trained
projection head obtained from SimCLR training performs significantly worse and roughly similar
to the random fixed projection head. This clearly indicates that there is possibly no such fixed
projection head that can outperform a trainable alternative. The worse performance for fixed pre-
trained projection head can be accounted to the fact that for any fixed projection head g, the backbone
network f can, in principle, be trained to achieve the same local minimum as without g. Thus, a fixed
projection head is unable to aid in mitigating the shortcomings of contrastive loss.

Based on our observations, the linear projection head in most cases is low-rank. Thus, this simple
implicit condition directs us towards a technically sound alternative, PCA as a replacement of the
trainable projection head. Our analysis reveals that principal components computed at each epoch
are worse than a fixed random initialization alternative. This further validates our hypothesis that a
crucial condition on the projection head is to minimize the InfoNCE objective.

Our slow-moving version (Slow-Single) of alternate optimization indicates, that decoupling of update
steps for backbone encoder and projection is beneficial and is thus able to achieve better performance
than all the fixed projection head schemes. However, Slow-Optimal performs worse than Slow-Single
which indicates a truncated optimization on projection head g is better than training to optimality.
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