
Improved Gradient based Adversarial Attacks for
Quantized Networks

Kartik Gupta1,2 and Thalaiyasingam Ajanthan1

1 Australian National University
2 DATA61, CSIRO

Abstract. Neural network quantization has become increasingly popular
due to efficient memory consumption and faster computation resulting
from bitwise operations on the quantized networks. Even though they
exhibit excellent generalization capabilities, their robustness properties
are not well-understood. In this work, we systematically study the ro-
bustness of quantized networks against gradient based adversarial attacks
and demonstrate that these quantized models suffer from gradient van-
ishing issues and show a fake sense of security. By attributing gradient
vanishing to poor forward-backward signal propagation in the trained
network, we introduce a simple temperature scaling approach to miti-
gate this issue while preserving the decision boundary. Despite being a
simple modification to existing gradient based adversarial attacks, experi-
ments on CIFAR-10/100 datasets with VGG-16 and ResNet-18 networks
demonstrate that our temperature scaled attacks obtain near-perfect
success rate on quantized networks while outperforming original attacks
on adversarially trained models as well as floating-point networks.

1 Introduction

Neural Network (nn) quantization has become increasingly popular due to re-
duced memory and time complexity enabling real-time applications and inference
on resource-limited devices. Such quantized networks often exhibit excellent
generalization capabilities despite having low capacity due to reduced precision
for parameters and activations. However, their robustness properties are not
well-understood. In particular, while parameter quantized networks are claimed to
have better robustness against gradient based adversarial attacks [10], activation
only quantized methods are shown to be vulnerable [18].

In this work, we consider the extreme case of Binary Neural Networks (bnns)
and systematically study the robustness properties of parameter quantized models,
as well as both parameter and activation quantized models against gradient based
adversarial attacks. Our analysis reveals that these quantized models suffer from
gradient masking issues [3] (especially vanishing gradients) and in turn show fake
robustness. We attribute this vanishing gradients issue to poor forward-backward
signal propagation caused by trained binary weights, and our idea is to improve
signal propagation of the network without affecting the prediction of the classifier.

ar
X

iv
:2

00
3.

13
51

1v
1

 [
cs

.C
V

]
 3

0
M

ar
 2

02
0

2 K. Gupta and T. Ajanthan

There is a body of work on improving signal propagation in a neural network
(e.g ., [11,23]), however, we are facing a unique challenge of improving signal
propagation while preserving the decision boundary, since our ultimate objective
is to generate adversarial attacks. To this end, we first discuss the conditions to
ensure informative gradients and resort to a temperature scaling approach [13]
(which scales the logits before applying softmax cross-entropy) to show that,
even with a single positive scalar the vanishing gradients issue in bnns can be
alleviated achieving near perfect success rate in all tested cases.

Specifically, we introduce two techniques to choose the temperature scale: 1)
based on the singular values of the input-output Jacobian, 2) by maximizing the
norm of the Hessian of the loss with respect to the input. The justification for the
first case is that if the singular values of input-output Jacobian are concentrated
around 1 (defined as dynamical isometry [23]) then the network is said to have
good signal propagation and we intend to make the mean of singular values to
be 1. On the other hand, the intuition for maximizing the Hessian norm is that
if the Hessian norm is large, then the gradient of the loss with respect to the
input is sensitive to an infinitesimal change in the input. This is a sufficient
condition for the network to have good signal propagation as well as informative
gradients under the assumption that the network does not have any randomized
or non-differentiable components.

We evaluated our improved gradient based adversarial attacks on CIFAR-
10/100 datasets with VGG-16 and ResNet-18 networks quantized using multiple
recent techniques [1,2,4,16]. In all tested quantized models, both versions of our
temperature scaled attacks obtained near perfect success rate outperforming
gradient based attacks (fgsm [12], pgd [19]) in their original form. Furthermore,
this temperature scaling improved gradient based attacks even on adversarially
trained models (both high-precision and quantized) as well as floating-point
networks, showing the significance of signal propagation for adversarial attacks.

2 Preliminaries
We first provide some background on the neural network quantization and
adversarial attacks. We then empirically show how Binary Neural Networks
(bnns) tend to show fake sense of robustness and introduce modifications to
existing gradient based adversarial attacks to overcome gradient masking issues
in bnns.

2.1 Neural Network Quantization
Neural Network (nn) quantization is defined as training networks with parameters
constrained to a minimal, discrete set of quantization levels. This primarily relies
on the hypothesis that since nns are usually overparametrized, it is possible to
obtain a quantized network with performance comparable to the floating-point
network. Given a dataset D = {xi,yi}ni=1, nn quantization can be written as:

min
w∈Qm

L(w;D) :=
1

n

n∑
i=1

`(w; (xi,yi)) . (1)

Improved Gradient based Adversarial Attacks for Quantized Networks 3

Here, `(·) denotes the input-output mapping composed with a standard loss
function (e.g ., cross-entropy loss), w is the m dimensional parameter vector, and
Q is a predefined discrete set representing quantization levels (e.g ., Q = {−1, 1}
in the binary case).

Most of the nn quantization approaches [1,2,4,16] convert the above problem
into an unconstrained problem by introducing auxiliary variables (w̃) and optimize
via (stochastic) gradient descent. Specifically, the objective and the update step
can be written as:

min
w̃∈IRm

L(P (w̃);D) , w̃k+1 = w̃k − η ∇L(P (w̃);D)|w̃=w̃k . (2)

Here, P : IRm → Qm is a projection and η > 0 is the learning rate. To this end,
the algorithms differ in the choice of quantization set (e.g ., keep it discrete [7],
relax it to the convex hull [4] or convert the problem in to a lifted probability
space [1]), the projection used and how differentiation through projection is
performed. In the case when the constraint set is relaxed, a gradually increasing
annealing hyperparameter is used to enforce a quantized solution [1,2,4]. We refer
the interested reader to respective papers for more detail.

Note that, here we have described weight quantization, however, activation
quantization can be analogously formulated. In this paper, we consider bnns
where the learnable parameters are constrained to the binary set {−1, 1} and
activations are not quantized unless otherwise specified.

2.2 Adversarial Attacks
Adversarial examples consist of small bounded perturbations to the images that
fool trained deep learning models by altering their prediction. Even though such
perturbations are imperceptible to human vision, they are sufficient to alter the
model’s prediction with high confidence. Existing adversarial attacks can be
categorized into white-box, and black-box attacks. The difference between them
lies in the knowledge of the adversaries. White-box attacks allow the adversaries
to have access to the target model’s architecture and parameters. In the black-box
threat model, the adversaries can only resort to the query access to generate
adversarial samples. Since white-box gradient based attacks are more powerful
and widely used, we now briefly summarize them below.

In fact, gradient based attacks can be compactly written as Projected Gradient
Descent (pgd) on the negative of the loss function [19]. Formally, let x0 ∈ IRN

be the input image, then at iteration t, the pgd update can be written as:

xt+1 = P
(
xt + η gtx

)
, (3)

where P : IRN → X is a projection, X ⊂ IRN is the constraint set that bounds
the perturbations, η > 0 is the step size, and gtx is a form of gradient of the loss
with respect to the input x evaluated at xt. With this general form, the popular
gradient based adversarial attacks can be specified:

– Fast Gradient Sign Method (fgsm): This is a one step attack introduced
in [12]. Here, P is the identity mapping, η is the maximum allowed perturbation

4 K. Gupta and T. Ajanthan

REF Adv. Train PMF PQ BNN WAQ BC MD-tanh-S
0

20

40

60

80

100
PG

D
Ad

ve
rs

ar
ia

l A
cc

ur
ac

y 94.46

82.82

93.24 91.49
87.67

91.63 93.18

0.0

48.73

33.02

22.49

8.57
4.4

26.98

Clean Acc.
Adversarial Acc.

(a) ResNet-18

REF Adv. Train PMF PQ BNN WAQ BC MD-tanh-S
0

20

40

60

80

100

PG
D

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y 93.31

70.79

90.53 89.78 89.69 89.41 91.53

0.04

41.54

54.11

23.41

78.01

9.28

47.32

Clean Acc.
Adversarial Acc.

(b) VGG-16
Fig. 1: Recognition accuracy (clean vs. adversarial) on the test set of CIFAR-10 for
binary networks with using different methods for quantization. Binarized networks
consistently outperform robustness accuracy of floating point networks (ref). All
quantization methods are parameter quantization methods except bnn-waq which
has weight and activations both quantized.

magnitude, and gtx = sign (∇x`(w
∗; (xt,y))), where ` denotes the loss function,

w∗ is the trained weights and y is the ground truth label corresponding to the
image x0.

– pgd with L∞ bound: Arguably the most popular adversarial attack intro-
duced in [19] and sometimes referred to as Iterative Fast Gradient Sign Method
(ifgsm). Here, P is the L∞ norm based projection, η is a chosen step size, and
gtx = sign (∇x`(w

∗; (xt,y))), the sign of gradient same as fgsm.
– pgd with L2 bound: This is also introduced in [19] which performs the

standard pgd in the Euclidean space. Here, P is the L2 norm based projection,
η is a chosen step size, and gtx = ∇x`(w

∗; (xt,y)) is simply the gradient of the
loss with respect to the input.

These attacks have been further strengthened by first taking a random step as
discussed in [28] and then performing projected gradient steps. In this paper, we
always use this random initialization for all the attacks.

3 Robustness Evaluation of Binary Neural Networks

We start by evaluating the adversarial accuracy of bnns trained using various
techniques, namely bc [7], pq [4], pmf [1], md-tanh-s [2], bnn-waq [15] using
the pgd attack with L∞ bound where the attack details are summarized below:

– pgd attack details: perturbation bound of 8 pixels (assuming each pixel in
the image is in [0, 255]) with respect to L∞ norm, step size η = 2 and the
total number of iterations T = 20. In all attacks, a randomized step is taken
to initialize the perturbations as mentioned in Sec. 2.2. The attack details are
the same in all evaluated settings unless stated otherwise.

We perform experiments on CIFAR-10 dataset using ResNet-18 and VGG-16
architectures and report the clean and adversarial accuracy results in Fig. 1.

Improved Gradient based Adversarial Attacks for Quantized Networks 5

0 10 20 30 40 50

Attack Iterations
0

20

40

60

80

100

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

(in
 %

) Varying PGD Attack Interations
REF
PMF
PQ
BNN WAQ
BC
MD-tanh-S

(a)

0 10 20 30 40 50 60 70 80

Attack Radius
0

10

20

30

40

50

60

70

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

(in
 %

) Varying PGD Attack Radius
REF
PMF
PQ
BNN WAQ
BC
MD-tanh-S

(b)
PMF PQ BNN WAQ BC MD-tanh-S

0

10

20

30

40

50

60

70

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y

33.02

22.49

8.57
4.4

26.98

2.2

23.82

33.87

12.84

2.92

White Box Acc.
Black Box Acc.

(c)
Fig. 2: Plots to test for obfuscated gradients in ResNet-18 trained on CIFAR-10
via. (a) varying pgd attack iterations, (b) varying pgd attack radius, and (c)
black box attacks. While (a) and (c) show signs of gradient masking, (b) does
not, however, we attribute this discrepancy to the random initial step taken before
pgd iterations as discussed in Sec. 2.2. Also notice, the quantization technique
clearly has an influence on the gradient masking issues of the final trained model.

It can be clearly and consistently observed that binary networks have high
adversarial accuracy compared to the floating point counterparts. In fact, in
some of the cases adversarial accuracy for a binary network is as close as or
even better compared to the adversarially trained floating point networks. Since
this result is surprising, we investigate this phenomenon further to understand
whether bnns are actually robust to adversarial perturbations or they show fake
sense of security due to some form of obfuscated gradients [3].

3.1 Identifying Obfuscated Gradients

Recently, it has been shown that several defense mechanisms intentionally or
unintentionally break gradient descent and cause obfuscated gradients and thus
exhibit a false sense of security [3]. Several gradient based adversarial attacks tend
to fail to produce adversarial perturbations in scenarios where the gradients are
uninformative, referred to as gradient masking. Gradient masking can occur due
to shattered gradients, stochastic gradients or exploding and vanishing gradients.
We try to identify gradient masking in binary networks based on the empirical
checks provided in [3]. If any of these checks fail, it indicates an issue of gradient
masking in binarized neural networks.

To illustrate this, we analyse the effects of varying different hyperparameters
of pgd attack on various binarized networks trained on CIFAR-10 using ResNet-18
architecture. Even though varying pgd perturbation bound does not show any
signs of gradient masking, varying attack iterations and black-box vs white-box
results clearly indicate gradient masking issues as depicted in Fig. 2. Here, our
black-box model to a bnn is the analogous floating point network trained on the
same dataset and the attack is the same pgd with L∞ bound.

These checks demonstrate that bnns are prone to gradient masking and
exhibit a fake sense of security. Note that, shattered gradients occur due to non-
differentiable components in the defense mechanism and stochastic gradients are
caused by randomized gradients due to randomly transformed input or randomly
transformed network. To this end, since bnns are trainable from scratch and does

6 K. Gupta and T. Ajanthan

not have randomized gradients3, we can narrow down gradient masking issue to
vanishing or exploding gradients. Since, vanishing or exploding gradients occur
due to poor signal propagation, by introducing a single scalar, we discuss two
different approaches to mitigate this issue, which lead to almost 100% success
rate for gradient based attacks on bnns.

4 Signal Propagation of Neural Networks

In this section, let us first describe the feed-forward dynamics of neural networks
and how poor signal propagation can cause vanishing or exploding gradients.
We then discuss the idea of introducing a single scalar which can improve the
existing gradient descent attacks without affecting the prediction (i.e., decision
boundary) of the trained models.

For notational convenience, similar to [23], we consider a fully-connected neural
network fw with weights Wl ∈ IRNl×Nl−1 , biases bl ∈ IRNl−1 , pre-activations
hl ∈ IRNl , and post-activations al ∈ IRNl , for l ∈ {1 . . .K} up to K layers. Now,
the feed-forward dynamics can be formulated as,

al = φ(hl) , hl = Wlal−1 + bl , (4)

where φ : IR → IR is an elementwise nonlinearity, and the input is denoted by
a0 = x0 ∈ IRN. Now, since softmax cross-entropy is usually used as the loss
function, we can write:

`(aK ,y) = −yT log(p) , p = softmax(aK) , (5)

where y ∈ IRd is the one-hot encoded target label and log is applied elementwise.
Notice, we have subsumed the dependency of parameters into aK = fw(x0) for
simplicity of notation.

For various gradient based adversarial attacks discussed in Sec. 2.2, gradient
of the loss ` is used with respect to the input x0, which can also be formulated
using chain rule as,

∂`(aK ,y)

∂x0
=
∂`(aK ,y)

∂aK
∂aK

∂x0
= ψ(aK ,y)J , (6)

where ψ denotes the error signal and J ∈ Rd×N is the input-output Jacobian.
Here we use the convention that ∂v/∂u is of the form v-size × u-size.

Notice there are two components that influence the gradients, 1) the Jacobian
J and 2) the error signal ψ. Gradient based attacks would fail if either the
Jacobian is poorly conditioned or the error signal has saturating gradients, both
of these will lead to vanishing gradients in ∂`/∂x0.

The effects of Jacobian on the signal propagation is studied in dynamical
isometry and mean-field theory literature [23,26] and it is known that a network
3 Even though, bnns have binary weights, once trained, there is no non-differentiable
or randomized component in the parameter quantized network but the gradients are
evaluated at a discrete point.

Improved Gradient based Adversarial Attacks for Quantized Networks 7

Methods ref Adv. Train bc [7] pq [4] pmf [1] md-tanh-s [2] bnn-waq [15]

jsv (Mean) 8.09e+00 5.15e−01 1.61e+01 2.34e+01 4.46e+01 3.53e+01 1.11e+00
jsv (Std.) 6.27e+00 4.10e−01 1.88e+01 2.35e+01 1.11e+02 3.53e+01 1.97e+00
‖ψ‖2 (Mean) 9.08e−03 2.33e−01 1.18e−02 6.75e−03 8.50e−03 6.20e−03 9.46e−03

Table 1: Mean and standard deviation of Jacobian Singular Values (jsv) and
mean ‖ψ‖2 for different methods on CIFAR-10 with ResNet-18 computed with 500
correctly classified samples. Note the norm of the error signal ψ is very small
in all cases except for Adv. Train, indicating that all models are over confident
(probabilities close to one-hot) except for Adv. Train which is in fact under
confident for correctly classified samples. Furthermore, one can clearly see that
bnns (except bnn-waq) have much higher jsv mean and we believe this leads to
gradient vanishing, i.e., increased scale for logits aK and in turn reduced (if not
zero) error signal ψ.

is said to satisfy dynamical isometry if the singular values of J are concentrated
near 1, i.e., for a given ε > 0, the singular value σj satisfies 1− σj ≤ ε for all j.
Under this condition, error signals ψ backpropagate isometrically through the
network, approximately preserving its norm and all angles between error vectors.
Thus, just like dynamical isometry speeds up the training for the floating point
networks by improving the signal propagation, a similar technique can be useful
for gradient based attacks as well.

In fact, almost all initialization techniques (e.g ., [11]) approximately ensures
that the Jacobian J is well-conditioned for better trainability. For continuous
networks trained on the clean samples, it is hypothesized that approximate
isometry is preserved even at the end of the training but this is not the case for
binary networks. In fact, for bnns, the weights are constrained to be {−1, 1}
and hence the weight distribution at end of training is completely different
from the random initialization. Furthermore, it is not clear that fully-quantized
networks can achieve well-conditioned Jacobian, which guided some research
activity in utilizing layerwise scalars (either predefined or learned) to improve
bnn training [20,25]. We illustrate the signal propagation properties of various
networks in Table 1.

We would like to point out that the focus of this paper is to improve gradient
based attacks on already trained bnns. To this end learning a new scalar to
improve signal propagation at each layer is not useful as it can alter the decision
boundary of the network and thus cannot really be used in practice on already
trained model.

4.1 Temperature Scaling for better Signal Propagation

In this paper, we propose to use a single scalar per network to improve the
signal propagation of the network using temperature scaling. In fact, one could
replace softmax with a monotonic function such that the prediction is not altered,
however, we will show in our experiments that a single scalar with softmax has
enough flexibility to improve signal propagation and yields almost 100% success

8 K. Gupta and T. Ajanthan

rate with pgd attacks. Essentially, we can use a scalar, β > 0 without changing
the decision boundary of the network by preserving the relative order of the
logits. Precisely, we consider the following:

p(β) = softmax(āK) , āK = β aK . (7)

Here, we write the softmax output probabilites p as a function of β to emphasize
that they are the softmax output of temperature scaled logits. Now since in this
context, the only variable is the temperature scale β, we denote the loss and the
error signal as functions of only β. With this simplified notation the gradient of
the temperature scaled loss with respect to the inputs can be written as:

∂`(β)

∂x0
=
∂`(β)

∂āK
∂āK

∂aK
∂aK

∂x0
= ψ(β)β J . (8)

Note that β affects the input-output Jacobian linearly while it nonlinearly affects
the error signal ψ. To this end, we hope to obtain a β that ensures the error
signal is useful (i.e., not all zero) as well as the Jacobian is well-conditioned to
allow the error signal to propagate to the input.

We acknowledge that while one can find a β > 0 to obtain softmax output
ranging from uniform distribution (β = 0) to one-hot vectors (β → ∞), β
only scales the Jacobian. Therefore, if the Jacobian J already has zero singluar
values, this temperature scaling approach would not make any difference in
those dimensions. However, since most of the modern networks consist of ReLU
nonlinearites, the effect of this single scalar would be equivalent (ignoring the
biases) to having a single positive scalar in each layer such as in [20]. In fact this
is true for all functions φ : IR → IR such that φ(ch) = cφ(h) for c > 0. To this
end, we believe a single scalar is sufficient for our purpose.

5 Improved Gradients for Adversarial Attacks

In this section we discuss strategies to choose a scalar β such that the gradients
with respect to input are informative. Let us first analyze the effect of β on the
error signal. To this end, we can write

ψ(β) =
∂`(β)

∂p(β)

∂p(β)

∂āK
= −(y − p(β))T . (9)

where y is the one-hot encoded target label, and p(β) is the softmax output of
temperature scaled logits.

Note that, for adversarial attacks, we only consider the correctly classified
images (i.e., argmaxj yj = argmaxj pj(β)) as there is no need to generate adver-
sarial examples corresponding to misclassified samples. From the above formula,
it is clear that when p(β) is one-hot encoding then the error signal is 0. This
is one of the reason for vanishing gradient issue in bnns. Even if this does not
happen for a given image, one can increase β →∞ to make this error signal 0.
Similarly, when p(β) is the uniform distribution, the norm of the error signal is

Improved Gradient based Adversarial Attacks for Quantized Networks 9

at the maximum. This can be obtained by setting β = 0. However, this would
also make ∂`(β)/∂x0 = 0 as the singular values of the input-output Jacobian
would all be 0. Refer to Eq. (8). To understand how error signal is affected by β
please refer to Fig. 3.

This analysis indicates that the optimal β cannot be obtained by simply
maximizing the norm of the error signal and we need to balance both the
Jacobian as well as the error signal. To summarize, the scalar β should be chosen
such that the following properties are satisfied:

1. ‖ψ(β)‖2 > ρ for some ρ > 0.
2. The input-output Jacobian β J is well-conditioned, i.e., the singular values of
β J is concentrated around 1.

We now discuss two approaches to obtain a β that alleviates vanishing gradients
such that already existing gradient based attacks (fgsm, pgd) can be made more
effective.
5.1 Network Jacobian Scaling (njs)
We now discuss a straightforward, two-step approach to attain the aforementioned
properties. Firstly, to ensure βJ is well-conditioned, we simply choose β to be
the inverse of the mean of singular values J. This guarantees that the mean of
singular values of βJ is 1. Formally, let us choose M samples from the test set,
we can derive β as follows:

β =
M d∑M

i=1

∑d
j=1 µj(Ji)

, (10)

where µj(Ji) denotes jth singular value of the Jacobian Ji corresponding to the
ith sample.

This simple strategy not only ensures the network Jacobian singular values
to J be scaled to closer to 1 but also ensures the network output āK to be scaled
down if the network is overconfident (network produces very large logits) or
scaled up if the network is underconfident (network produces very small logits)
which in turn improves signal propagation of ∂p(β)/∂āK .

After this Jacobian based scaling, there can be a situation where the error
signal is very small. To ensure that ‖ψ(β)‖2 > ρ > 0, we ensure that the softmax
output pk(β) corresponding to the ground truth class k is at least ρ away from 1.

We now state it as a proposition to derive β given a lowerbound on 1− pk(β).

Proposition 1. Let aK ∈ IRd with d > 1 and aK1 ≥ aK2 ≥ . . . ≥ aKd and
aK1 − aKd = γ. For a given 0 < ρ < (d− 1)/d, there exists a β > 0 such that
1− softmax(βaK1) > ρ, then β < − log(ρ/(d− 1)(1− ρ))/γ.

Proof. This is derived via a simple algebraic manipulation of softmax. Please
refer to Appendix A.1.

This β can be used together with the one computed in Eq. (10). We provide
the pseudocode for our proposed pgd++ attack with njs scaling in Algorithm 1.
Similar approach can also be applied for fgsm++.

10 K. Gupta and T. Ajanthan

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

||
||

(a)

0 20 40 60 80 100
0.04

0.05

0.06

0.07

0.08

0.09

JS
V

(M
ea

n)

(b)
0.0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

H
es

si
an

 N
or

m

(c)
Fig. 3: Plots to show how variation in β affects (a) error signal ψ(β), (b) Jacobian
of softmax, i.e., ∂p(β)/∂āK by taking a random correctly classified logits and (c)
Hessian norm ‖∂2`(β)/∂(x0)2‖ on a random correctly classified image. Notice
that, while ψ(β) and jsv of ∂p(β)/∂āK behave similarly, Hessian clearly shows
a concave behaviour and the maximum point occurs at a small value where both
ψ(β) and ∂p(β)/∂āK are non zero. Hessian is computed for md-tanh-s network
on CIFAR-10, ResNet-18 and the mean jsv of J = ∂aK/∂x0 for this image is
45.14. Therefore the input-output Jacobian β J has the mean jsv around 2.5.

Algorithm 1 pgd++ with njs with L∞, T iterations, radius ε, step size η,
network fw∗ , input x0, label k, one-hot y ∈ {0, 1}d, gradient threshold ρ.
Require: T, ε, η, ρ,x0,y, k
Ensure: ‖xT+1 − x0‖∞ ≤ ε
1: β1 = (M d)/

(∑M
i=1

∑d
j=1 µj(Ji)

)
. β1 computed using Network Jacobian.

2: x1 = P ε∞(x0 +Uniform(−1, 1)) . Random Initialization with Projection
3: for t← 1, . . . T do
4: β2 = 1.0
5: p′ = softmax(β1(fw∗(xt)))
6: if 1− p′k ≤ ρ then . ρ = 0.01
7: β2 = − log(ρ/(d− 1)(1− ρ))/γ . γ computed using Proposition 1
8: ` = −yT log(softmax(β2β1(fw∗(xt))))
9: xt+1 = P ε∞(xt + η sign(∇x`(x

t))) . Update Step with Projection

Notice that, this approach is simple and it adds negligible overhead to the
standard pgd attacks. However, it has a hyperparameter ρ which is hand designed.
To mitigate this, next we discuss a hyperparameter-free approach to obtain β.

5.2 Hessian Norm Scaling (hns)

We now discuss another approach to obtain informative gradients. Our idea is
to maximize the Frobenius norm of the Hessian of the loss with respect to the
input, where the intuition is that if the Hessian norm is large, then the gradient
∂`/∂x0 is sensitive to an infinitesimal change in x0. This means, the infinitesimal
perturbation in the input is propagated in the forward pass to the last layer and
propagated back to the input layer without attenuation (i.e., the returned signal is
not zero), assuming there are no randomized or non-differentiable components in
the network. This clearly indicates that the network has good signal propagation

Improved Gradient based Adversarial Attacks for Quantized Networks 11

Algorithm 2 pgd++ with hns with L∞, T iterations, radius ε, step size η,
network fw∗ , input x0, label k, one-hot y ∈ {0, 1}d, gradient threshold ρ.
Require: T, ε, η,x0,y, k
Ensure: ‖xT+1 − x0‖∞ ≤ ε
1: x1 = P ε∞(x0 +Uniform(−1, 1)) . Random Initialization with Projection
2: β∗ = argmaxβ>0

∥∥∂2`(β)/∂(x0)2
∥∥
F

. Grid Search
3: for t← 1, . . . T do
4: ` = −yT log(softmax(β∗(fw∗(xt))))
5: xt+1 = P ε∞(xt + η sign(∇x`(x

t))) . Update Step with Projection

as well as the error signals are not all zero. This objective can now be written as:

β∗ = argmax
β>0

∥∥∥∥∂2`(β)

∂(x0)2

∥∥∥∥
F

= argmax
β>0

∥∥∥∥∥β
[
ψ(β)

∂J

∂x0
+ β

(
∂p(β)

∂āK
J

)T
J

]∥∥∥∥∥
F

.

(11)

The derivation is provided in Appendix A.2. Note, since J does not depend on
β, J and ∂J/∂x0 are computed only once, β is optimized using grid search as it
involves only a single scalar. In fact, it is easy to see from the above equation
that, when the Hessian is maximized, β cannot be zero. Similarly, ψ(β) cannot be
zero because if it is zero, then the prediction p(β) is one-hot encoding (Eq. (9)),
consequently ∂p(β)/∂āK = 0 and this cannot be a maximum for the Hessian
norm. Hence, this ensures that ‖ψ(β∗)‖2 > ρ for some ρ > 0 and β∗ is bounded
according to Proposition 1. Therefore, the maximum is obtained for a finite value
of β. Even though, it is not clear how exactly this approach would affect the
singular values of the input-output Jacobian (β J), we know that they are finite
and not zero. To better understand how the error signal, Jacobian of softmax and
Hessian norm are influenced by β, we provide an example illustration in Fig. 3.

Nevertheless, there are some recent works [21,24] show that adversarial training
makes the network (in fact the loss `) linear and they hypothesize that linear
networks would be robust to adversarial attacks. On the contrary, our idea
of maximizing the Hessian, i.e., increasing the nonlinearity of `, could make
the network more prone to adversarial attacks and we intend to exploit that.
Our improved pgd attack using this Hessian based scaling is summarized in
Algorithm 2.

6 Related Work

Neural Network Quantization. Recent works on nn quantization has been
focused on different aspects such as quantizing parameters [1,2,4,7], gradients [29],
loss aware quantization [14], and quantization for specialized hardware [8], to
name a few. Note that, parameter quantization methods trivially extend to
quantization of activations and/or gradients [15,29]. Parameter quantization is
usually formulated as a constraint optimization and minimized via a modified
version of projected stochastic gradient descent. In this, the works [1,2,4,7] vary

12 K. Gupta and T. Ajanthan

based on the constraint set, the projection used and the procedure used for
backpropagation through the projection operator. In this work, we only study
the robustness evaluation of recent quantization methods on the extreme case of
binarization and we believe it extends to multibit quantization as well.

Adversarial Attacks and Robustness of Binary Networks. Adversarial
examples are first observed in [27] and subsequently efficient gradient based
attacks such as fgsm [12] and pgd [19] are introduced. There exist recent
stronger attacks such as [6,9], however, compared to pgd, they are much slower
to be used for adversarial training in practice. Some recent works focus on
adversarial robustness of bnns [5,10,17,18], however, a strong consensus on the
robustness properties of quantized networks is lacking. In particular, while [10]
claims parameter quantized networks are robust to gradient based attacks based
on empirical evidence, [18] shows activation quantized networks are vulnerable to
such attacks and proposes a defense strategy assuming the parameters are floating-
point. Differently, [17] proposes a combinatorial attack hinting that activation
quantized networks would have obfuscated gradients issue. In short, although
it has been hinted that there might be some sort of gradient masking in bnns
(especially in activation quantized networks), a thorough understanding is lacking
on whether bnns are robust, if not what is the reason for inferior performance
of gradient based attacks on binary networks. We answer this question in this
paper and introduce improved pgd attacks.

7 Experiments

In this section, we evaluate floating point networks (ref), parameter quantized
networks (bc, pq, pmf, md-tanh-s) [7,4,1,2] and weight and activation quantized
network (bnn-waq) [16]. Note that, while all the parameters are binarized in bc,
pmf and md-tanh-s, pq and bnn-waq are binarized according to the original
setup where biases, batchnorm and last layer parameters are kept floating-point.
We evaluate our two pgd++ variants corresponding to Hessian Norm Scaling
(hns) and Network Jacobian Scaling (njs) on CIFAR-10 and CIFAR-100 datasets
with VGG-16 and ResNet-18 architectures. Briefly, our results indicate that both of
our proposed attack variants yield attack success rate much higher than original
pgd attacks not only on L∞ bounded attack but also on L2 bounded attacks
on both floating point networks and binarized networks. Our proposed pgd++
variants also reduce pgd adversarial accuracy of adversarially trained floating
point and adversarially trained binarized neural networks. Among our variants,
even though they perform similarly in our experiments, Hessian based scaling
(hns) outperforms Jacobian based scaling (njs) in most of the cases and this
difference is significant for one step fgsm attacks. This indicates that nonlinearity
of the network indeed has some relationship to its adversarial robustness.

We use the state of the art models trained for binary quantization from
respective methods. For our hns variant, we sweep β from a range such that
the hessian norm is maximized for each image, as explained in Appendix B. For
our njs variant, we set the value of ρ = 0.01. In fact, our attacks are not very

Improved Gradient based Adversarial Attacks for Quantized Networks 13

Methods
CIFAR10 CIFAR100

ResNet-18 VGG-16 ResNet-18 VGG-16

pgd pgd++ pgd pgd++ pgd pgd++ pgd pgd++
hns njs hns njs hns njs hns njs

ref 0.00 0.00 0.00 0.04 0.00 0.00 0.14 0.00 0.14 1.53 0.25 0.95
bc [7] 4.40 0.00 0.00 9.28 0.36 0.37 3.60 0.00 1.33 1.84 0.04 1.57
pq [4] 22.49 0.01 0.01 23.41 0.00 0.00 4.80 0.23 3.09 1.41 0.14 1.39
pmf [1] 33.02 0.00 0.00 54.11 0.00 0.00 6.22 0.05 2.11 8.34 0.21 3.06
md-tanh-s [2] 26.98 0.00 0.00 47.32 0.02 0.00 8.23 0.00 2.45 17.44 0.16 0.88
bnn-waq4[15] 8.57 0.04 0.03 78.01 0.02 0.01 - - - - - -

Table 2: Adversarial accuracy on the test set for binary neural networks using
different methods for quantization using original L∞ bounded pgd attack and
pgd++ attack with njs and hns.

Methods

CIFAR10 CIFAR100
ResNet-18 VGG-16 ResNet-18 VGG-16

fgsm fgsm++ fgsm fgsm++ fgsm fgsm++ fgsm fgsm++
hns njs hns njs hns njs hns njs

ref 7.62 5.35 5.55 11.01 9.66 10.04 9.06 2.70 9.23 16.28 9.19 17.24
bc [7] 11.15 3.61 3.77 27.38 5.04 4.96 22.67 2.33 9.86 11.38 4.00 11.02
pq [4] 52.97 4.24 4.50 27.46 5.43 5.38 23.00 3.83 13.30 9.38 2.68 9.40
pmf [1] 48.65 3.19 3.22 54.87 5.15 5.19 23.11 3.78 13.58 25.09 5.10 15.73
md-tanh-s [2] 40.49 2.51 3.46 57.55 3.43 4.00 25.22 1.80 14.08 19.82 1.76 7.98
bnn-waq [15] 40.84 19.09 19.46 79.92 15.39 15.96 - - - - - -

Table 3: Adversarial accuracy on the test set for binary neural networks using
different methods for quantization using original fgsm attack and fgsm++ attack
with njs and hns.

sensitive to ρ and we provide the ablation study in the Appendix. Our algorithm
is implemented in PyTorch [22] and the experiments are performed on NVIDIA
Tesla-P100 GPUs. Our code will be released upon publication.

L∞ bounded Attacks. Attack details are: CIFAR-10: perturbation bound
of ε = 8 pixels, step size η = 2 and number of iterations T = 20, CIFAR-100:
perturbation bound of ε = 4 pixels, step size η = 1 and number of iterations
T = 10. We tested the original pgd as well as both versions (njs and hns)
of improved pgd++, on CIFAR-10/100 datasets with ResNet-18 and VGG-16
networks and the adversarial accuracies are reported in Table 2. Our pgd++
variants consistently outperform original pgd on all binarized networks. Even
being a gradient based attack, our proposed pgd++ variants can in fact reach
adversarial accuracy close to 0 on CIFAR-10 dataset, demystifying the fake sense
of robustness binarized networks tend to possess due to poor signal propagation.

Similarly, fgsm attack (η = 8.0 on CIFAR-10 and η = 4.0 on CIFAR-100)
accuracies are reported in Table 3. Even in this one step attack, our modified
versions perform well. We would like to point out such an improvement in above
4 For bnn-waq [15], trained models could not be obtained on CIFAR-100. Also, bnn-
waq was not evaluated on CIFAR-100 dataset in their paper.

14 K. Gupta and T. Ajanthan

Methods
CIFAR10 CIFAR100

ResNet-18 VGG-16 ResNet-18 VGG-16

pgd pgd++ pgd pgd++ pgd pgd++ pgd pgd++
hns njs hns njs hns njs hns njs

ref 45.18 0.05 0.09 2.23 1.10 0.78 5.38 0.15 0.17 4.87 1.38 1.50
bc [7] 61.11 0.24 0.18 46.24 1.58 1.63 28.98 0.38 5.27 6.78 0.58 4.66
pq [4] 69.57 0.50 0.35 27.33 1.72 2.25 29.57 1.24 9.21 5.05 0.75 5.10
pmf [1] 74.72 0.04 0.02 55.82 2.85 2.71 45.97 0.71 6.60 30.91 1.61 8.62
md-tanh-s [2] 74.59 0.06 0.05 61.90 3.18 0.35 42.67 0.26 6.79 19.26 0.63 3.17
bnn-waq [15] 67.84 2.59 2.33 85.62 0.62 0.49 - - - - - -

Table 4: Adversarial accuracy on the test set for binary neural networks using
different methods for quantization using original L2 bounded pgd attack and
pgd++ attack with njs and hns.

Methods fgsm fgsm++
hns njs

ref 62.38 61.40 61.43
bc [7] 53.91 52.27 52.90
gd-tanh [2] 56.13 54.81 55.54
md-tanh-s [2] 55.10 53.82 54.74

Methods pgd pgd++
hns njs

ref 48.73 48.54 47.17
bc [7] 41.29 39.34 39.35
gd-tanh [2] 42.77 42.30 42.14
md-tanh-s [2] 41.34 40.67 40.76

(a) (b)

Table 5: Adversarial accuracy on the test set for adversarially trained floating
and binary neural networks using different methods for quantization using (a)
Original L∞ bounded fgsm attack and fgsm++ attack with njs and hns and
(b) Original L∞ bounded pgd attack and pgd++ attack with njs and hns.

two attacks is considerably interesting, knowing the fact that fgsm, pgd with L∞
attacks only use the sign of the gradients so improved performance indicate, our
temperature scaling indeed makes some zero elements in the gradient nonzero.

L2 bounded Attacks. For L2 bounded attacks the number of iterations are
the same as L∞ case, but η = 15 and ε = 120 for CIFAR-10 and η = 15, and
ε = 60 for CIFAR-100 and the results are reported in Table 4. Similar to the L∞
case, our variants consistently outperform standard L2 bounded pgd attack on
all the binarized networks. Particularly interesting, our pgd++ variants not only
performs well on floating point networks but also even improve the adversarial
attack success rate on them. This effectively expands the applicability of our
pgd++ variants and encourages to consider signal propagation of any trained
network to improve gradient based adversarial attacks.

Adversarially trained models. To further demonstrate the efficacy, we first
adversarially trained the parameter quantized networks and floating point net-
works in a similar manner as in [19], using L∞ bounded pgd with T = 7 iterations,
η = 2 and ε = 8. We then evaluate the adversarial accuracies using L∞ bounded
pgd and pgd++ attack with T = 20, η = 2, ε = 8 on CIFAR-10 dataset using
ResNet-18 and the results are reported in Table 5. The adversarial accuracy results
on adversarially trained binary and floating point networks further strengthens
the usefulness of our proposed pgd++ variants.

Improved Gradient based Adversarial Attacks for Quantized Networks 15

8 Discussion
In this work, we have shown that both parameters quantized and parameters
along with activation quantized networks tend to show a fake sense of robustness
on gradient based attacks due to poor signal propagation. To tackle this issue,
we introduced our two variants of pgd++ adversarial attack, namely njs and
hns. Our proposed pgd++ variants not only possess near-complete success rate
on binarized networks but also outperform standard L∞ and L2 bounded pgd
attacks on floating-point networks. Since pgd has become a standard attack for
adversarial training, our stronger pgd++ variants could provide a future scope
of extending proposed pgd++ for improved robustness. In future, we also intend
to focus more on improving the robustness of the binarized neural networks.

9 Acknowledgements

This work was supported by the Australian Research Council Centre of Excellence
for Robotic Vision (project number CE140100016). We acknowledge the Data61,
CSIRO for their support and thank Puneet Dokania for useful discussions.

Appendices

Here, we first provide the proof of the proposition and the derivation of Hessian.
Later we give additional experiments and the details of our experimental setting.

A Derivations

A.1 Deriving β given a lowerbound on 1 − pk(β)

Proposition 2. Let aK ∈ IRd with d > 1 and aK1 ≥ aK2 ≥ . . . ≥ aKd and
aK1 − aKd = γ. For a given 0 < ρ < (d− 1)/d, there exists a β > 0 such that
1− softmax(βaK1) > ρ, then β < − log(ρ/(d− 1)(1− ρ))/γ.

Proof. Assuming aK1 − aKd = γ, we derive a condition on β such that
1− softmax(βaK1) > ρ.

1− softmax(βaK1) > ρ , (12)

softmax(βaK1) < 1− ρ ,

exp(βaK1)/

d∑
λ=1

exp(βaKλ) < 1− ρ ,

1/
(
1 +

d∑
λ=2

exp(β(aKλ − aK1))
)
< 1− ρ .

16 K. Gupta and T. Ajanthan

Since, aK1 − aKλ ≤ γ for all λ > 1,

1/
(
1 +

d∑
λ=2

exp(β(aKλ − aK1))
)
≤ 1/

(
1 +

d∑
λ=2

exp(−βγ)
)
. (13)

Therefore, to ensure 1/
(
1 +

∑d
λ=2 exp(β(aKλ − aK1))

)
< 1− ρ, we consider,

1/
(
1 +

d∑
λ=2

exp(−βγ)
)
< 1− ρ , aK1 − aKλ ≤ γ for all λ > 1 , (14)

1/
(
1 + (d− 1) exp(−βγ)

)
< 1− ρ ,

exp(−βγ) > ρ/(d− 1)(1− ρ) ,

−βγ > log(ρ/(d− 1)(1− ρ)) , exp is monotone ,
β < − log(ρ/(d− 1)(1− ρ))/γ .

Therefore for any β < − log(ρ/(d− 1)(1− ρ))/γ, the above inequality
1− softmax(βaK1) > ρ is satisfied.

A.2 Derivation of Hessian

We now derive the Hessian of the input mentioned in Eq. (11) of the paper. The
input gradients can be written as:

∂`(β)

∂x0
=
∂`(β)

∂p(β)

∂p(β)

∂āK(β)
βJ = ψ(β)βJ . (15)

Now by product rule of differentiation, input hessian can be written as:

∂2`(β)

∂(x0)2
= β

[
ψ(β)

∂J

∂x0
+

(
∂ψ(β)

∂x0

)T
J

]
, (16)

= β

[
ψ(β)

∂J

∂x0
+

(
∂p(β)

∂x0

)T
J

]
, ψ(β) = −(y − p(β))T ,

= β

[
ψ(β)

∂J

∂x0
+ β

(
∂p(β)

∂āK
J

)T
J

]
.

B Additional Experiments

In this section we first provide experimental details of our hns variant of pgd++
and then some ablation studies.

Improved Gradient based Adversarial Attacks for Quantized Networks 17

Methods pgd++ (njs)
ρ = 1e− 05 ρ = 1e− 04 ρ = 1e− 03 ρ = 1e− 02 ρ = 1e− 01 ρ = 2e− 01

ref 0.00 0.00 0.00 0.00 0.00 0.00
bc [7] 0.00 0.00 0.00 0.00 0.00 0.01
pq [4] 0.01 0.01 0.01 0.01 0.01 0.01
pmf [1] 0.00 0.00 0.00 0.00 0.00 0.00
md-tanh-s [2] 0.00 0.00 0.00 0.00 0.00 0.00
bnn-waq [15] 0.15 0.08 0.04 0.03 0.04 0.02

Table 6: Adversarial accuracy on the test set for binary neural networks with
different methods for quantization using L∞ bounded pgd++ attack using njs
with varying ρ. For different values of ρ, our approach is quite stable.

B.1 Experimental Details for hns

For pgd++ with hns variant, we maximize Frobenius norm of Hessian with
respect to the input as specified in Eq. (11) of the paper by grid search for the
optimum β. We would like to point out that since only ψ(β) and p(β) terms are
dependent on β, we do not need to do forward and backward pass of the network
multiple times during the grid search. This significantly reduces the computational
overhead during the grid search. We can simply use the same network outputs aK
and network jacobian J (as computed without using β) for the grid search, while
computing the other terms at each iteration of grid search. We apply grid search
to find the optimum beta between 100 equally spaced intervals of β starting
from β1 to β2. Here, β1 and β2 are computed based on Proposition 1 in the
paper where ρ = 1e− 72 and ρ = 1− (1/d)− (1e− 2) respectively, where d is
number of classes and γ = aK1 − aK2 so that 1− softmax(βaK1) < ρ. Also, note
that we estimate the optimum β for each test sample only at the start of the first
iteration of an iterative attack and then use the same β for the next iterations.

B.2 Stability of pgd++ with njs with variations in ρ

We perform ablation studies with varying ρ for pgd++ with njs in Table 6 for
CIFAR-10 dataset using ResNet-18 architecture. It clearly illustrates that our njs
variant is quite robust to the choice of ρ as we are able to achieve near perfect
success rate with pgd++ with different values of ρ. As long as value of ρ is large
enough to avoid one-hot encoding on softmax outputs (in turn avoid ‖ψ(β)‖ to
be zero) of correctly classified sample, our approach with njs variant is quite
stable.

B.3 Signal Propagation and Input Gradient Analysis using njs and
hns

We first provide an example illustration in Fig. 4 to better understand how the
input gradient norm i.e., ‖∂`(β)/∂x0‖2, and norm of sign of input gradient, i.e.,
‖sign(∂`(β)/∂x0)‖2 is influenced by β. It clearly shows that both the plots have
a concave behavior where an optimal β can maximize the input gradient. Also,
it can be quite evidently seen in Fig. 4 (b) that within an optimal range of β,

18 K. Gupta and T. Ajanthan

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

0.2

0.4

0.6

0.8

1.0

||
/

x0 ||

(a)

0 1 2 3 4 5

0

10

20

30

40

50

||s
ig

n(
/

x0)
||

(b)
Fig. 4: Plots to show how variation in β affects (a) norm of input gradient, i.e.,
‖∂`(β)/∂x0‖2, (b) norm of sign of input gradient, i.e., ‖sign(∂`(β)/∂x0)‖2 on
a random correctly classified image. Notice that, both input gradient and signed
input gradient norm behave similarly, showing a concave behaviour. This plot is
computed for md-tanh-s network on CIFAR-10, ResNet-18. (b) clearly illustrates
how optimum β can avoid vanishing gradient issue since ‖sign(∂`(β)/∂x0)‖2 will
only be zero if input gradient matrix has only zeros.

gradient vanishing issue can be avoided. If β → 0 or β →∞, it changes all the
values in input gradient matrix to zero and inturn ‖sign(∂`(β)/∂x0)‖2 = 0.

We also provide the signal propagation properties as well as analysis on input
gradient norm before and after using the β estimated based on njs and hns
in Table 7. For binarized networks as well floating point networks tested on
CIFAR-10 dataset using ResNet-18 architecture, our hns and njs variants result
in larger values for ‖ψ‖2, ‖∂`(β)/∂x0‖2 and ‖sign(∂`(β)/∂x0)‖2. This reflects
the efficacy of our method in overcoming the gradient vanishing issue. It can be
also noted that our variants also improves the signal propagation of the networks
by bringing the mean jsv values closer to 1.

B.4 Ablation for ρ vs. pgd++ accuracy

In this subsection, we provide the analysis on the effect of bounding the gradients
of the network output of ground truth class k, i.e. ∂`(β)/∂āKk . Here, we compute β
using Proposition 1 for all correctly classified images such that 1−softmax(βaKk) >
ρ with different values of ρ and report the pgd++ adversarial accuracy in Table 8.
It can be observed that there is an optimum value of ρ at which pgd++ success
rate is maximized, especially on the adversarially trained models. This can
also be seen in connection with the non-linearity of the network where at an
optimum value of β, even for robust (locally linear) [21,24] networks such as
adversarially trained models, non-linearity can be maximized and better success
rate for gradient based attacks can be achieved. Our hns variant essentially tries
to achieve the exact same objective while trying to estimate β for each example.

Improved Gradient based Adversarial Attacks for Quantized Networks 19

Methods ref Adv. Train bc [7] pq [4] pmf [1] md-tanh-s [2] bnn-waq [15]

jsv (Mean)
Orig. 8.09e+00 5.15e−01 1.61e+01 2.34e+01 4.46e+01 3.53e+01 1.11e+00
njs 9.51e−01 5.70e−01 9.65e−01 1.00e+00 1.01e+00 9.95e−01 2.24e−01
hns 2.38e+00 6.11e+00 1.25e+00 3.09e+00 4.43e+00 1.19e+01 4.65e+00

jsv (Std.)
Orig. 6.27e+00 4.10e−01 1.88e+01 2.35e+01 1.11e+02 3.53e+01 1.97e+00
njs 7.58e−01 6.34e−01 8.62e−01 1.02e+00 2.38e+00 9.71e−01 6.73e−01
hns 4.41e+00 5.34e+02 2.06e+01 7.70e+00 1.46e+01 2.13e+02 1.24e+02

‖ψ‖2
Orig. 9.08e−03 2.33e−01 1.18e−02 6.75e−03 8.50e−03 6.20e−03 9.46e−03
njs 4.66e−01 2.35e−01 5.08e−01 5.35e−01 6.65e−01 5.37e−01 1.20e−01
hns 1.48e−01 2.57e−01 2.18e−01 2.28e−01 2.17e−01 2.07e−01 2.44e−01

‖∂`/∂x0‖2
Orig. 2.42e−01 8.52e−02 3.04e−01 1.57e−01 3.08e−01 2.27e−01 6.33e−02
njs 9.52e−01 1.10e−01 7.90e−01 6.26e−01 8.15e−01 8.91e−01 1.24e−01
hns 7.49e−01 8.18e−01 1.25e−01 7.05e−01 1.19e−01 3.70e−01 2.70e−01

‖sign
(

∂`
∂x0

)
‖2

Orig. 5.55e+01 5.54e+01 5.48e+01 5.48e+01 4.99e+01 4.39e+01 5.55e+01
njs 5.55e+01 5.54e+01 5.55e+01 5.55e+01 5.55e+01 5.55e+01 5.55e+01
hns 5.55e+01 5.54e+01 5.55e+01 5.55e+01 5.55e+01 5.55e+01 5.55e+01

Table 7: Mean and standard deviation of Jacobian Singular Values (jsv), mean
‖ψ‖2, mean ‖∂`/∂x0‖2 and mean ‖sign(∂`/∂x0)‖2 for different methods on
CIFAR-10 with ResNet-18 computed with 500 correctly classified samples. Note
here for njs and hns, jsv is computed for scaled jacobian i.e. βJ. Also note that,
values of ‖ψ‖2, ‖∂`(β)/∂x0‖2 and ‖sign(∂`(β)/∂x0)‖2 are larger for our njs and
hns variant (for most of the networks) as compared with network with no β,
which clearly indicates better gradients for performing gradient based attacks.

Methods pgd++
ρ = 1e− 15 ρ = 1e− 09 ρ = 1e− 05 ρ = 1e− 01 ρ = 2e− 01 ρ = 5e− 01

ref 0.0 0.0 0.0 0.0 0.0 0.0
md-tanh-s 9.61 0.04 0.0 0.0 0.0 0.0
gd-tanh 24.26 3.81 0.0 0.0 0.0 0.0

ref∗ 48.18 47.66 48.00 53.09 54.58 57.57
md-tanh-s∗ 40.66 40.01 40.04 45.09 46.57 49.72
gd-tanh∗ 42.55 41.97 42.06 47.72 49.21 52.45

Table 8: Adversarial accuracy on the test set for adversarially trained networks
and binary neural networks with different methods for quantization using L∞
bounded pgd++ attack with varying ρ as lower bound on the gradient of network
output for ground truth class k. Here * denotes the adversarially trained models
obtained where adversarial samples are generated using L∞ bounded pgd attack
with with T = 7 iterations, η = 2 and ε = 8. Note, here pgd++ attack refers to
pgd attack where ∂`(β)/∂āKk is bounded by ρ for each sample, where k is ground
truth class.

20 K. Gupta and T. Ajanthan

References

1. Ajanthan, T., Dokania, P.K., Hartley, R., Torr, P.H.: Proximal mean-field for neural
network quantization. ICCV (2019)

2. Ajanthan, T., Gupta, K., Torr, P.H., Hartley, R., Dokania, P.K.: Mirror descent
view for neural network quantization. arXiv preprint arXiv:1910.08237 (2019)

3. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. arXiv preprint
arXiv:1802.00420 (2018)

4. Bai, Y., Wang, Y.X., Liberty, E.: Proxquant: Quantized neural networks via proximal
operators. ICLR (2019)

5. Bernhard, R., Moellic, P.A., Dutertre, J.M.: Impact of low-bitwidth quantization
on the adversarial robustness for embedded neural networks. In: 2019 International
Conference on Cyberworlds (CW). pp. 308–315. IEEE (2019)

6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
IEEE Symposium on Security and Privacy (2017)

7. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural
networks with binary weights during propagations. NeurIPS (2015)

8. Esser, S.K., Appuswamy, R., Merolla, P.A., Arthur, J.V., Modha, D.S.: Backpropa-
gation for energy-efficient neuromorphic computing. NeurIPS (2015)

9. Finlay, C., Pooladian, A.A., Oberman, A.: The logbarrier adversarial attack: mak-
ing effective use of decision boundary information. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 4862–4870 (2019)

10. Galloway, A., Taylor, G.W., Moussa, M.: Attacking binarized neural networks. In:
International Conference on Learning Representations (2018)

11. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the thirteenth international conference on
artificial intelligence and statistics. pp. 249–256 (2010)

12. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

13. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. In: Proceedings of the 34th International Conference on Machine Learning-
Volume 70. pp. 1321–1330. JMLR. org (2017)

14. Hou, L., Yao, Q., Kwok, J.T.: Loss-aware binarization of deep networks. ICLR
(2017)

15. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. NeurIPS (2016)

16. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural
networks: Training neural networks with low precision weights and activations.
JMLR (2017)

17. Khalil, E.B., Gupta, A., Dilkina, B.: Combinatorial attacks on binarized neural
networks. In: International Conference on Learning Representations (2019)

18. Lin, J., Gan, C., Han, S.: Defensive quantization: When efficiency meets robustness.
In: International Conference on Learning Representations (2019)

19. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

20. McDonnell, M.D.: Training wide residual networks for deployment using a single
bit for each weight. ICLR (2018)

21. Moosavi-Dezfooli, S.M., Fawzi, A., Uesato, J., Frossard, P.: Robustness via curvature
regularization, and vice versa. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 9078–9086 (2019)

Improved Gradient based Adversarial Attacks for Quantized Networks 21

22. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch (2017)

23. Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In: Advances in neural
information processing systems. pp. 4785–4795 (2017)

24. Qin, C., Martens, J., Gowal, S., Krishnan, D., Dvijotham, K., Fawzi, A., De, S.,
Stanforth, R., Kohli, P.: Adversarial robustness through local linearization. In:
Advances in Neural Information Processing Systems. pp. 13824–13833 (2019)

25. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. ECCV (2016)

26. Saxe, A.M., McClelland, J.L., Ganguli, S.: Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120 (2013)

27. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. In: International Conference
on Learning Representations (2014)

28. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: En-
semble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204
(2017)

29. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. CoRR (2016)

	Improved Gradient based Adversarial Attacks for Quantized Networks

