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Scaling models has led to significant advancements in deep learning, but training these models in
decentralized settings remains challenging due to communication bottlenecks. While existing compression
techniques are effective in data-parallel, they do not extend to model parallelism. Unlike data-parallel
training, where weight gradients are exchanged, model-parallel requires compressing activations and
activation gradients as they propagate through layers, accumulating compression errors. We propose a
novel compression algorithm that compresses both forward and backward passes, enabling up to 99%

compression with no convergence degradation with negligible memory/compute overhead. By leveraging
a recursive structure in transformer networks, we predefine a low-dimensional subspace to confine the
activations and gradients, allowing full reconstruction in subsequent layers. Our method achieves up to
100× improvement in communication efficiency and enables training billion-parameter-scale models over
low-end GPUs connected via consumer-grade internet speeds as low as 80Mbps, matching the convergence
of centralized datacenter systems with 100Gbps connections with model parallel.
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1. Introduction

Scaling models and datasets has been pivotal in driving deep learning advancements, with model
sizes expanding from millions of parameters (Krizhevsky et al., 2012) to billions (Dubey et al., 2024;
Kolesnikov et al., 2020) and even trillions (Ren et al., 2023). These larger models exceed the memory
capacity of a single device, requiring distributed training approaches to manage computation across
multiple devices.

A common solution is distributed data parallelism (DDP) (Li et al., 2020) or its more advanced
variant, fully sharded data parallelism (FSDP) (Zhao et al., 2023), which distributes data across nodes
while replicating the model on each device. This enables larger batch sizes and higher throughput,
but constrains the model size to the memory of a single device. Model parallelism (MP) addresses
this limitation by distributing parameters across devices (Huang et al., 2019; Krizhevsky et al., 2012),
enabling the training of models that surpass single-node memory constraints. MP includes tensor
parallelism, which splits individual layers, and pipeline parallelism, which distributes layers across
devices; the latter is the focus of this work. Modern large-scale training combines DDP and MP
to achieve scalability. Despite these strategies, all approaches require the transfer of large amounts
of data between devices (Narayanan et al., 2021), limiting training to high-performance computing
clusters with fast interconnects. These infrastructures are costly and accessible only to resource-rich
organizations (Power and Progress; Vergara Larrea et al., 2019), creating disparities that restrict
broader research and risk centralizing innovation.
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Decentralized training provides an alternative by leveraging consumer-grade devices, enabling
individuals with small devices to participate in large-scale model training, reducing reliance on
major corporations. This approach democratizes access to large-scale model training by leveraging
underutilized GPUs in personal computers and volunteer networks (Ryabinin et al., 2023; Yuan et al.,
2022). However, decentralized training faces significant challenges due to limited bandwidth and
high latency in heterogeneous networks (Yuan et al., 2022), necessitating communication-efficient
compression algorithms to minimize data transfer while preserving training performance.

Most existing communication-efficient techniques focus on DDP (Douillard et al., 2023; Lian et al.,
2017; Peng et al., 2024; Ryabinin et al., 2021), where weight gradients are computed independently
on each node (for each model replica) and then compressed before peer-to-peer communication.
To this end, techniques such as sparsification (Lin et al., 2017; Wang et al., 2017; Wangni et al.,
2018), quantization (Alistarh et al., 2017; Bernstein et al., 2018; Wang et al., 2023), and low-rank
approximations (Zhao et al., 2024) exploit the redundancy in weight gradients to reduce communica-
tion. However, in MP, information must be passed between layers, requiring the communication of
activations and activation gradients. Unlike weight gradients, activations lack inherent redundancy
and approximation errors accumulate across layers, leading to degraded convergence (Bian et al., 2024;
Rudakov et al., 2023). These challenges prevent the straightforward application of DDP compression
techniques to MP, and hence to date, MP decentralized training remains infeasible, resulting in
massive slowdowns over centralized training.

To bridge this gap, we propose a novel compression algorithm tailored for MP. We show that
as training progresses, weight matrices exhibit rank collapse, converging to low-rank subspaces.
Thus, by explicitly constraining specific weight matrices to such low-rank subspaces and leveraging
a recursive structure inherent in transformer networks, we demonstrate that transformer layer
activations—despite their high rank—can be decomposed into a dynamic low-rank component and a
static high-rank component. This decomposition enables efficient compression of information passed
between layers during both the forward and backward passes, ensuring lossless reconstruction in
subsequent layers.

We validate the practical effectiveness of our approach through extensive evaluations on billion-
parameter-scale models. Our compression method enables the distribution of large-scale models across
consumer-grade GPUs with internet-grade connections (80Mbps) while matching the convergence
performance of centralized setups with 100 Gbps interconnects. We achieve up to 100× improvement
in communication efficiency without any degradation in convergence. Further, we successfully
train an 8B-parameter LLaMA model (Dubey et al., 2024) with layers split across four different
geographical regions, connected via the internet, and achieve convergence on par with baselines
utilizing datacenter-grade connections. By addressing critical limitations in decentralized training,
our method intend to remove significant barriers to scaling large models in resource-constrained
environments, democratizing access to large-scale deep learning.

2. Related works

Decentralized training involves a group of autonomous devices (i.e., no central orchestrator)
collaborating to train a large-scale model by leveraging MP/DDP methods. These devices, often
geographically distributed and heterogeneous, are connected via networks with varying delays and
bandwidth constraints. Key advancements in this area encompass both theoretical insights (Koloskova
et al., 2019; 2020; Lian et al., 2017) as well as practical approaches (Diskin et al., 2021; Ryabinin
and Gusev, 2020). Despite the progress, current efforts predominantly focus on DDP (Diskin et al.,
2021; Koloskova et al., 2019; 2020; Lian et al., 2017), which hinders scaling models beyond the
memory capacity of local nodes. SWARM parallelism (Ryabinin et al., 2023) and Tasklets (Yuan
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et al., 2022), treat the problem as a scheduling challenge, with the former addressing the stochasticity
inherent in decentralized cluster settings. However, all methods to date still face significant scalability
challenges due to communication bottlenecks inherent in MP. Our method overcomes this limitation
by introducing an effective communication compression technique for MP (specifically pipeline
parallel), mitigating a major barrier in scaling decentralized training.

Communication compression accelerates distributed training over bandwidth-limited networks
by reducing data transfers. Key strategies include sparsification, which transmits only significant
parameter updates (Lin et al., 2017; Wang et al., 2017; Wangni et al., 2018); quantization, which
lowers communication by reducing parameter precision (Alistarh et al., 2017; Bernstein et al., 2018;
Dettmers et al., 2021; Karimireddy et al., 2019; Tang et al., 2021; Wang et al., 2023; Wu et al.,
2018); and low-rank projection, which compresses gradients via projection onto lower-dimensional
subspaces (Vogels et al., 2019; Zhao et al., 2024). While successful in data-parallel settings (DDP),
these techniques face difficulties in model-parallel (MP) setups, including error accumulation across
layers and unstructured activations (Bian et al., 2024; Rudakov et al., 2023), causing degraded
convergence. Recent work by (Wang et al., 2021) proposed low-rank MP communication, but required
significant architectural changes, preventing training from scratch. In contrast, our approach involves
minimal initialization changes without architectural modifications, enabling efficient MP training
from scratch with improved scalability.

3. Transformer block

We provide a brief exposition of the transformer block and proceed to describe the proposed
compression method. Let the input to the 𝑙th layer be X𝑙 ∈ R𝑏×𝑛×𝑑, where 𝑏, 𝑛, and 𝑑 are the
batch size, sequence length, and embedding dimension, respectively. Given the weight matrices of
each attention head ℎ as W𝑙

𝑄,ℎ,W
𝑙
𝐾,ℎ,W

𝑙
𝑉,ℎ ∈ R𝑑×𝑑𝐻 , with 𝑑𝐻 = 𝑑/𝐻 where 𝐻 is the number of

attention heads, the following computations are performed for each attention head: X𝑙
𝑄,ℎ = X𝑙W𝑙

𝑄,ℎ,
X𝑙

𝐾,ℎ = X𝑙W𝑙
𝐾,ℎ, X

𝑙
𝑉,ℎ = X𝑙W𝑙

𝑉,ℎ. The rest of the computations are as follows:

X𝑙
head, h = 𝑓softmax

(︃
X𝑙

𝑄,ℎX
⊤
𝐾,ℎ√

𝑑𝐻

)︃
X𝑙

𝑉,ℎ (1)

X𝑙
concat = [X𝑙

head, 1, . . . ,X
𝑙
head, H]

X𝑙
attn = X𝑙

concatW
𝑙
𝑝1 +X𝑙

X𝑙
hidden = 𝑓relu(X

𝑙
attnW

𝑙
1)

X𝑙+1 = X𝑙
hiddenW

𝑙
𝑝2 +X𝑙

attn

(2)

where W𝑙
𝑝1 ∈ R𝑑×𝑑,W𝑙

1 ∈ R𝑑×𝑑ff , and W𝑙
𝑝2 ∈ R𝑑ff×𝑑. We omit the layer norms for brevity, which

does not affect any of our derivations. 𝑑ff is usually an integer multiple of 𝑑. We will refer to W𝑙
𝑝2

and W𝑙
𝑝1 as projection matrices from here onward.

4. Subspace networks

4.1. Rank collapse of projection matrices

We leverage the observation that weight gradients of projection matrices inherently reside in a low-
dimensional subspace, as widely reported across various architectures (Cosson et al., 2023; Gur-Ari
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Figure 1: Rank collapse in projection matrices. Consistent with Statements 7.2 and 7.3 (and
Theorems C.2, D.1 - Appendix), we empirically observe a natural rank collapse in the projection
matrices (of non-compressed models). Shown is an 8-layer, 2B-parameter model, with the stable
(effective) ranks of the projection matrices for the 4th (middle) and 7th (penultimate) layers plotted
over training steps.

et al., 2018; Li et al., 2024b; Vogels et al., 2019; Wang et al., 2018; Yang et al., 2023; Zhang et al., 2024;
Zhao et al., 2021) (see Appendix C.1 for empirical validation). Together with AdamW’s decoupled
weight decay—which suppresses negligible gradient components—this drives projection matrices
to converge toward a subspace spanned by dominant gradients, resulting in effectively low-rank
structures. Formal treatment is provided in Statements 7.2, 7.3, and their associated theorems.

To validate this phenomenon, we train an 8-layer, 2B-parameter model on WikiText (Merity
et al., 2016) and track the stable rank of its projection layers during training (hidden dimension of
4096 and a context length of 2048. Stable rank is computed as

∑︀
𝑖 𝜎

2
𝑖 /max𝑖(𝜎

2
𝑖 ), where 𝜎𝑖 denotes

the 𝑖th singular value. As shown in Fig. 1, the stable rank of projection matrices sharply declines,
consistent with our theory. This structure, combined with the recursive nature of transformers, allows
us to design a nearly-lossless low-rank compression scheme. While prior works observe similar rank
collapse in self-attention matrices (Abbe et al., 2024; Dong et al., 2021; Sanyal et al.), we focus
specifically on projection matrices as the basis for compression. We also validate this using official
checkpoints of fully-trained large scale models (Appendix G).

4.2. Investigating the activation structure

We utilize the natural rank collapse we discussed thus far for compression. Observing the transformer
block in Eq. 1 and 2, we identify that a recursive structure emerges for layer outputs due to the skip
connections:

X𝑙+1 = X𝑙
hiddenW

𝑙
𝑝2 +X𝑙

concatW
𝑙
𝑝1 +X𝑙. (3)

which can be expanded as:

X𝑙+1 =
𝑙∑︁

𝑖=1

(X𝑖
hiddenW

𝑖
𝑝2 +X𝑖

concatW
𝑖
𝑝1) +X0 (4)

Here,
X0 = PE + TE, (5)

where PE,TE ∈ R𝑏×𝑛×𝑑 represent the positional and token embeddings, respectively. Let [𝑝1, 𝑝2, . . . , 𝑝𝑛]
be the sequence of positional indices, and [𝑡1, 𝑡2, . . . , 𝑡𝑛] be the corresponding token indices. We
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denote embedding matrices P ∈ R𝑛×𝑑 for positional embeddings and T ∈ R𝑣×𝑑 for token embeddings,
where 𝑣 is the vocabulary length. Thus the tokens and positional indices are embedded via a lookup:
PE = P[𝑝1:𝑛, :] and TE = T[𝑡1:𝑛, :]. Observing Eq. 4, we note that X0 = PE + TE contributes as a
common additive term to all layer outputs. Therefore, we consider the rank of the residual activations
when PE and TE are subtracted:

X̂𝑙+1 = X𝑙+1 − PE − TE =
𝑙∑︁

𝑖=1

(X𝑖
hiddenW

𝑖
𝑝2 +X𝑖

concatW
𝑖
𝑝1) (6)

Recall that Row(AB) ⊆ Row(B), for any two matrices A,B where Row(·) denotes the row space.
Thus, it is clear that if the rows of the projection weights (W𝑝2 ,W𝑝1) up to layer 𝑙 span a common
low-dimensional subspace, then the rows of X̂𝑙+1 is also restricted to the same subspace, since vector
spaces are closed under addition.

4.3. Compressing the forward pass

Recall that our analysis so far indicates that the projection matrices naturally confine themselves
to a smaller subspace as training progresses. Consequently, the residual activations X̂𝑙+1 are also
restricted to a smaller subspace, if the union of those subspaces is low-dimensional. Based on this
insight, it is intriguing to explore the feasibility of explicitly forcing the rows of projection matrices
to vary within a common low-dimensional subspace 𝒮, throughout training, to facilitate activation
compression. As discussed in Section 4.2, this forces the rows of activation outputs (X̂𝑙+1) to span
the same subspace 𝒮. Surprisingly, we find that even with extreme low-dimensional 𝒮, the networks
can achieve almost the same convergence rates as in the unaltered ones. This allows us to significantly
reduce the communication between blocks, which we show next.

Let Row(W𝑙
𝑝2),Row(W𝑙

𝑝1) ⊆ 𝒮. Further, Let U𝑘 ∈ R𝑑×𝑘 be a matrix with orthonormal columns
and Col(U𝑘) = 𝒮. Then, the following holds:

X̂𝑙+1 = X̂𝑙+1U𝑘U
⊤
𝑘 (7)

In other words, �̂� 𝑙+1 remains unaltered by the projection, since it is already in 𝒮. The above
formulation introduces a property that can be leveraged for compression during the forward pass.
Specifically, the dimensionality of X̂𝑙+1U𝑘 ∈ R𝑏×𝑛×𝑘, is substantially smaller than that of X̂𝑙+1 ∈
R𝑏×𝑛×𝑑 since 𝑘 ≪ 𝑑. If each node in a distributed system is initialized with a shared copy of U𝑘,
this matrix does not need to be transmitted repeatedly. Instead, X̂𝑙+1U𝑘 can be transmitted to the
next node, and the original X𝑙+1 is reconstructed as:

X𝑙+1 = X̂𝑙+1U⊤
𝑘 + PE + TE.

This approach ensures exact recovery of X𝑙+1 without approximation.

4.3.1. Decomposition of high-rank components

For practical utilization of above approach, we still need to subtract PE and TE from X𝑙+1 to compute
X̂𝑙+1 (and add them back in the next layer). While PE is deterministic and can be computed locally
within each node, TE varies depending on the batch, making it impossible to do so.

One potential solution is restricting the embedding table T also to 𝒮. However, we observed that
this degrades network performance due to severely limiting the representation capacity of the token
embeddings. Instead, we propose modeling TE as a composition of a fixed high-rank component and
a trainable low-rank component:

TE = Tfixed[𝑡1:𝑛, :] +T𝒮 [𝑡1:𝑛, :],
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where we obtain a trainable low rank embedding table T𝒮 = TfixedU𝑘U
𝑇
𝑘 . At the beginning of

training, Tfixed is transmitted to all nodes and stored. During the forward pass, we compress the
activations as:

X𝑙+1
compressed =

(︀
X̂𝑙+1 +T𝒮 [𝑡1:𝑛, :]

)︀
U𝑘

=(X𝑙+1 − PE −Tfixed[𝑡1:𝑛, :])U𝑘, (8)

Note that in Eq. 8 both PE and Tfixed[𝑡1:𝑛, :]—which are generally high-rank—are subtracted from
𝑋 𝑙+1 so the remaining (X𝑙+1 − PE −Tfixed[𝑡1:𝑛, :]) is already in 𝒮 and is low-rank. Further, since
Row(T𝒮 [𝑡1:𝑛, :]) ⊆ Col(U𝑘), it is implicitly captured in the compressed activations X𝑙+1

compressed.
Reconstruction at the next node is then performed as:

X𝑙+1
recovered = X𝑙+1

compressedU
⊤
𝑘 + PE +Tfixed[𝑡1:𝑛, :] = X𝑙+1

ensuring a lossless recovery of X𝑙+1 while not compromising its high ranked-ness.

A natural question arises: would explicitly restricting the projection matrices to a fixed 𝒮, instead
of allowing this property to emerge organically, adversely affect convergence? Note that this is a form
of constraint optimization and there are well known convergence guarantees. However, in Sec. 7, we
provide a convergence proof (to at least a first-order stationary point) for completeness for the above
partial projection case. Furthermore, we conduct extensive experiments across a variety of settings
to empirically validate the convergence. Further, since the fixed embeddings are ephemeral, they
have a negligible effect on the peak GPU memory (Appendix 8.8)

4.4. Compression in backpropagation

In the previous section, we showed that constraining the rows of projection matrices to a shared
low-dimensional subspace 𝒮, coupled with decomposing the embedding table into low-rank and high-
rank components, facilitates compression of activations in the forward pass. This same constraint
naturally facilitates lossless gradient compression in the backward pass. Specifically, let ∇𝐿(X

𝑙+1)
denote the gradient of X𝑙+1, with respect to the loss, that needs to be propagated to the previous
layer. This gradient can be compressed as:(︀

∇𝐿(X
𝑙+1)

)︀
compressed = ∇𝐿(X

𝑙+1)U𝑘 ∈ R𝑏×𝑛×𝑘, (9)

and subsequently fully recovered in the previous layer 𝑙 as:(︀
∇𝐿(X

𝑙+1)
)︀
recovered =

(︀
∇𝐿(X

𝑙+1)
)︀
compressedU

⊤
𝑘 = ∇𝐿(X

𝑙+1). (10)

Remarkably, this formulation ensures that the gradient flow to the computational graph prior to X𝑙+1

remains lossless, with no approximation error. Intuitively, after backpropagation through the param-
eter matrix W𝑝2 , the gradient has the form ∇𝐿(X

𝑙+1)W⊤
𝑝2 . Because Row(W𝑝2) ⊆ Col(U𝑘) = 𝒮, the

projection ∇𝐿(X
𝑙+1)U𝑘U

⊤
𝑘 W

⊤
𝑝2 does not alter the resulting gradient flow. Full derivation is provided

in Appendix A.

4.5. Subspace updates using Grassmann manifold

We observe that restricting the column spaces of projection layers to a fixed subspace, even at high-
ratios, is able to maintain surprisingly adequate convergence. To further improve the convergence, we
allow the subspaces to slowly drift. To align the subspace with the gradient directions, we minimize the
norm of the gradient components that lie outside the subspace, as measured at the last Transformer
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layer. Let ∇𝐿(X
final
𝑡 ) ∈ R𝑏×𝑛×𝑑 denote the activation gradients at the last compressed transformer

layer. The leftover gradient, which lies outside the subspace, is X̂final
𝑡 = ∇𝐿(X

final
𝑡 )(I − U𝑘U

⊤
𝑘 ),

where I −U𝑘U
⊤
𝑘 is the projection operator onto 𝒮⊥. We accumulate X̂final

𝑡 over 𝐾 iterations to
obtain the metric ℒGrassmann = 1

𝐾

∑︀𝑘+𝐾
𝑡=𝑘 ‖X̂final

𝑡 ‖2𝐹 , where ‖ · ‖𝐹 is the Frobenius norm. We aim to
minimize ℒGrassmann over all possible U𝑘.

A straightforward way to minimize ℒGrassmann is by performing SVD on it and updating the
subspace using the left singular vectors. However, abrupt changes to the subspace can disrupt
convergence. Thus, we perform smooth updates by taking steps on the Grassmann manifold. The
Grassmann manifold 𝒢(𝑘, 𝑛) is the set of all 𝑘-dimensional subspaces of R𝑛. A point on 𝒢(𝑘, 𝑛) is
represented by an orthonormal matrix U𝑘 ∈ R𝑛×𝑘, where the columns of U𝑘 form a basis for the
subspace. Thus, defining 𝒮 as a point on the Grassmann manifold enables taking smooth steps on
the manifold. To minimize ℒGrassmann, we employ gradient descent on 𝒢(𝑘, 𝑛). First, the Euclidean
gradient of ℒGrassmann with respect to U𝑘, denoted ∇ℒGrassmann(U𝑘), is projected onto the tangent
space to obtain the Riemannian gradient:

(∇ℒU𝑘)tangent = ∇ℒGrassmann(U𝑘)−U𝑘U
⊤
𝑘 ∇ℒGrassmann(U𝑘). (11)

Then, we perform a gradient descent step Unew
𝑘 = U𝑘 − 𝜂 (∇ℒU𝑘)tangent where 𝜂 is the step size.

Then, to map Unew
𝑘 back to the manifold, we apply a retraction by orthonormalizing the columns of

Unew
𝑘 using QR decomposition Unew

𝑘 ,R = QR(Unew
𝑘 ), where QR(·) denotes the QR decomposition.

In practice, we perform this subspace update on U𝑘 very infrequently (per every 500 iterations), and
transmit to all the layers.

5. Modifying AdamW for subspace networks

Our approach can be framed as a constrained optimization problem in which the projection matrices
must remain within the subspace 𝒮. To ensure they stay in this feasible set throughout training, it
requires projecting them onto 𝒮 at each training iteration. We propose a modified version of the
AdamW optimizer that preserves the row space of W𝑙

𝑝2 in 𝒮. That means, once initialized within 𝒮,
the modified optimizer ensures that the W𝑙

𝑝2 no longer require iterative projection steps, guaranteeing
they remain in 𝒮 without incurring any approximation error. Note that however, we still need to
project W𝑙

𝑝1 onto 𝒮 due to the nonlinearity of activations as discussed in Appendix. A.

AdamW defines the momentum term as M𝑡 = 𝛽1M𝑡−1 + (1 − 𝛽1)∇𝐿(W𝑝2(𝑡)) and the second
order momentum V𝑡 = 𝛽2V𝑡−1 + (1− 𝛽2)(∇𝐿(W𝑝2(𝑡)))

2. Then, the weight update is defined as

W𝑝2(𝑡+ 1) = W𝑝2(𝑡)− 𝜂𝛼𝑡M̂𝑡 − 𝜆W𝑝2(𝑡), (12)

where 𝛼𝑡 =
1√
V̂𝑡+𝜖

, V̂𝑡 =
V𝑡

𝛽2+𝜖 , M̂𝑡 =
M𝑡
𝛽1+𝜖 , and 𝜂 is the fixed learning rate. 𝜆 is a hyperparameter

controlling the adaptive weight decay. Note that in the second term on the right hand side in Eq. 12,
𝛼𝑡 is not a constant scaling factor across coordinates. Thus, it changes the direction of the rows of
M̂𝑡. This causes the W𝑝2(𝑡+ 1) to drift from 𝒮. Therefore, we make 𝛼𝑡 constant row-wise so that
the resulting update 𝜂𝛼𝑡M̂𝑡 − 𝜆W𝑝(𝑡) is closed within 𝒮. Specifically, we alter V̂𝑡 as below. We first
take

𝜇row(V̂𝑡) =
1

𝑚

𝑚∑︁
𝑖=1

V̂𝑡(:, 𝑖) ∈ R𝑛×1. (13)
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where 𝜇row(·) is the row-wise mean. Then,

Ṽ𝑡 = 1𝑚 · 𝜇row(V̂𝑡), (14)

where 1𝑚 ∈ R1×𝑚 is a column vector of ones, and Ṽ ∈ R𝑛×𝑚 has the same dimensions as V̂𝑡.
Then we substitute V̂𝑡 with Ṽ in Eq. 12. We only apply the above modification to W𝑝2 and keep
the usual updates as it is for other weights.

6. Computational Overhead of subspace updates

Our compression introduces two additional computational components: weight projection and
Grassmann updates. Here, we provide an analysis of the overhead associated with these operations,
demonstrating their minimal impact on memory usage and computational efficiency.

Overhead of Weight Projection. We first assess the computational cost incurred by the weight
projection step. For a practical evaluation, we consider a model with approximately 2 billion
parameters (8 layers, 4k model dimension, 16 attention heads), pipelined across 8 A10G GPUs. In our
experiments, a single forward pass takes approximately 4.61s, while the weight projection step adds
only about 0.05s of computation time. Thus, the relative overhead introduced by weight projection
is approximately 1%, indicating a negligible computational burden.

Overhead of Grassmann Updates. Updating the subspace via Grassmann manifold optimization
initially appears complex; however, by deriving closed-form Euclidean gradients, the practical
implementation becomes computationally inexpensive. Specifically, given a Grassmann loss defined
as:

ℒGrassmann =
1

𝐾

𝑘+𝐾∑︁
𝑡=𝑘

⃦⃦⃦
∇𝐿

(︀
Xfinal

𝑡

)︀ (︁
I−U𝑘U

⊤
𝑘

)︁⃦⃦⃦2
𝐹
,

and using the Frobenius norm expansion, we obtain:

ℒGrassmann = const − 1

𝐾

∑︁
𝑡

Tr
(︁
G𝑡U𝑘U

⊤
𝑘 G

⊤
𝑡

)︁
,

where G𝑡 = ∇𝐿(X
final
𝑡 ). By defining the symmetric accumulation matrix S = 1

𝐾

∑︀
𝑡G

⊤
𝑡 G𝑡, the

closed-form Euclidean gradient simplifies elegantly to:

∇ℒGrassmann(U𝑘) = −2SU𝑘.

Practically, implementing this gradient involves straightforward matrix operations in PyTorch:

• Accumulation: Compute and accumulate G⊤
𝑡 G𝑡 once per iteration via standard matrix

multiplication.
• Gradient Computation: Multiply S by U𝑘 once per a fixed interval (e.g., every 500

iterations).
• Riemannian Projection: Project back onto the Grassmann manifold via a basic linear

algebra operation, again executed at low frequency.

These matrix operations are inexpensive and infrequent, resulting in minimal computational
overhead. Consequently, our method’s overall cost of maintaining and updating the subspace is
negligible compared to the cost of the forward and backward passes of transformer models, affirming
the efficiency of our approach.
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7. Theoretical insights

This section provides several theoretical insights for the proposed method. We structure our analysis
into four key statements (and put the corresponding formal theorems in the Appendix). The first
statement indicates that if there is a lossy compression between the layers, as the model depth
increases, the approximation error of compression can grow exponentially. The second and third
statements demonstrate that, even in an uncompressed network, if the weight gradients are confined
to a particular subspace, the weight matrices also naturally converge to a low-dimensional subspace
with AdamW. The fourth observation establishes that explicitly enforcing a subset of weights onto a
low-dimensional subspace does not harm convergence.

Statement 7.1

If the compression of activations and activation gradients between layers in a model-parallel
setting introduces approximation errors, these errors can accumulate exponentially with
increasing depth, provided the weight and activation norms are sufficiently large. Refer to
Theorem B.1 for a formal proof.

The above result suggests that extending compression techniques from DDP (which are lossy) to
MP (which requires compressing information passed between adjacent layers) leads to the accumu-
lation of approximation errors. This occurs because the compression at one layer directly impacts
downstream layers, a phenomenon not present in DDP. Additionally, the lack of exploitable structure
in activations and activation gradients (Bian et al., 2024; Rudakov et al., 2023) typically results
in larger approximation errors compared to the gradients of weights. This limitation makes such
compression methods unsuitable for MP in large-scale models.

Statement 7.2

If the gradients of a particular weight matrix in a network are constrained to a fixed subspace,
then under AdamW, the weight updates asymptotically converge to that subspace over a
sufficiently large number of training steps. For a formal proof, see Theorem C.2.

This provides a critical insight: if the gradients of an unconstrained network predominantly
lie within a specific low-dimensional subspace 𝒮—a property we empirically validate (see Ap-
pendix A)—then the AdamW optimizer asymptotically restricts updates outside of 𝒮. While this
behavior is straightforward for vanilla stochastic gradient descent (SGD), it is non-trivial for AdamW
due to its adaptive learning rate mechanism.

Statement 7.3

If Statement 7.2 holds, then the corresponding weight matrices asymptotically converge to the
same subspace, irrespective of their initialization. For a formal proof, see Theorem D.1.

Intuitively, this result indicates that the decoupled weight decay mechanism in AdamW sys-
tematically suppresses components of the weight matrix that receive negligible gradient updates.
Consequently, the learned weights converge to a low-dimensional subspace defined by the gradient
updates.

9
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Statement 7.4

A network in which a subset of weights is constrained to a low-dimensional subspace converges
to a first-order stationary point with a convergence rate of 𝑂(1/𝑇 ). For a formal proof, see
Proposition E.1.

This result is a straightforward extension of the the convergence rate guarantees for constrained
optimization using proximal gradient descent on non-convex functions. It shows that even when a
subset of parameters is restricted to a lower-dimensional subspace, the standard convergence rate of
𝑂(1/𝑇 ) in terms of stationarity remains intact.

8. Experiments

8.1. Experimental Setup

We evaluate decoder-only models (based on Llama 3 (Dubey et al., 2024)) across four large-scale
datasets: WikiText (WT) (Merity et al., 2016), BookCorpus (BC) (Zhu et al., 2015), OpenWebText
(OWT) (Gokaslan et al., 2019), and C4 (Raffel et al., 2019). For WT, we use the standard splits; for
BC and OWT, we randomly select 10% of training data as validation; for C4, due to computational
constraints, we report training loss only. The base model has a context length of 1024, embedding
dimension 4096, 24 heads, and 8 layers (∼2B parameters); larger models (up to 8B parameters) are
noted explicitly in ablation sections. We use a base learning rate 𝜂 = 3𝑒-4 (with warmup and linear
decay), weight decay 0.01, and batch size 32, unless otherwise specified. We use GPipe (Huang et al.,
2019) via torch.distributed.pipelining, integrating our compression into all but the final
transformer layer.

Figure 2: Convergence in low-bandwidth settings. From left to right: OpenWebText, WikiText,
and BookCorpus. In each plot, the training curves are presented against wall-clock time for an
8-layer (2B) model. Decentralized models utilize 80Mbps connections while the centralized model has
datacenter-grade 100Gbps links. Our compressed model achieves on-par convergence to the centralized
model, even under a 80Mbps bandwidth budget. In contrast, the non-compressed decentralized model
with 80Mbps links suffers from significantly slower convergence due to the communication bottleneck.

We initialize U𝑘 with isotropic Gaussian noise and set 𝑘 = 40, achieving 100× compression.
Bandwidth simulations sample from 𝒩 (ℬ, 0.2ℬ) per pass, defining ‘centralized’ as 100Gbps or 16Gbps
setups, with all others as ‘decentralized’. Experiments (except the 8B Llama run on L4 GPUs with
internet-based decentralized connections) use A10g GPUs (24GB VRAM) with one layer per GPU.
Our method’s effectiveness increases with faster accelerators, as slower GPUs allow
more computation-communication overlap.

Square-Cube Law. Square-cube law (Ryabinin et al., 2023) states that in distributed training,
computation scales cubically with model size per node, while communication grows only quadratically.

10



Protocol Models: Scaling Decentralized Training with Communication-Efficient Model Parallelism

Figure 3: Performance against depth. Two key observations: (1) Our compression matches
(even slightly exceeds) with centralized baseline as the # layers increases. Fig. 5, further validates
this. (2) For the 16-layer model, we fit two layers per GPU (using A100s), increasing computation
per block. As shown, the performance gap between centralized and decentralized models slightly
decreases, as the ratio between computation and bandwidth bottlenecks is reduced—consistent with
the square-cube law.

Figure 4: Throughput Gain. As bandwidth becomes increasingly limited, the compressed models
achieve a significantly higher throughput gain in both inference (left) and training (right). Results
are shown for 8-layer (2B) models.

This partially offsets communication bottlenecks with computational overhead. Thus, 𝑐-times slower
communication does not lead to a 𝑐-times slower convergence. Hence, by improving communication
efficiency by 100×, we achieve convergence speeds comparable to 100Gbps setups, even with 80Mbps
links.

8.2. Convergence in low-bandwidth settings

Our method enables training models over extremely low-bandwidth connections. We trained networks
on both 80 Mbps and datacenter-grade 100 Gbps connections. Fig. 2 illustrates the train curves
of an 8-layer (2B) model against wall-clock time. As expected, training over 80 Mbps links in the
decentralized setting significantly degrades convergence. In contrast, with our compression, the
decentralized model achieves on par convergence to the network trained over 100 Gbps connections.
To demonstrate the generalization, the perplexity scores of each model over validation sets is shown in
Table. 1. As evident, the decentralized model with our compression even surpasses the performance
of the centralized model for the same training time. To further validate test-time performance, we
train models to convergence using the compute-optimal 1:20 model-to-token ratio from the Chinchilla
scaling law (Hoffmann et al.), reaching compute-optimality at 12B training tokens with superior
performance (Appendix 8.4).
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Figure 5: Training convergence and through-
put on an 8B LLaMA model. All runs use 64
L4 GPUs distributed over 8 instances. Centralized
instances reside within one region (min bandwidth
16Gbps), while decentralized instances span 4
regions (min bandwidth 60Mbps), highlighting
pipeline parallel bottlenecks due to reduced inter-
node bandwidth.

Figure 6: Comparison against lossy compres-
sion methods. Top-k, low-rank (SVD), and
quantization fail to converge at 100× compres-
sion, with quantization additionally limited by
numerical precision. Our method matches the
convergence rate of the uncompressed baseline.

Table 1: Perplexity scores. Models trained for 12 hours on OpenWebText (OWT), BookCorpus
(BC), and WikiText (WT). Bandwidth (B/W) and tokens per second (TPS) are reported. Our
method outperforms even the centralized model, achieving significantly higher TPS compared to the
non-compressed decentralized baseline.

Model B/W OWT↓ BC↓ WT↓ TPS↑

Decentralized 80Mbps 925.19 108.85 601.84 36.12
Decentralized Compressed (Ours) 80Mbps 46.75 17.63 23.01 592.41

Centralized 100Gbps 47.22 18.35 23.08 602.57

8.3. Throughput gain

Our compression also significantly accelerates inference. As inference requires less computation than
training, bandwidth becomes the dominant bottleneck; hence, our compression yields substantial
gains. Fig. 4 illustrates gains in both training and inference: at inference, we achieve almost a 100×
speedup at 80 Mbps. Although this advantage diminishes at higher bandwidths (e.g., 100 Gbps), we
still observe about a 3× improvement. This indicates that even centralized systems benefit
from reduced inference latency using our approach, which can translate into considerable
cost savings with the recent trend of inference time scaling of large language models (Bi
et al., 2024; Snell et al., 2024) A similar trend holds for training throughput as well.

8.4. Validation at compute-optimal

We conduct additional training experiments to demonstrate the effectiveness of our proposed com-
pression method at the compute-optimal point of model training. The compute-optimal point, as
defined by prior work such as Chinchilla, represents an ideal trade-off between model size and token
count, optimizing performance within a fixed computational budget. Typically, for architectures
like LLaMA, this optimal point corresponds to approximately a 1:20 model-to-token ratio. Conse-
quently, we trained a 640M-parameter model for around 12 billion tokens, aligning closely with the
compute-optimal recommendation.
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The training was executed using 8 FSDP workers, achieving approximately 22k tokens per second
throughput. The results, summarized in Table 2, demonstrate that our compression method not only
matches but marginally outperforms the non-compressed baseline in terms of validation perplexity.

Table 2: Validation perplexity (lower is better) at the compute-optimal point (12 billion tokens) for a
640M-parameter model. Both ours and centralized model are trained for a same number of iterations.
Training the decentralized uncompressed model to compute optimal is infeasible (estimated over 200
days) so we only report the TPS.

Model C4 BookCorpus TPS

Decentralized - - 871
Decentralized Compressed (Ours) 12.53 12.67 22k
Centralized 12.61 12.79 22.5k

These results confirm that our proposed compression method maintains or slightly improves
model performance at the crucial compute-optimal training regime.

8.5. Scaling across globally distributed GPUs

To further explore the scalability, we trained a LLaMA 8B parameter variant (Dubey et al., 2024)
with 2048 context length, using TorchTitan (Liang et al., 2024) on the C4 dataset across 64 L4 GPUs
distributed across 8 instances. We use a pipeline parallel setup with 32 stages running in 2 FSDP
dimensions, where the 32 transformer layers are distributed one layer per stage. We evaluated two
environment configurations: Centralized and Decentralized. In the Centralized setting all instances
were located in the same cloud region and the bandwidth spans between 16Gbps-27Gbps. For the
Decentralized case the 8 instances were distributed across 4 distinct regions (North America, Europe,
and Asia). Additionally, no two consecutive stages were placed in the same region for the decentralized
setup, hence, bandwidth spans from 60Mbps-350Mbps. As shown in Fig. 5, our compression method
in the decentralized configuration matches the wall-clock time (even slightly improving) and TPS
with the centralized setting. In contrast, the decentralized setting w/o compression was 13x slower.

8.6. Ablations

We conduct ablations on the C4 dataset to evaluate the robustness of our method. Fig. 3 compares
performance across model depths. If our compression were lossy, deeper models would accumulate
errors, degrading performance relative to the centralized baseline (Bian et al., 2024) (see also
Theorem B.1). However, our results show that even as depth increases from 8 (2B) to 16 (3.5B) layers,
convergence remains on par with centralized baselines. Further, our large-scale experiment (Fig. 5)
confirms that 32-layer models scale effectively, demonstrating decentralized training of large models
with MP for the first time. Fig. 3 also highlights that in the 16-layer model, assigning two layers per
GPU (A100, 40GB VRAM) increases per-GPU computation, reducing bandwidth bottlenecks and
narrowing the gap between decentralized and centralized models. This validates the square-cube law
(Ryabinin et al., 2023), showing how computation-to-communication balance impacts decentralized
training. However, note that decentralized training primarily targets low-end GPUs rather than
high-end hardware. Ablations over other design choices and the negligible memory overhead are
discussed in Appendix 8.8.
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8.7. Comparison against lossy compressions

As per Statement 7.1, standard compression methods used in DDP do not effectively extend to
MP. We train an 8-layer model on the WikiText, comparing our compression method with TopK,
quantization, and low-rank projection. As shown in Fig. 6, with an aggressive compression rate of
×100, such compression schemes fail to converge. In contrast, our method achieves convergence on
par with the non-compressed model. Note that for quantization, the best compression rate we can
achieve is 16× for 16bit precision.

8.8. Memory Overhead Analysis

As our method requires addition of fixed high-rank and dynamic low-rank embeddings, one potential
concern is the memory overhead, as sequence length 𝐿 grows. We empirically and theoretically
demonstrate that the absolute memory overhead introduced by our approach remains constant and
neglegible, while the relative overhead decreases with increasing sequence lengths.

We first empirically validate this and then give a theoretical explanation. To this end, we
performed experiments using a 2B-parameter Transformer model (8 layers, 4k model dimension, 16
attention heads) distributed across eight NVIDIA H100 GPUs under varying sequence lengths 𝐿.
Table 3 summarizes these results. Remarkably, the absolute overhead consistently remains around
400 MB, irrespective of sequence length. As 𝐿 grows from 8k to 24k, the relative memory overhead
correspondingly drops from 4.0% to 0.6%.

Table 3: Peak memory usage comparison between baseline and our subspace method as sequence
length (𝐿) scales.

𝐿 Baseline (GB) Ours (GB) Overhead Relative Overhead

8k 9.66 10.06 ∼400MB ∼4.0%
16k 36.51 36.91 ∼400MB ∼1.1%
24k 76.00 76.46 ∼400MB ∼0.6%

This consistent and negligible overhead can be explained through PyTorch’s memory management
behavior. Firstly, fixed embedding lookups in our method are ephemeral since they are non-trainable;
PyTorch does not store activation gradients for them. After they are added to the activations,
PyTorch’s caching allocator reuses the memory (instead of invoking cudaMalloc/cudaFree), allowing
temporary tensors to be released prior to attention. Thus, their memory footprint doesn’t persist
into later stages. Secondly, embedding lookups (𝒪(𝐵 × 𝐿×𝐷) memory usage) are inherently minor
relative to attention (𝒪(𝐵 × 𝐿2 ×𝐷)) and MLP layers (𝒪(𝐵 × 𝐿×𝐷2)), making their temporary
storage impact negligible in peak memory usage.

Further, the cached embedding tables themselves do not pose a meaningful threat to scalability. For
instance, even a large embedding table (10k-dimensional embedding and 50k vocabulary size) would
consume approximately 0.93 GB in 16-bit precision, requiring only impractically large embedding
dimensions (e.g., 100k+) to surpass 10 GB. State-of-the-art frontier models (e.g., DeepSeek (DeepSeek
AI Team, 2023), LLAMA-405B (Dubey et al., 2024)) remain far below such thresholds (7K and 16K,
respectively). Therefore, even with significantly increased embedding dimensions, memory overhead
remains dominated by MLP and attention computations, not embedding storage.

In conclusion, our method demonstrates robust and scalable memory behavior, effectively man-
aging memory overhead even at extremely large sequence lengths, validating its practicality for
decentralized training at scale.
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8.9. Memory Overhead with Increasing Workers

Another key consideration is how our compression scheme scales in terms of memory overhead with
an increasing number of workers. One might suspect that distributing long contexts across more
workers could lead to increased overhead per worker. We clarify that this concern is unfounded due
to the way embeddings and attention computations are handled in our setup.

To elaborate, in a context-parallel training setting, each worker handles a distinct segment of
the input sequence. Embedding lookups are performed locally on each worker before attention
computations. The resulting key-value (KV) tensors maintain the same shape and size as a standard,
non-compressed model, ensuring no extra storage requirement. Importantly, the ephemeral embedding
additions are discarded immediately after their local usage, well before the memory-intensive attention
and MLP layers, thus never contributing to peak memory usage.

To empirically validate our claims, we extend our experiments to include varying numbers of
workers using Ring Attention, a state-of-the-art context-parallel mechanism where each worker
exchanges KV tensors only with its immediate neighbors. As embedding operations occur locally
and KV tensors remain unchanged in size, our compression scheme integrates seamlessly.

Table 4 illustrates that, irrespective of the increase in sequence length (𝐿) and corresponding
increase in the number of workers, our per-worker memory overhead remains constant (around
400MB) and does not scale with either sequence length or worker count.

Table 4: Peak memory per worker with increasing sequence lengths and workers using our compression
scheme.

𝐿 Num. Workers Baseline (GB) Ours (GB) Overhead/Worker Relative Overhead

8k 1 9.66 10.06 ∼400MB ∼4.0%
16k 1 36.51 36.91 ∼400MB ∼1.1%
24k 1 76.00 76.46 ∼400MB ∼0.6%
50k 2 76.13 76.55 ∼400MB ∼0.55%
65k 3 78.19 79.62 ∼400MB ∼0.54%

Thus, our design effectively maintains low, constant memory overhead per worker, demonstrating
excellent scalability in decentralized contexts. The embedding memory per-worker overhead remains
negligible and constant, independent of the scaling of sequence length or the number of distributed
workers, validating our approach for large-scale decentralized training scenarios.

9. Broader impact

Our work presents what we believe to be the first compression method that allows practical, large-scale,
decentralized model-parallel training, enabling efficient scaling in low-bandwidth environments. This
marks a significant step toward democratizing access to large-scale AI by reducing dependence on
costly datacenter infrastructure and expanding opportunities for deep learning research. Our approach
has far-reaching implications for making AI more accessible, cost-effective, and environmentally
sustainable across academia, startups, and industry.
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10. Conclusion

We propose a novel compression technique that, for the first time, enables aggressive compression
in MP without harming convergence. By leveraging structured subspace constraints, we achieve
up to 100× communication efficiency while preserving convergence. Our compression enhances
both inference and training efficiency, reducing latency even in centralized settings. Extensive
experiments across varying model depths, bandwidth conditions, and large-scale deployments validate
the effectiveness and scalability of our approach. Notably, we demonstrate its real-world applicability
by successfully training an 8B-parameter LlaMa model on low-end GPUs distributed across multiple
global regions, connected solely via internet-grade (60 Mbps) links, while achieving convergence
comparable to a centralized setup. Our results establish that decentralized training of large-scale
models using model parallelism—previously hindered by severe communication bottlenecks—is now
practical.
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Appendix

A. Gradient compression in backpropagation

In this section, we show that compressing the gradients by projecting them on to 𝒮 does not induce
any approximation error.

Let ∇𝑙(X
𝑙+1) denote the gradient of the loss with respect to X𝑙+1, the output of layer 𝑙. The

gradient with respect to W𝑙
𝑝2 is then

∇𝑙(W
𝑙
𝑝2) = (X𝑙

hidden)
⊤∇𝑙(X

𝑙+1). (15)

The residual gradient from the skip connection is given by(︀
∇𝑙(X

𝑙
attn)

)︀residual
= ∇𝑙(X

𝑙+1). (16)

Hence, the update rule for W𝑙
𝑝2 becomes

W𝑙
𝑝2(𝑡+ 1) = W𝑙

𝑝2(𝑡) − 𝛾
(︀
X𝑙

hidden
)︀⊤∇𝑙(X

𝑙+1), (17)

where 𝛾 is the learning rate, and 𝑡 denotes the training timestep.

If we project ∇𝑙(X
𝑙+1) onto Col(U𝑘) = 𝒮, the update can be written as

W𝑙
𝑝2(𝑡+ 1) = W𝑙

𝑝2(𝑡) − 𝛾
(︀
X𝑙

hidden
)︀⊤(︀∇𝑙(X

𝑙+1)U𝑘 U
⊤
𝑘

)︀
. (18)

If 𝛾 acts as a row-wise constant, then it is straightforward to see that if Row
(︀
W𝑙

𝑝2(𝑡)
)︀
⊆ 𝒮, it follows

that Row
(︀
W𝑙

𝑝2(𝑡+ 1)
)︀
⊆ 𝒮 as well, because vector spaces are closed under linear operations.

Recall that we modify AdamW so that its adaptive learning rate is constant across each row
(see Section 5), ensuring this property holds. Therefore, by induction, if Row

(︀
W𝑙

𝑝2(0)
)︀
⊆ 𝒮

at initialization, then Row
(︀
W𝑙

𝑝2(𝑡)
)︀
⊆ 𝒮 for all subsequent updates when the incoming

gradients ∇𝑙(X
𝑙+1) are projected onto 𝒮, removing the need for iterative projection of W𝑙

𝑝2 on
to 𝒮.

Continuing backpropagation, the gradient with respect to X𝑙
hidden is

∇𝑙

(︀
X𝑙

hidden
)︀

= ∇𝑙

(︀
X𝑙+1

)︀
U𝑘 U

⊤
𝑘

(︀
W𝑙

𝑝2

)︀⊤
. (19)

Since Row
(︀
W𝑙

𝑝2

)︀
= 𝒮, we can write W𝑙

𝑝2 = W𝑙
𝑝2 U𝑘 U

⊤
𝑘 . Substituting this in, we get

∇𝑙

(︀
X𝑙

hidden
)︀
= ∇𝑙

(︀
X𝑙+1

)︀
U𝑘 U

⊤
𝑘

(︁
W𝑙

𝑝2 U𝑘 U
⊤
𝑘

)︁⊤
(20)

= ∇𝑙

(︀
X𝑙+1

)︀
U𝑘 U

⊤
𝑘 U𝑘 U

⊤
𝑘

(︀
W𝑙

𝑝2

)︀⊤
. (21)

Because U𝑘 is orthonormal, U⊤
𝑘 U𝑘 = I, so

∇𝑙

(︀
X𝑙

hidden
)︀
= ∇𝑙

(︀
X𝑙+1

)︀
U𝑘 U

⊤
𝑘

(︀
W𝑙

𝑝2

)︀⊤ (22)

= ∇𝑙

(︀
X𝑙+1

)︀ (︀
W𝑙

𝑝2 U𝑘 U
⊤
𝑘

)︀⊤ (23)

= ∇𝑙

(︀
X𝑙+1

)︀ (︀
W𝑙

𝑝2

)︀
. (24)
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This shows that projecting ∇𝑙

(︀
X𝑙+1

)︀
onto 𝒮 does not introduce any approximation error in

∇𝑙

(︀
X𝑙

hidden
)︀
.

Similarly, the remaining gradients are computed as follows. First,

∇𝑙

(︀
W𝑙

1

)︀
=
(︀
X𝑙

attn
)︀⊤ (︁∇𝑙

(︀
X𝑙

hidden
)︀
∘ ∇𝑓relu

)︁
, (25)

where (· ∘ ·) denotes elementwise (Hadamard) multiplication. The gradient for X𝑙
attn then becomes

∇𝑙

(︀
X𝑙

attn
)︀
=
(︁
∇𝑙

(︀
X𝑙

hidden
)︀
∘ ∇𝑓relu

)︁ (︀
W𝑙

1

)︀⊤
+
(︀
∇𝑙

(︀
X𝑙

attn
)︀)︀residual (26)

=
(︁
∇𝑙

(︀
X𝑙

hidden
)︀
∘ ∇𝑓relu

)︁ (︀
W𝑙

1

)︀⊤
+ ∇𝑙

(︀
X𝑙+1

)︀
. (27)

Next,

∇𝑙

(︀
W𝑙

𝑝1

)︀
=
(︀
X𝑙

concat
)︀⊤∇𝑙

(︀
X𝑙

attn
)︀

(28)

=
(︀
X𝑙

concat
)︀⊤ (︁(︀∇𝑙

(︀
X𝑙

hidden
)︀
∘ ∇𝑓relu

)︀ (︀
W𝑙

1

)︀⊤
+ ∇𝑙

(︀
X𝑙+1

)︀)︁
. (29)

Recall that Row
(︀
W𝑙

1

)︀
⊆ 𝒮. Therefore, if ∇𝑙

(︀
X𝑙+1

)︀
is projected onto 𝒮, it follows that Row

(︀
∇𝑙

(︀
W𝑙

𝑝1

)︀)︀
⊆

𝒮.

Finally, the update rule for W𝑙
𝑝1 is

W𝑙
𝑝1(𝑡+ 1) = W𝑙

𝑝1(𝑡) − 𝛾∇𝑙

(︀
W𝑙

𝑝1(𝑡)
)︀
, (30)

The gradient updates for X𝑙
concat involve

X𝑙
concat = X𝑙

attn
(︀
W𝑙

𝑝1

)︀⊤
. (31)

Because all gradients up to X𝑙
concat are preserved without loss, it follows via the chain rule that the

gradient flow to the blocks below X𝑙
concat is also lossless. Consequently, when compressing ∇𝐿(X

𝑙+1)
as (︀

∇𝐿(X
𝑙+1)

)︀
compressed = ∇𝐿

(︀
X𝑙+1

)︀
U𝑘 ∈ R𝑏×𝑛×𝑘, (32)

we can fully recover it in the previous layer:(︀
∇𝐿(X

𝑙+1)
)︀
recovered =

(︀
∇𝐿(X

𝑙+1)
)︀
compressed U

⊤
𝑘 (33)

= ∇𝐿

(︀
X𝑙+1

)︀
, (34)

thereby incurring no approximation error. Notably, since 𝑘 ≪ 𝑑, the compressed gradient
(︀
∇𝐿(X

𝑙+1)
)︀
compressed

is significantly lower-dimensional than ∇𝐿(X
𝑙+1), yielding substantial communication savings over

low-bandwidth links. This shows that by projecting gradients onto the same subspace used for
forward-pass compression, we can achieve lossless gradient compression during backpropagation. This
strategy further eliminates the need for frequent projections of W𝑙

𝑝2 maintaining its confinement to
the intended subspace.
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B. On the error accumulation of lossy compressions

A key difference between Distributed Data Parallel (DDP) training and Model Parallel (MP) training
lies in how gradients are exchanged and how compression is applied. In DDP, gradients of model
parameters are exchanged after each training step, enabling compression to be applied across the
entire gradient vector in one operation. In contrast, PP training requires the exchange of activations
and activation gradients between model partitions, leading to a layer-wise compression approach.
Unlike DDP, where compression affects the gradient as a whole, MP training introduces independent
compression errors at each layer. These errors accumulate progressively during training, impacting
gradient computations layer by layer and posing unique challenges in maintaining model accuracy
and stability.

Given these distinctions, it is critical to analyze MP training within the constraints of activation
gradient compression. The layer-by-layer compression in MP can lead to compounded errors that
significantly influence convergence behavior and overall model performance. The following result
focuses on investigating the relative error with respect to the weight gradients, occurred by a
compression error induced by a particular layer, on an arbitrary layer below it.

Theorem B.1. Consider a feedforward neural network with 𝐿 layers, where layer 𝑙 applies a
(differentiable) function

𝑥𝑙+1 = 𝑓𝑙(𝑥𝑙), 𝑙 = 1, . . . , 𝐿.

Let ∇𝐿(𝑥𝑙) denote the gradient of the final loss ℒ with respect to the layer’s input 𝑥𝑙. Suppose that:

1. The spectral norm of the Jacobian ∇𝑓𝑙(𝑥𝑙) is bounded above by 𝜈 > 0 for all 𝑙, i.e. ‖∇𝑓𝑙(𝑥𝑙)‖ ≤ 𝜈.
2. In backpropagation, an additional error 𝑒𝑙 is introduced at each layer 𝑙, with ‖𝑒𝑙‖ ≤ 𝑒 for some

constant 𝑒 > 0.

Define 𝜀𝑙 to be the cumulative error in the gradient at layer 𝑙. Then for 𝜈 > 1, 𝜀𝑙 can grow
exponentially with the total number of layers 𝐿; in particular,

‖𝜀𝑙‖ ≤ 𝑒
𝜈 𝐿−𝑙+1 − 1

𝜈 − 1
,

which is an exponential function of 𝐿 when 𝜈 > 1.

Proof. Recall the usual chain rule for the gradient of the final loss ℒ with respect to the input 𝑥𝑙 of
layer 𝑙:

∇𝐿(𝑥𝑙) = ∇𝐿

(︀
𝑥𝑙+1

)︀
∇𝑓𝑙

(︀
𝑥𝑙
)︀
.

Assume that at each layer we introduce an error in the gradient. Let

𝜀𝑙 =
(︀
true gradient at layer 𝑙

)︀
−
(︀
observed/propagated gradient at layer 𝑙

)︀
.

When moving from layer 𝑙 to layer 𝑙 − 1, the error recursion becomes:

𝜀𝑙−1 = 𝜀𝑙 ∇𝑓𝑙−1(𝑥𝑙−1) + 𝑒𝑙−1,

where 𝑒𝑙−1 is the newly introduced error at layer 𝑙 − 1. Unfolding this backwards gives a general
expansion:

𝜀𝑙 = 𝑒𝑙 +
𝐿∑︁

𝑗=𝑙+1

(︃
𝑗−1∏︁
𝑖=𝑙

∇𝑓𝑖(𝑥𝑖)

)︃
𝑒𝑗 .
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Taking the norm and using the assumption ‖∇𝑓𝑖(𝑥𝑖)‖ ≤ 𝜈 and ‖𝑒𝑗‖ ≤ 𝑒, we get:

‖𝜀𝑙‖ ≤
𝐿∑︁
𝑗=𝑙

(︁ 𝑗−1∏︁
𝑖=𝑙

‖∇𝑓𝑖(𝑥𝑖)‖
)︁
‖ 𝑒𝑗‖ ≤

𝐿∑︁
𝑗=𝑙

𝜈 𝑗−𝑙 𝑒 = 𝑒
𝐿−𝑙∑︁
𝑘=0

𝜈 𝑘,

where 𝑘 = 𝑗 − 𝑙. This geometric sum is

𝐿−𝑙∑︁
𝑘=0

𝜈𝑘 =
𝜈 𝐿−𝑙+1 − 1

𝜈 − 1
(valid for 𝜈 ̸= 1).

Hence,

‖𝜀𝑙‖ ≤ 𝑒
𝜈 𝐿−𝑙+1 − 1

𝜈 − 1
.

Since 𝜈 > 1, 𝜈 𝐿−𝑙+1 grows exponentially in 𝐿.

This is an important result. In particular, this result indicates that in cases where the spectral
norm of the weight matrices is large enough, the upper bound for the error for the lower layers can
grow exponentially as the depth of the network increases.

C. Vanishing of gradient updates outside a subspace

The result in this section highlights an important property of AdamW: the optimizer’s weight updates
progressively align with the subspace in which the gradients are constrained. In particular, if the
gradients of a weight matrix lie within a specific low-dimensional subspace 𝒮, the updates made
to the weight matrix are increasingly confined to 𝒮 over time. This behavior ensures that any
weight components orthogonal to 𝒮 are asymptotically suppressed, with the weight matrix ultimately
converging to 𝒮. To this end, we first prove Lemma C.1 and then Theorem C.2.

Lemma C.1 (Orthogonal Distortion Bound). Let 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ R𝑛 be a nonzero vector, and let
𝑣1, . . . , 𝑣𝑛 > 0 be positive scalars. Define

𝑚 = min
1≤𝑖≤𝑛

𝑣𝑖, 𝑀 = max
1≤𝑖≤𝑛

𝑣𝑖, Γ =
𝑀

𝑚
.

Form the vector
𝑏 =

(︀
𝑣1𝑎1, 𝑣2𝑎2, . . . , 𝑣𝑛𝑎𝑛

)︀
∈ R𝑛,

and let 𝑏⊥ be the component of 𝑏 orthogonal to 𝑎. Then the following two bounds hold:

‖𝑏⊥‖ ≤ 𝑀 −𝑚

2
‖𝑎‖ =

𝑚 (Γ− 1)

2
‖𝑎‖ and ‖𝑏⊥‖ ≤ Γ− 1

2
‖𝑏‖.

Proof. First, decompose 𝑏 into its projection onto 𝑎 plus its component orthogonal to 𝑎:

𝑏 = proj𝑎(𝑏) + 𝑏⊥, where 𝑏⊥ ⊥ 𝑎.

The norm of 𝑏⊥ can be expressed by the well-known identity

‖𝑏⊥‖2 = ‖𝑏‖2 − (𝑏 · 𝑎)2

‖𝑎‖2
.
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Since 𝑏 = (𝑣1𝑎1, . . . , 𝑣𝑛𝑎𝑛), we have

‖𝑏‖2 =

𝑛∑︁
𝑖=1

(𝑣𝑖 𝑎𝑖)
2 =

𝑛∑︁
𝑖=1

𝑣2𝑖 𝑎
2
𝑖 , and 𝑏 · 𝑎 =

𝑛∑︁
𝑖=1

𝑣𝑖 𝑎
2
𝑖 .

Thus

‖𝑏⊥‖2 =
𝑛∑︁

𝑖=1

𝑣2𝑖 𝑎
2
𝑖 −

(︁∑︀𝑛
𝑖=1 𝑣𝑖 𝑎

2
𝑖

)︁2∑︀𝑛
𝑖=1 𝑎

2
𝑖

.

Let 𝐴2 = ‖𝑎‖2 =
∑︀𝑛

𝑖=1 𝑎
2
𝑖 . Define weights

𝑠𝑖 =
𝑎2𝑖
𝐴2

so that 𝑠1 + 𝑠2 + · · ·+ 𝑠𝑛 = 1.

Then
𝑛∑︁

𝑖=1

𝑣2𝑖 𝑎
2
𝑖 = 𝐴2

𝑛∑︁
𝑖=1

𝑣2𝑖 𝑠𝑖,
𝑛∑︁

𝑖=1

𝑣𝑖 𝑎
2
𝑖 = 𝐴2

𝑛∑︁
𝑖=1

𝑣𝑖 𝑠𝑖.

Hence

‖𝑏⊥‖2 = 𝐴2

[︂ 𝑛∑︁
𝑖=1

𝑣2𝑖 𝑠𝑖 −
(︁ 𝑛∑︁
𝑖=1

𝑣𝑖 𝑠𝑖

)︁2]︂
.

Recognize that
𝑛∑︁

𝑖=1

𝑣2𝑖 𝑠𝑖 −
(︁ 𝑛∑︁
𝑖=1

𝑣𝑖 𝑠𝑖

)︁2
is precisely the variance Var𝑠(𝑉 ) of the values 𝑣𝑖 with respect to the probability distribution {𝑠𝑖}.
Since 𝑚 ≤ 𝑣𝑖 ≤ 𝑀 for all 𝑖, the variance of any random variable confined to [𝑚,𝑀 ] is at most
(𝑀−𝑚)2

4 . (This is realized, for instance, by taking a two-point distribution at 𝑚 and 𝑀 with equal
probabilities.) Therefore,

𝑛∑︁
𝑖=1

𝑣2𝑖 𝑠𝑖 −
(︁ 𝑛∑︁
𝑖=1

𝑣𝑖 𝑠𝑖

)︁2
≤ (𝑀 −𝑚)2

4
.

Consequently,

‖𝑏⊥‖2 ≤ 𝐴2 · (𝑀 −𝑚)2

4
=

(𝑀 −𝑚)2

4
‖𝑎‖2,

and hence
‖𝑏⊥‖ ≤ 𝑀 −𝑚

2
‖𝑎‖.

Substituting 𝑀 = 𝑚Γ (so 𝑀 −𝑚 = 𝑚(Γ− 1)) gives

‖𝑏⊥‖ ≤ 𝑚 (Γ− 1)

2
‖𝑎‖.

For the alternative form in terms of ‖𝑏‖, note that

‖𝑏‖ =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑣𝑖𝑎𝑖)2 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝑚2 𝑎2𝑖 = 𝑚 ‖𝑎‖.

Hence ‖𝑎‖ ≤ 1
𝑚 ‖𝑏‖, and

‖𝑏⊥‖ ≤ (𝑀 −𝑚)

2
‖𝑎‖ ≤ (𝑀 −𝑚)

2𝑚
‖𝑏‖ =

Γ− 1

2
‖𝑏‖.

This completes the proof.

25



Protocol Models: Scaling Decentralized Training with Communication-Efficient Model Parallelism

Theorem C.2. Let W(𝑡) ∈ R𝑚×𝑛 be the weight matrix of a neural network optimized using AdamW
at the 𝑡-th iteration. Suppose the rows of the gradient matrix ∇𝐿(W(𝑡)) lie within a subspace 𝒮 ⊆ R𝑛.
Let Δ𝑡 be defined as

W(𝑡+ 1) = W(𝑡)− 𝜂
(︀
Δ𝑡 + 𝛼W(𝑡)

)︀
(35)

where 𝜂 is the learning rate and,

Δ𝑡 = M𝑡 ⊘ (
√
V + 𝜖) (36)

where (· ⊘ ·) denotes the element wise Hadamard division and (𝛼, 𝜖) > 0 where : 𝛼 is the weight
decay and 𝜖 is a constant added to avoid division by 0. M𝑡 is the first momentum matrix defined as

M𝑡 = 𝛽1M𝑡−1 + (1− 𝛽1)∇𝐿(W(𝑡)) (37)

and V is the second moment,

V𝑡 = 𝛽2V𝑡−1 + (1− 𝛽2)∇𝐿(W(𝑡))2 (38)

Also, let Δ⊥
𝑡 be the matrix whose rows consist of the components orthogonal to 𝒮 from the rows of

Δ𝑡. Assume that 𝑔2𝑡 follows a sub-Gaussian distribution with a variance proxy (𝜎(𝑡))2 where 𝑔𝑡 is any
element of ∇𝐿(W(𝑡)). Then, with probability of at least 1− 𝛿, lim𝑡→∞

‖Δ⊥
𝑡 ‖

‖Δ𝑡‖ = 0 if lim𝑡→∞ 𝜎(𝑡) = 0.

Proof. Since the first-moment estimate M𝑡 in AdamW remains a (biased) linear combination of past
gradients ∇𝐿(W(𝑡)), its rows stays within 𝒮 (recall that vector spaces are closed under addition).
However, the rows of second-moment estimate V𝑡 are not constant-value vectors, and thus, the
element-wise division of M𝑡 by (

√
V+ 𝜖) distorts and pushes the rows of M𝑡 outsied 𝒮. Consequently,

the rows of Δ𝑡 are not confined to 𝒮. Our goal is to show that ‖Δ⊥
𝑡 ‖

‖Δ𝑡‖ asymptotically goes to zero
with the variance decay.

Step 1: Bounding the second-moment ratio. Since the distribution of 𝑔2𝑡 is sub-Gaussian,
then for each 𝑔𝑡, we have

𝑃 (𝑔2𝑡 ≥ 𝑥) ≤ 2 exp
(︁
− 𝑥2

2𝜎2

)︁
. (39)

Note that we drop the coordinate indexes (𝑖, 𝑗) from 𝑔𝑡 for brevity. Using a union bound over
𝑚× 𝑛 coordinates and at any given time 𝑡, we have

𝑃 (max
𝑖,𝑗

𝑔2𝑡 ≥ 𝑥) ≤ 2𝑚𝑛 exp
(︁
− 𝑥2

2(𝜎(𝑡))2

)︁
(40)

Then, with probability at least 1− 𝛿, we get
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max
𝑖,𝑗

(𝑔2𝑡 ) ≤ 𝜎(𝑡)

√︂
2 ln

(︁2𝑚𝑛

𝛿

)︁
(41)

Since any element 𝑣𝑡 of V𝑡 is a moving average of 𝑔2𝑡 , we can expand it as,

𝑣𝑡 = 𝛽
(𝑡−1)
2 (1− 𝛽2)𝑔

2
1 + 𝛽

(𝑡−2)
2 (1− 𝛽2)𝑔

2
2 + . . . 𝛽2

2(1− 𝛽2)𝑔
2
𝑡−2 + 𝛽2(1− 𝛽2)𝑔

2
𝑡−1 + (1− 𝛽2)𝑔

2
𝑡 (42)

(assuming 𝑣0 = 0). Note that for large 𝑡, we can have a 𝜏(𝑘) such that 𝑣𝑡 − 𝜏(𝑘) < 𝜇 for arbitrary
small 𝜇, where

𝜏(𝑘) = 𝛽
(𝑡−𝑘)
2 (1−𝛽2)𝑔

2
𝑘+𝛽

(𝑡−𝑘−1)
2 (1−𝛽2)𝑔

2
𝑘+1+ . . . 𝛽2

2(1−𝛽2)𝑔
2
𝑡−2+𝛽2(1−𝛽2)𝑔

2
𝑡−1+(1−𝛽2)𝑔

2
𝑡 (43)

Plugging the above result to Eq. 41, with probability at least 1− 𝛿, we again have

max
𝑖,𝑗

[𝑣𝑡]𝑖,𝑗 ≤ max
𝑡∈[𝑡−𝑘,𝑇 ]

𝜎(𝑡)

√︂
2 ln

(︁2𝑚𝑛

𝛿

)︁
(44)

Then,

√︀
max𝑖,𝑗 [𝑣𝑡]𝑖,𝑗 + 𝜖√︀
min𝑖,𝑗 [𝑣𝑡]𝑖,𝑗 + 𝜖

≤ 1 +

√︀
max𝑖,𝑗 [𝑣𝑡]𝑖,𝑗

𝜖
≤ 1 +

√︃
max𝑡∈[𝑡−𝑘,𝑇 ] 𝜎(𝑡)

√︂
2 ln

(︁
2𝑚𝑛
𝛿

)︁
𝜖

, (45)

since
√︀
min𝑖,𝑗 [𝑣𝑡]𝑖,𝑗 = 0. Let 𝜅(𝑡) =

⎯⎸⎸⎷max𝑡∈[𝑡−𝑘,𝑇 ] 𝜎(𝑡)

√︃
2 ln

(︁
2𝑚𝑛
𝛿

)︁
𝜖 . Then, the coordinate-wise

learning-rate scaling 1√
𝑣𝑡+𝜀 cannot differ among coordinates by more than 1 + 𝜅(𝑡) with a high

probability.

Step 2: Relating off-subspace updates to the ratio. Consider any row vector of Δ𝑡 to be
(Δ𝑡)𝑖,:. Then, by Applying the update Eq. 45 to Lemma 1, and by definition of Δ𝑡, we have

‖(Δ𝑡)
⊥
𝑖,:‖ ≤ 𝜅(𝑡)

2
‖(Δ𝑡)𝑖,:‖ (46)

Step 3: Taking the limit 𝑡 → ∞. Because we have

lim
𝑡→∞

𝜎(𝑡) = 0, (47)

trivially, we also have
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lim
𝑇→∞

max
𝑡∈[𝑇−𝑘,𝑇 ]

𝜎(𝑡) = 0. (48)

Then, it follows from the definition of 𝜅(𝑡) that

lim
𝑡→∞

𝜅(𝑡) = 0. (49)

Therefore, from Eq. 46, assuming ‖(Δ𝑡)𝑖,:‖ ≠ 0 we finally have

0 ≤ lim
𝑡→∞

‖(Δ𝑡)
⊥
𝑖,:‖

‖(Δ𝑡)𝑖,:‖
≤ 0 (50)

= lim
𝑡→∞

‖(Δ𝑡)
⊥
𝑖,:‖

‖(Δ𝑡)𝑖,:‖
= 0 (51)

In simpler terms, the distortion of the rows of Δ𝑡 outside 𝒮 is ultimately goes to zero.

Discussion: Above theorem gives us an important insight. In particular, it ensures that if the
gradients of an unrestricted network predominantly lie in a specific low-dimensional subspace 𝒮,
then the AdamW optimizer restricts updates outside that subspace. On the other hand, as training
progresses, gradient norms decrease and become more uniform across coordinates, which has been
rigorously proved in previous works within reasonable bounds (Défossez et al., 2020; Li et al., 2024a;
Zhang et al., 2024). Consequently, the variance of the gradients also tends to diminish, justifying
our assumption of lim𝑡→∞ 𝜎(𝑡) → 0. This reduction further curtails the extent of any off-subspace
updates, thereby indicating that AdamW naturally remains focused on the directions most important
to learning.

Further, empirical evidence supports the notion that gradients of unconstrained networks often
lie predominantly within a low-dimensional subspace (we also empirically validate this in Fig. 7).
This observation aligns with the hypothesis that many deep learning problems exhibit significant
redundancy in parameter updates, with key directions of optimization being confined to a smaller
subspace. By leveraging this inherent structure, it becomes possible to guide optimization dynamics
in a manner that preserves computational efficiency while maintaining convergence. We conduct an
extended discussion next.

C.1. On the assumptions of Theorem C.2

For Theorem C.2, we employ two assumptions 1) the gradients of weight matrices are confined to
a low-dimensional subspace and 2) the variance of the gradients diminish as the model converges.
Next, we provide justifications for these assumptions.

C.1.1. The gradients of weight matrices are confined to a low-dimensional subspace

To empirically validate this behavior, we train an 8-layer network on C4 and track the stable
rank progression of its projection matrices throughout training. As shown in Fig. 7, the gradients
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(a) ∇𝑙W
4
𝑝2

(b) ∇𝑙W
7
𝑝2

(c) ∇𝑙W
7
𝑝1

(d) ∇𝑙W
4
𝑝1

Figure 7: Low dimensionality of the gradients of projection matrices. We measure the stable
ranks of gradients of the projection matrices over the course of training. In each plot, the green
dashed line indicates the maximum rank. As shown, all the weight matrices consistently maintain
a significantly lower rank (∼ < 5) throughout the training. This validates the assumption of our
theorem C.2 that the weight gradients of the projection matrices are confined to a low-dimensional
subspace.

maintain an exceptionally low stable rank relative to the maximum possible rank from initialization
to convergence. This confirms that the gradients primarily focus on a few dominant directions.

The assumption that weight gradients span a low-dimensional subspace is well-supported by prior
research. (Gur-Ari et al., 2018) demonstrated that gradient descent in deep learning does not explore
the full parameter space but instead operates within a constrained subspace, largely dictated by
the spectral structure of the Hessian. The Hessian matrix features a dominant subspace associated
with large eigenvalues, where most gradient updates occur, and a bulk subspace characterized by
near-zero eigenvalues that correspond to flat directions in the loss landscape. Empirical evidence
indicates that early in training, gradients align with this dominant Hessian subspace and remain
confined within it throughout the optimization process.

This phenomenon extends to the learned representations themselves. (Zhao et al., 2021) showed
that gradient descent naturally gravitates toward low-rank solutions, a behavior arising from implicit
regularization within the optimization process. Instead of initializing with full-rank representations,
training typically begins in a low-rank regime and expands rank as necessary. This trend has been
consistently observed across multiple architectures, including MLPs, CNNs, and transformers. The
concept of spectral bias further supports this observation, suggesting that neural networks initially
learn broad, low-rank structures before refining finer details.

A practical application of this low-rank property is evident in (Cosson et al., 2023)’s introduction
of Low-Rank Gradient Descent (LRGD), which explicitly leverages low-rank subspaces to expedite
training. By identifying dominant gradient directions and confining updates to this reduced sub-
space, LRGD significantly lowers computational costs without sacrificing optimization effectiveness.
Theoretical results demonstrate that in strongly convex settings, LRGD reduces oracle complexity
from 𝑂(𝑝 log(1/𝜖)) to 𝑂(𝑟 log(1/𝜖) + 𝑟𝑝), where 𝑟 ≪ 𝑝. Similar improvements are observed in
non-convex environments. Moreover, (Wangni et al., 2018) illustrated that in deep networks trained
with cross-entropy loss, the Hessian spectrum exhibits a clear separation. The top subspace, whose
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dimensionality approximates the number of classes in the dataset, captures the majority of gradient
activity. In contrast, the bulk subspace, filled with small eigenvalues, corresponds to nearly flat
directions in the loss landscape. This structure implies that significant changes in the loss function
occur primarily within the top subspace. Empirical findings also reveal that gradients quickly align
with the top Hessian subspace early in training and persist within it. This effect has been documented
across diverse architectures such as fully connected networks, convolutional networks, ResNets, and
transformers. While individual Hessian eigenvectors evolve during training, the dominant subspace
remains relatively stable, guiding the optimization path. The low-rank nature of gradients is further
validated by (Vogels et al., 2019), who observed a rapid decay in the singular values of gradient
matrices. This decay implies that the most meaningful updates are confined to a small, structured
subspace. Additionally, the gradient covariance matrix in deep networks shows exponential spectral
decay, suggesting that full-rank updates are not essential.

Above findings provide robust empirical and theoretical support for our low-rank gradient
assumption, directly motivating our approach. By exploiting low-rank constraints, we achieve
substantial reductions in both computation and communication overhead while preserving performance.
Given that deep learning models inherently exhibit implicit regularization, explicitly enforcing a
low-rank structure in our compression could even induce a beneficial regularization effect—potentially
enhancing performance beyond that of non-compressed models, as indicated in Table 1.

C.1.2. The variance of the gradients diminish as the model converges.

The reduction in gradient variance as a model converges is a well-observed phenomenon in optimization
literature. As training progresses, stochastic gradient estimates become more stable, leading to
smoother updates and accelerated convergence. This effect is particularly pronounced in adaptive
learning rate optimizers such as Adam (Kingma, 2014) and AdamW (Loshchilov, 2017). In particular,
(Balles and Hennig, 2018) showed that these methods inherently reduce the variance of parameter
updates over time, contributing to stable convergence. (Liu et al., 2020) further refined this idea by
introducing a variant of Adam designed to enforce adaptive variance reduction, ensuring that the
variance of the stochastic gradient estimator decreases as the model approaches optimality.

Beyond adaptive optimization, variance reduction techniques have been widely studied in the
context of stochastic gradient descent (SGD). Traditional SGD suffers from high variance in gradient
estimates, particularly in early training stages, which can hinder convergence. To mitigate this,
methods such as Stochastic Variance Reduced Gradient (SVRG) and SAGA (Wang et al., 2013) have
been proposed. These approaches reduce variance by incorporating control variates or maintaining a
memory of past gradients, yielding more accurate updates and improved convergence rates. Additional
techniques, including Kalman-based filtering (Vuckovic, 2018) and stochastic filtering methods (Yang,
2020), further enhance stability by adaptively reducing noise in gradient estimates.

Normalization layers have also been shown to smooth parameter spaces and gradients, effectively
reducing variance. This smoothness, characterized by a lower Lipschitz constant, results in more
predictive gradients, which can be interpreted as a form of implicit variance reduction. The effect is
particularly beneficial in deep networks, where sharp loss landscapes can otherwise lead to erratic
updates.

In summary, diminishing gradient variance is a natural outcome of optimization dynamics.
As training progresses and model parameters approach optimality, stochastic gradients become
increasingly stable, even in the absence of explicit variance reduction techniques. This effect can be
attributed to the curvature of the loss landscape: near an optimal solution, the loss function tends to
be flatter, leading to more consistent gradient estimates across mini-batches. Consequently, as the
model converges, gradient variance inherently diminishes, reinforcing the validity of this assumption
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in our work.

D. Continuous-Time Gradient Flow with Weight Decay Converges to a Low-
Dimensional Subspace

The result in this section reveals a fundamental property of optimization under AdamW: the optimizer
inherently drives weight matrices to converge asymptotically to a shared subspace, regardless of their
initial values. This behavior stems from the decoupled weight decay mechanism, which systematically
suppresses components of the weight matrix that receive negligible or noisy gradient updates during
training. Over time, the weight matrix becomes confined to a low-dimensional subspace spanned by
the significant directions of the gradient updates, leading to an effectively low-rank representation.

Theorem D.1. Consider a continuous-time dynamics for W(𝑡) ∈ R𝑚×𝑛 governed by

dW

d𝑡
= − 𝜂

(︁
Δ𝑡 + 𝛼W(𝑡)

)︁
,

where 𝜂, 𝛼 > 0 are constants, and Δ𝑡 represents the gradient-like update without weight decay (i.e.
the “AdamW” part, ignoring the 𝛼W(𝑡) term). Assume that for large 𝑡, Δ𝑡 has its rows confined
predominantly to a subspace 𝒮 ⊆ R𝑛 (so that the orthogonal component of Δ𝑡 vanishes asymptotically).
Then, as 𝑡 → ∞, the component of W(𝑡) lying in 𝒮⊥ decays exponentially to zero. Consequently, the
rows of the final solution W(∞) lie in (or arbitrarily close to) 𝒮.

Proof. Let Π𝒮 denote the orthogonal projector onto 𝒮 (applied rowwise to any 𝑚 × 𝑛 matrix).
Decompose:

W(𝑡) = W‖(𝑡) + W⊥(𝑡), where W‖(𝑡) = Π𝒮
[︀
W(𝑡)

]︀
, W⊥(𝑡) =

(︀
I−Π𝒮

)︀
W(𝑡).

By hypothesis (see also Theorem C.2), the rows of Δ𝑡 become confined to 𝒮 as 𝑡 → ∞, i.e.

lim
𝑡→∞

(︀
I−Π𝒮

)︀
Δ𝑡 = 0.

Thus, for large 𝑡, the orthogonal component of Δ𝑡 is negligible. Project the ODE onto 𝒮⊥:

dW⊥(𝑡)

d𝑡
=
(︀
I−Π𝒮

)︀dW
d𝑡

= − 𝜂
(︀
I−Π𝒮

)︀(︁
Δ𝑡 + 𝛼W(𝑡)

)︁
.

For sufficiently large 𝑡, (I−Π𝒮)Δ𝑡 is negligible, so asymptotically,

dW⊥(𝑡)

d𝑡
≈ − 𝜂 𝛼

(︀
I−Π𝒮

)︀(︀
W(𝑡)

)︀
= − 𝜂 𝛼W⊥(𝑡).

This is a linear ODE:
dW⊥(𝑡)

d𝑡
= − 𝜂 𝛼W⊥(𝑡),

whose solution is
W⊥(𝑡) = exp

(︀
− 𝜂 𝛼 𝑡

)︀
W⊥(0).

Hence W⊥(𝑡) decays exponentially to 0. Therefore,

W(𝑡) = W‖(𝑡) +W⊥(𝑡) −→ W‖(𝑡), with W‖(𝑡) ∈ 𝒮.

Thus, as 𝑡 → ∞, the rows of W(𝑡) lie in 𝒮 (or arbitrarily close), proving the claim.
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Discussion: Unlike standard stochastic gradient descent (SGD), which applies weight decay as a
modification to the gradient updates, AdamW separates the weight decay term from the gradient
computation. This decoupled weight decay has two key effects: 1.) Suppression of Insignificant
Components: Components of the weight matrix orthogonal to the subspace spanned by significant
gradient updates decay exponentially due to weight decay. This ensures that the optimization focuses
on meaningful directions of the gradient. 2) Low-Dimensional Convergence: By amplifying the
impact of directions where the gradient signal is strongest, the optimizer effectively projects the
weight matrix onto a subspace defined by these directions, leaving other components asymptotically
negligible.

To empirically validate this property, we analyzed the spectral structure of weight matrices trained
under AdamW. As shown in Fig. 1, the spectrum of these matrices exhibits rapid decay, with the
majority of the spectral mass concentrated in a few dominant directions.

E. Convergence of Partially-Projected Gradient Descent

This section establishes that constraining a subset of weights in a neural network to lie within a
low-dimensional subspace does not degrade the theoretical convergence guarantees of constrained
optimization. Specifically, the network still achieves convergence to a first-order stationary point at
the rate of 𝑂(1/𝑇 ), where 𝑇 is the number of optimization steps. This is consistent with standard
results in constrained optimization and provides a preliminary theoretical foundation for employing
subspace constraints in practical applications.

Proposition E.1. Let 𝑓(W(𝑠),W(𝑢)) be a possibly non-convex function that is 𝐿-smooth in all
its parameters W = (W(𝑠),W(𝑢)), where W(𝑠) ∈ R𝑘 is a constrained block and W(𝑢) ∈ R𝑑 is
unconstrained and 𝑘 < 𝑑. Suppose we have a closed subspace 𝒮 ⊆ R𝑘, and we define the feasible set

W = 𝒮 × R𝑑𝑢 .

Consider the following partially-projected gradient step:

̃︁W(𝑠)
𝑡+1 = W

(𝑠)
𝑡 − 𝜂∇(𝑠)𝑓(W𝑡), ̃︁W(𝑢)

𝑡+1 = W
(𝑢)
𝑡 − 𝜂∇(𝑢)𝑓(W𝑡),

W
(𝑠)
𝑡+1 = Π𝒮

(︁̃︁W(𝑠)
𝑡+1

)︁
, W

(𝑢)
𝑡+1 = ̃︁W(𝑢)

𝑡+1,

where Π𝒮(·) is the Euclidean projection onto 𝒮, ∇(𝑆)𝑓 and ∇(𝑢)𝑓 are the gradients of 𝑓 w.r.t. the
constrained and unconstrained blocks, respectively, and 𝜂 > 0 is a fixed step size.

Then, for any 𝑇 ≥ 1 and 𝜂 ≤ 1
𝐿 , the iterates {W𝑡} satisfy the following stationary guarantee:

min
0≤ 𝑡<𝑇

⃦⃦
∇𝑓(W𝑡)

⃦⃦2 ≤
2
(︀
𝑓(W0) − 𝑓*)︀

𝜂 𝑇

where 𝑓* = minW∈W 𝑓(W) and W0 is the initial parameter vector.

Proof. Since 𝑓(W(𝑠),W(𝑢)) is 𝐿-smooth in all parameters, for any W,W′ we have

𝑓(W′) ≤ 𝑓(W) + ∇𝑓(W)⊤(W′ −W) + 𝐿
2 ‖W

′ −W‖2. (52)

Setting W = W𝑡 and W′ = W𝑡+1, we get

𝑓(W𝑡+1) ≤ 𝑓(W𝑡) +∇𝑓(W𝑡)
⊤(W𝑡+1 −W𝑡) +

𝐿
2 ‖W𝑡+1 −W𝑡‖2. (53)
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Recall the update:

W
(𝑠)
𝑡+1 = Π𝒮

(︁
W

(𝑆)
𝑡 − 𝜂∇(𝑆)𝑓(W𝑡)

)︁
, W

(𝑢)
𝑡+1 = W

(𝑢)
𝑡 − 𝜂∇(𝑢)𝑓(W𝑡). (54)

W𝑡+1 =
(︁
Π𝒮(W

(𝑠)
𝑡 − 𝜂∇(𝑠)𝑓(W𝑡)), W

(𝑢)
𝑡 − 𝜂∇(𝑢)𝑓(W𝑡)

)︁
. (55)

Projecting the ̃︁W(𝑠)
𝑡+1 block onto 𝒮, is a 1-Lipschitz (nonexpansive) operation in the full Euclidean

space. Concretely, consider ‖
(︀
Π𝒮(̃︁W(𝑠)

𝑡+1) −W
(𝑠)
𝑡 )‖. Also recall that W𝑠

𝑡 ∈ 𝒮. It follows from the
classical projection lemma that,

‖(W(𝑠)
𝑡+1)−W

(𝑠)
𝑡 )‖ = ‖

(︀
Π𝒮(̃︁W(𝑠)

𝑡+1)−W
(𝑠)
𝑡 )‖ ≤ ‖

(︀̃︁W(𝑠)
𝑡+1 −W

(𝑠)
𝑡 )‖ (56)

This happens because the projection minimizes the Frobenius norm to the subset, so the projected
point is closer than the unprotected one.

We also leave the disjoint set W(𝑢) untouched. So we have,

̃︁W(𝑢)
𝑡+1 = W

(𝑢)
𝑡+1 (57)

Since W(𝑠),W(𝑢) are disjoint blocks, We can combine the blocks (Pythagorean identity): The
Frobenius norm is the Euclidean norm on the concatenated vector, so⃦⃦

W𝑡+1 −W𝑡

⃦⃦2
= ‖
(︀
W

(𝑠)
𝑡+1 −W

(𝑠)
𝑡 )‖2 + ‖

(︀
W

(𝑢)
𝑡+1 −W

(𝑢)
𝑡

)︀
‖2

From Eq. 56 and 57 we have,

⃦⃦
W𝑡+1 −W𝑡

⃦⃦2 ≤ ‖
(︀̃︁W(𝑠)

𝑡+1 −W
(𝑠)
𝑡 )‖2 + ‖

(︀̃︁W(𝑢)
𝑡+1 −W

(𝑢)
𝑡

)︀
‖2 (58)

As W(𝑠),W(𝑢) are disjoint, we get,

⃦⃦
W𝑡+1 −W𝑡

⃦⃦2 ≤ ⃦⃦̃︁W𝑡+1 −W𝑡

⃦⃦2 (59)

⃦⃦
W𝑡+1 −W𝑡

⃦⃦
≤
⃦⃦̃︁W𝑡+1 −W𝑡

⃦⃦
(60)

(̃︁W𝑡+1 −W𝑡) is the update step which is equal to 𝜂(∇𝑓(W𝑡)). Thus,

‖W𝑡+1 −W𝑡‖ ≤ 𝜂
⃦⃦
∇𝑓(W𝑡)

⃦⃦
. (61)

Plugging this bound back into the smoothness inequality (Eq. 53), we can get

𝑓(W𝑡+1) ≤ 𝑓(W𝑡) +∇𝑓(W𝑡)
⊤(W𝑡+1 −W𝑡) +

𝐿
2 𝜂2

⃦⃦
∇𝑓(W𝑡)

⃦⃦2
. (62)

Further, from the optimality condition, it follows that,
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(︀
W𝑡+1 − (W𝑡 − 𝜂∇𝑓(W𝑡))

)︀⊤
(W𝑡+1 −W𝑡) ≤ 0 (63)

(︀
𝜂∇𝑓(W𝑡))

⊤(W𝑡+1 −W𝑡) ≤ −‖W𝑡+1 −W𝑡‖2 (64)

∇𝑓(W𝑡)
⊤(W𝑡+1 −W𝑡) ≤ −1

𝜂
‖W𝑡+1 −W𝑡‖2 (65)

Substituting above in Eq. 62,

𝑓(W𝑡+1) ≤ 𝑓(W𝑡)−
1

𝜂
‖W𝑡+1 −W𝑡‖2 + 𝐿

2 𝜂2
⃦⃦
∇𝑓(W𝑡)

⃦⃦2
. (66)

𝑓(W𝑡+1) ≤ 𝑓(W𝑡)−
1

𝜂
‖W𝑡+1 −W𝑡‖2 + 𝐿

2 ‖W𝑡+1 −W𝑡‖2. (67)

𝑓(W𝑡+1) ≤ 𝑓(W𝑡) + ‖W𝑡+1 −W𝑡‖2
(︁𝐿
2
− 1

𝜂

)︁
. (68)

𝑓(W𝑡+1)− 𝑓(W𝑡) ≤ ‖W𝑡+1 −W𝑡‖2
(︁𝐿
2
− 1

𝜂

)︁
. (69)

𝑓(W𝑡+1)− 𝑓(W𝑡) ≤ 𝜂2‖∇𝑓(W𝑡)‖2
(︁𝐿
2
− 1

𝜂

)︁
. (70)

Choosing 𝜂 < 2
𝐿

𝑓(W𝑡+1)− 𝑓(W𝑡) ≤ −𝛾‖∇𝑓(W𝑡)‖2. (71)

Taking a telescoping summation, we have,

𝑇−1∑︁
𝑡=0

(︁
𝑓(W𝑡+1)− 𝑓(W𝑡)

)︁
≤ −𝛾

𝑇−1∑︁
𝑡=0

‖∇𝑓(W𝑡)‖2 (72)

(︁
𝑓(W0)− 𝑓(W𝑡+1)

)︁
𝛾

≥
𝑇−1∑︁
𝑡=0

‖∇𝑓(W𝑡)‖2. (73)

Let us set W𝑡+1 = W*, where W* is a minimizer of 𝑓 . Then, we have
(︁
𝑓(W0)− 𝑓(W𝑡+1)

)︁
≤(︁

𝑓(W0)− 𝑓(W*)
)︁
, which gives,

(︁
𝑓(W0)− 𝑓(W*)

)︁
𝛾

≥
𝑇−1∑︁
𝑡=0

‖∇𝑓(W𝑡)‖2. (74)
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Dividing both sides by 𝑇 , we get

(︁
𝑓(W0)− 𝑓(W*)

)︁
𝛾𝑇

≥ 1

𝑇

𝑇−1∑︁
𝑡=0

‖∇𝑓(W𝑡)‖2. (75)

If the gradient norm is upper bounded as below, then, trivially we have,

min
0≤ 𝑡<𝑇

⃦⃦
∇𝑓(W𝑡)

⃦⃦2 ≤
2
(︀
𝑓(W0) − 𝑓(W*)

)︀
𝛾 𝑇

(76)

This shows that the squared minimum gradient norm goes to zero at a 𝑂(1/𝑇 ) rate, implying
convergence to a stationary point in the non-convex sense.

Discussion: The result is a direct extension of the convergence guarantees for proximal gradient
descent methods on non-convex functions. Proximal gradient methods are widely used in constrained
optimization problems, where the update rule involves projecting the parameters onto a feasible
set at each iteration. In the case of subspace-constrained networks, the feasible set corresponds to
the predefined low-dimensional subspace, and the projection operator ensures that the parameters
partially remain within this subspace. The convergence rate of 𝑂(1/𝑇 ) in terms of stationarity
reflects that, even in the presence of non-convexity and subspace constraints, the optimization
algorithm efficiently reduces the gradient norm over time, driving the network parameters toward a
stationary point. A possible implication of subspace restriction could be that it acts as an implicit
regularizer, encouraging the network to learn more compact and robust representations. This can
lead to improved generalization performance on unseen data. We hypothesize that this might be the
reason for improved performance of the compressed models over their centralized counterparts (see
Fig. 5).

Next result extends the above theorem to the stochastic mini-batch gradient descent optimization.

Theorem E.2. Let 𝑓(W(𝑠),W(𝑢)) be 𝐿–smooth in W = (W(𝑠),W(𝑢)) with W(𝑠) ∈ R𝑘 ( constrained
block), W(𝑢) ∈ R𝑑 (unconstrained block), and let 𝒮 ⊆ R𝑘 be a closed subspace. Define the feasible
set W := 𝒮 × R𝑑.

At each iteration 𝑡 draw a mini-batch and compute an unbiased stochastic gradient g𝑡 = (g
(𝑠)
𝑡 ,g

(𝑢)
𝑡 )

satisfying

E[g𝑡 | W𝑡] = ∇𝑓(W𝑡), E
[︀
‖g𝑡 −∇𝑓(W𝑡)‖2 | W𝑡

]︀
≤ 𝜎2 (bounded variance). (77)

Update the parameters with the stochastic partially-projected gradient (SPPG) step

̃︁W(𝑠)
𝑡+1 = W

(𝑠)
𝑡 − 𝜂𝑡g

(𝑠)
𝑡 , ̃︁W(𝑢)

𝑡+1 = W
(𝑢)
𝑡 − 𝜂𝑡g

(𝑢)
𝑡 ,

W
(𝑠)
𝑡+1 = Π𝒮

(︀̃︁W(𝑠)
𝑡+1

)︀
, W

(𝑢)
𝑡+1 =

̃︁W(𝑢)
𝑡+1,

where each stepsize satisfies 𝜂𝑡 ∈ (0, 1/𝐿].

Let 𝑓* := minW∈W 𝑓(W) and denote 𝜂 := 1
𝑇

∑︀𝑇−1
𝑡=0 𝜂𝑡. Then for every horizon 𝑇 ≥ 1

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︀
‖∇𝑓(W𝑡)‖2

]︀
≤

2
(︀
𝑓(W0)− 𝑓*)︀

𝜂 𝑇
+ 𝐿𝜂 𝜎2. (78)
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In particular, with the constant stepsize 𝜂𝑡 ≡ 𝜂 ≤ 1/𝐿 it holds that

min
0≤𝑡<𝑇

E
[︀
‖∇𝑓(W𝑡)‖2

]︀
≤

2
(︀
𝑓(W0)− 𝑓*)︀

𝜂𝑇
+ 𝐿𝜂 𝜎2,

which attains the optimal 𝒪
(︀
1/
√
𝑇
)︀

rate when 𝜂 = min
{︀
1/𝐿,

√︀
2(𝑓(W0)− 𝑓*)/(𝐿𝜎2𝑇 )

}︀
.

Proof. The argument follows the deterministic proof but replaces exact gradients with the stochastic
estimator and takes conditional expectations at the appropriate points.

Because the Euclidean projection onto a closed subspace is 1-Lipschitz, for every 𝑡 ‖W(𝑠)
𝑡+1 −

W
(𝑠)
𝑡 ‖ ≤ ‖̃︁W(𝑠)

𝑡+1 − W
(𝑠)
𝑡 ‖ = 𝜂𝑡‖g(𝑠)

𝑡 ‖. The unconstrained coordinates remain unprojected, hence
‖W(𝑢)

𝑡+1 −W
(𝑢)
𝑡 ‖ = 𝜂𝑡‖g(𝑢)

𝑡 ‖. Using the Pythagorean theorem for the two disjoint blocks,

‖W𝑡+1 −W𝑡‖ ≤ 𝜂𝑡‖g𝑡‖. (79)

𝐿-smoothness of 𝑓 implies

𝑓(W𝑡+1) ≤ 𝑓(W𝑡) +∇𝑓(W𝑡)
⊤(W𝑡+1 −W𝑡) +

𝐿

2
‖W𝑡+1 −W𝑡‖2.

Introduce the zero-mean “noise” term 𝜖𝑡 := g𝑡 − ∇𝑓(W𝑡). Conditioned on W𝑡, E[𝜖𝑡] = 0 and
E[‖𝜖𝑡‖2] ≤ 𝜎2. Using equation 79 and g𝑡 = ∇𝑓(W𝑡) + 𝜖𝑡,

E
[︀
𝑓(W𝑡+1) | W𝑡

]︀
≤ 𝑓(W𝑡)− 𝜂𝑡‖∇𝑓(W𝑡)‖2 +

𝐿𝜂2𝑡
2

E[‖g𝑡‖2 | W𝑡]

≤ 𝑓(W𝑡)− 𝜂𝑡

(︁
1− 𝐿𝜂𝑡

2

)︁
‖∇𝑓(W𝑡)‖2 +

𝐿𝜂2𝑡
2

𝜎2,

where the last line used E[‖g𝑡‖2] = ‖∇𝑓(W𝑡)‖2 + E[‖𝜖𝑡‖2] ≤ ‖∇𝑓(W𝑡)‖2 + 𝜎2. Because 𝜂𝑡 ≤ 1/𝐿,
1− 𝐿𝜂𝑡/2 ≥ 1/2. Hence

E[𝑓(W𝑡+1)] ≤ E[𝑓(W𝑡)]− 𝜂𝑡
2 E
[︀
‖∇𝑓(W𝑡)‖2

]︀
+

𝐿𝜂2𝑡
2 𝜎2. (80)

Sum equation 80 over 𝑡 = 0, . . . , 𝑇 − 1 and rearrange:

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︀
‖∇𝑓(W𝑡)‖2

]︀
≤

2
(︀
E[𝑓(W0)]− 𝑓*)︀∑︀𝑇−1

𝑡=0 𝜂𝑡
+ 𝐿𝜎2

∑︀𝑇−1
𝑡=0 𝜂2𝑡∑︀𝑇−1
𝑡=0 𝜂𝑡

.

Noting that
∑︀

𝑡 𝜂𝑡 = 𝑇𝜂 and
∑︀

𝑡 𝜂
2
𝑡 ≤ 𝑇𝜂2 (by Jensen’s inequality) yields

1

𝑇

𝑇−1∑︁
𝑡=0

E[‖∇𝑓(W𝑡)‖2] ≤
2
(︀
𝑓(W0)− 𝑓*)︀

𝜂 𝑇
+ 𝐿𝜂 𝜎2,

which is precisely equation 78.

F. Ablations

To validate the utility of the proposed method, we stress-test it with different network and training
configurations. All the models are trained on C4.
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(a) Batch size 8 (b) Batch size 16 (c) Batch size 32

Figure 8: Convergence with different batch sizes. Each block shows the training curves (with
respect to training steps) and throughput for an 8-layer, 2B-parameter model on C4. Decentralized
configurations use 80Mbps connections, while the centralized configuration uses datacenter-grade
100 Gbps links. Even under a 80 Mbps bandwidth budget, our compressed model achieves convergence
comparable to—and sometimes exceeding—the centralized configuration across varying batch sizes.
Note that as the batch size increases, the compressed model achieves increasingly better results
compared to the centralized model. The iteration-wise dynamics of the uncompressed decentralized
model match those of the centralized model; hence, we omit its curve for clarity. Despite severe
bandwidth constraints, our compressed model attains throughput on par with the centralized setting.
In contrast, the uncompressed decentralized setup suffers significantly lower throughput due to
communication bottlenecks. All models share the same network architecture.

(a) Batch size 8 (b) Batch size 16 (c) Batch size 32

Figure 9: Convergence with different batch sizes. Each block shows the training curves (with
respect to wall-clock time) and throughput for an 8-layer, 2B-parameter model on C4. Decentralized
configurations use 80Mbps connections, while the centralized configuration uses datacenter-grade
100 Gbps links. Even under a 80 Mbps bandwidth budget, our compressed model achieves convergence
comparable to—and sometimes exceeding—the centralized configuration across varying batch sizes
while the decentralized non compressed model demonstrates extremely slow convergence.

G. Analysis of pretrained checkpoints

We investigate the stable ranks of the output projection layers of the official checkpoints of frontier
open-weight LLMs (LlaMA, Qwen, Olmo, Phi). The observations are reported in Fig. 16. As shown,
the weights demonstrate extremely low ranks across all the layers and models.
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(a) Context length 512 (b) Context length 1024 (c) Context length 2048

Figure 10: Convergence with different context lengths. Each block shows the training
curves (with respect to training steps) and throughput for an 8-layer, 2B-parameter model on
C4. Decentralized configurations use 80Mbps connections, while the centralized configuration uses
datacenter-grade 100Gbps links. Even under a 80Mbps bandwidth budget, our compressed model
achieves convergence comparable to—and sometimes exceeding—the centralized configuration across
varying context lengths. Note that as the context length increases, the compressed model achieves
increasingly better results compared to the centralized model. The iteration-wise dynamics of the
uncompressed decentralized model match those of the centralized model; hence, we omit its curve for
clarity. Despite severe bandwidth constraints, our compressed model attains throughput on par with
the centralized setting. In contrast, the uncompressed decentralized setup suffers significantly lower
throughput due to communication bottlenecks.

(a) Context length 512 (b) Context length 1024 (c) Context length 2048

Figure 11: Convergence with different context lengths. Each block shows the training
curves (with respect to wall-clock time) and throughput for an 8-layer, 2B-parameter model on
C4. Decentralized configurations use 80Mbps connections, while the centralized configuration uses
datacenter-grade 100Gbps links. Even under a 80Mbps bandwidth budget, our compressed model
achieves convergence comparable to—and sometimes exceeding—the centralized configuration across
varying context lengths while the decentralized non compressed model demonstrates extremely slow
convergence.

(a) 8 layers (b) 16 layers (2 layers per GPU)

Figure 12: Convergence with increasing number of layers. Note that as the number of layer
increase, our model consistently matches (even slightly exceeds) the centralized model. This is in
stark contrast to lossy compression schemes, where the model convergence severely degrades as the
model depth increases (Bian et al., 2024).
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(a) Inference (b) Training

Figure 13: Throughput across bandwidth constraints. We limit network bandwidth between
GPUs and measure throughput during inference and training. The compressed model consistently
achieves significantly higher throughput than the non-compressed model. Notably, even at 100Gbps,
compression improves inference throughput by 3×, demonstrating benefits for even centralized setups.

Figure 14: Effect of the (Grassman) subspace updates. An 8-layer model is trained on C4 for
this experiment. Since this performance gap seems to keep increasing towards the end of training, we
emphasize the importance of infrequent subspace updates.

Figure 15: Effect of fixed token embedding. We decompose the token embeddings to a fixed
high rank embedding and a dynamic low rank embedding. As shown in the figure, we observe
inferior convergence when there is no such decomposition. An 8-layer model is trained on C4 for this
experiment.
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Figure 16: Stable ranks of output projection matrices (normalized by the maximum
possible rank) across different frontier models. Statistics are computed on official fully pre-
trained checkpoints. All the models demonstrate extremely low ranks, solidifying our theoretical
arguments.
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