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NN Quantization as Discrete Labelling

min L(w; D) Zf s (X4, ¥4))

w

weQm.

Difficulties

» Exponentially many feasible points: |Q|” with m ~

» [ is highly non-convex.

Idea

» Continuous relaxation of the solution space.

106.

> Iteratively optimize the first-order approximation of L .
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Relaxation

Uj:x = {0, 1} = Ui\ = [0, ].]

For w € conv(Q)™,
W =uq, 0,0.1)

Yot =1, Vj
Uj:x € [07 1}7 vja)‘ ’

where q is the vector of quantization levels.

s.t. ueSz{ u

we-1,1]

(1,0.0) ueS=conv(V) (01,0

» S decomposes over j.

[ uj:x € S is the probability of parameter w; taking label A € Q ]
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Relaxed Optimization Problem

min L(u; D) := L(uq; D) ,

u

ues.

> Any local minimum in the u-space is also a local minimum
in the relaxed w-space and vice versa.

min L(u;D) = min  L(w;D)
ues weE conv(Q)™
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Projected (Stochastic) Gradient Descent (PGD)

At iteration £,
@l =uf — gt sop

uttl = P <ﬁk+1>7

where 17 > 0 and g¥ is the (stochastic) gradient evaluated at u®.
» Any off-the-shelf sGD algrorithm can be used.

» For softmax projection, PGD = Proximal Mean-Field.

» Projection free algorithms may also be employed
[Lacoste-2012, Ajanthan-2017].
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Softmax Projection and Exploration

For each j € {1...m},

uf = softmax (/1 5y
B(af)
k e
uj:A = oy Ve Q R
Z,uEQ eﬁ( JH)
where 8 > 0. ‘
(1,0,0) wes (0,1,0)

Ultimate objective

> A quantized solution = u € V attained when  — oc.

Softmax = mnoisy projection to V ]
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Mean-Field Method

Objective
argmin KL(u||P) = argmin  Ey[L(w)] — H(u),
ues ues

where E, -] is the expectation over u and H (u) is the entropy.

Difficulty

» For a neural network L(w) has no explicit factorization.

Simple Idea

> Replace L(w) with its first-order approximation L*(w).
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Softmax based PGD as Proximal Mean-Field (PMF)

At iteration k,
uF*! = softmax (5 (uk — ngk>> , PGD
N 1
M1 — argmin n B, [Lk(w)] - <uk,u> — —H(u), PMmF
ues F B
where n > 0 and 8 > 0.

u

> zk(w) is the first-order Taylor approximation of L at
wk = u’q.
> Negative of cosine similarity = proximal term.

» Entropy term vanishes when 5 — oco.

Softmax update is an exact fixed point of the PMF objective

Binary Connect [Courbariaux-2015] is a special case of PMF
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Why MRF Perspective?

> Encoding parameter dependency:

» Tree-structured entropy [Ravikumar-2008].
» Second-order approximation of L.

» Connection to Bayesian deep learning methods.

» Uncertainty estimatation.



Results

. REF (32 bit) BC (1 bit) PMF (1 bit)

Dataset Architecture Top-1/5 (%) Top-1/5 (%) Top-1/5 (%)
MNIST LeNet-300 98.55/99.93 98.05/99.93 98.24/99.97
LeNet-5 99.39/99.98 99.30/99.98 99.44/100.0

CIFAR.10 VGG-16 93.01/99.38  86.40/98.43  90.51/99.56
ResNet-18 94.64/99.78 91.60/99.74 92.55/99.80

VGG-16 70.33/88.58 43.70/73.43 61.52/85.83

CIFAR-100 ResNet-18 73.85/92.49 69.93/90.75 71.85/91.88
TinyImageNet  ResNet-18 56.41/79.75 49.33/74.13 50.78/75.01

Classification accuracies on the test set for different methods.
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[ PMF obtains accuracies very close to floating point counterparts ]
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PMF is less noisy and closely resembles the reference network




Summary

» We have introduced a projected stochastic gradient descent
algorithm to optimize the NN quantization problem.

» By showing our algorithm as a proximal version of
mean-field, we have also provided an MRF optimization
perspective to NN quantization.



Current Limitations

» Training time memory complexity is linear in |Q).

» No theoretical proof for the convergence to a vertex when
8 — oo.



Thank youl



First-order Approximation and Optimization

At iteration k,

~ 1 2

k+1 : k k k k
= argmin L(u —|—<g,u—u> —i——Hu—uH ,
ues ( ) F 2n F

u

where 7 > 0 and g* is the (stochastic) gradient.



Proximal Mean-Field (PMF)

Algorithm

Require: K,b,{n*},p>1,D,L
Ensure: w* € Q™

1: 00 e Rmxd,

8+ 1

2: for k< 0...K do

3
4
5
6:
7
8
9:

w* <— hardmax(a

u” < softmax(Ba*)

Db = {(xi,yi)}}=y ~ D

gh « VuL(u;Db)‘
0

85 < 84 98| acat

ﬁk-l—l . ﬁk k

— gk
B+ pB

u=u*

M)q

> Initialization

> Projection
> Sample a mini-batch
> Gradient w.r.t. u at u®

> Gradient w.r.t. 1 at u”

> Gradient descent on
> Increase 3

> Quantization
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