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Neural Network (nn) Quantization

Objective

I Learn a network while the parameters are restricted to a
small discrete set.

Why?

I Reduced memory and time complexity at inference time.
E.g. Binary ⇒ 32 times less memory

I Better generalization bounds? [Arora-2018]

I Robustness to adversarial examples?

Idea

I Formulate nn quantization as a discrete labelling problem.

nn quantization as mrf optimization
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nn Quantization as Discrete Labelling

min
w

L(w;D) :=
1

n

n∑
i=1

`(w; (xi ,yi)) ,

w ∈ Qm .

D Dataset (D = {xi ,yi}ni=1)

` Loss function (I/O mapping + cross-entropy)

w Learnable parameters (m)

Q Set of quantization levels (Q = {−1, 1})

wj ∈ Q

Difficulties

I Exponentially many feasible points: |Q|m with m ≈ 106.

I L is highly non-convex.
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nn Quantization as Discrete Labelling

min
w

L(w;D) :=
1

n

n∑
i=1

`(w; (xi ,yi)) ,

w ∈ Qm .

Difficulties

I Exponentially many feasible points: |Q|m with m ≈ 106.

I L is highly non-convex.

Idea

I Continuous relaxation of the solution space.

I Iteratively optimize the first-order approximation of L .



Lifting and Relaxation

Lifting: Indicator variables

uj :λ = 1 ⇔ wj = λ ∈ Q

For w ∈ Qm ,

w = uq ,

s.t. u ∈ V =

{
u

∑
λ uj :λ = 1, ∀ j

uj :λ ∈ {0, 1}, ∀ j , λ

}
,

where q is the vector of quantization levels.

Qm ⇔ V
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Lifting and Relaxation

Relaxation

uj :λ = {0, 1} ⇒ uj :λ = [0, 1]

For w ∈ conv(Q)m ,

w = uq ,

s.t. u ∈ S =

{
u

∑
λ uj :λ = 1, ∀ j

uj :λ ∈ [0, 1], ∀ j , λ

}
,

where q is the vector of quantization levels.

I S decomposes over j .

uj :λ ∈ S is the probability of parameter wj taking label λ ∈ Q
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Relaxed Optimization Problem

min
u

L̃(u;D) := L(uq;D) ,

u ∈ S .

I Any local minimum in the u-space is also a local minimum
in the relaxed w-space and vice versa.

min
u∈S

L̃(u;D) ≡ min
w∈ conv(Q)m

L(w;D)
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Projected (Stochastic) Gradient Descent (pgd)

At iteration k ,

ũk+1 = uk − η gk , sgd

uk+1 = PS

(
ũk+1

)
,

where η > 0 and gk is the (stochastic) gradient evaluated at uk .

I Any off-the-shelf sgd algrorithm can be used.

I For softmax projection, pgd ≡ Proximal Mean-Field.

I Projection free algorithms may also be employed
[Lacoste-2012, Ajanthan-2017].
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ũk+1

)
,

where η > 0 and gk is the (stochastic) gradient evaluated at uk .

I Any off-the-shelf sgd algrorithm can be used.

I For softmax projection, pgd ≡ Proximal Mean-Field.

I Projection free algorithms may also be employed
[Lacoste-2012, Ajanthan-2017].



Projected (Stochastic) Gradient Descent (pgd)

At iteration k ,
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Softmax Projection and Exploration

For each j ∈ {1 . . .m},

uk
j = softmax(βũk

j ) ,

uk
j :λ =

eβ(ũ
k
j :λ)∑

µ∈Q eβ(ũ
k
j :µ)

∀λ ∈ Q ,

where β > 0.

I Preserves relative order
of uj :λ.

I Differentiable.

Ultimate objective

I A quantized solution ⇒ u ∈ V attained when β →∞.

Softmax ⇒ noisy projection to V
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Mean-Field Method

Let L(w) be the energy (or loss), then

P(w) =
1

Z
e−L(w) .

I Mean-field approximates P(w) with a fully-factorized
distribution U (w) =

∏m
j=1 Uj (wj ).

I From the probabilistic interpretation of u ∈ S,
Uj (wj = λ) = uj :λ, for each j ∈ {1 . . .m}.

Objective

argmin
u∈S

KL(u‖P) = argmin
u∈S

Eu[L(w)]−H (u) ,

where Eu[·] is the expectation over u and H (u) is the entropy.
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Softmax based pgd as Proximal Mean-Field (pmf)

At iteration k ,

uk+1 = softmax
(
β
(
uk − η gk

))
, pgd

uk+1 = argmin
u∈S

η Eu

[
L̂k (w)

]
−
〈
uk ,u

〉
F
− 1

β
H (u) , pmf

where η > 0 and β > 0.

I L̂k (w) is the first-order Taylor approximation of L at
wk = ukq.

I Negative of cosine similarity ⇒ proximal term.

I Entropy term vanishes when β →∞.

Softmax update is an exact fixed point of the pmf objective

Binary Connect [Courbariaux-2015] is a special case of pmf
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I Encoding parameter dependency:
I Tree-structured entropy [Ravikumar-2008].
I Second-order approximation of L.

I Connection to Bayesian deep learning methods.

I Uncertainty estimatation.
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Results

Dataset Architecture
ref (32 bit) bc (1 bit) pmf (1 bit)
Top-1/5 (%) Top-1/5 (%) Top-1/5 (%)

MNIST
LeNet-300 98.55/99.93 98.05/99.93 98.24/99.97
LeNet-5 99.39/99.98 99.30/99.98 99.44/100.0

CIFAR-10
VGG-16 93.01/99.38 86.40/98.43 90.51/99.56
ResNet-18 94.64/99.78 91.60/99.74 92.55/99.80

CIFAR-100
VGG-16 70.33/88.58 43.70/73.43 61.52/85.83
ResNet-18 73.85/92.49 69.93/90.75 71.85/91.88

TinyImageNet ResNet-18 56.41/79.75 49.33/74.13 50.78/75.01

Classification accuracies on the test set for different methods.

pmf obtains accuracies very close to floating point counterparts
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Summary

I We have introduced a projected stochastic gradient descent
algorithm to optimize the nn quantization problem.

I By showing our algorithm as a proximal version of
mean-field, we have also provided an mrf optimization
perspective to nn quantization.



Current Limitations

I Training time memory complexity is linear in |Q|.
I No theoretical proof for the convergence to a vertex when
β →∞.



Thank you!



First-order Approximation and Optimization

At iteration k ,

uk+1 = argmin
u∈S

L̃(uk ) +
〈
gk ,u− uk

〉
F

+
1

2η

∥∥∥u− uk
∥∥∥2
F
,

where η > 0 and gk is the (stochastic) gradient.



Proximal Mean-Field (pmf)

Algorithm

Require: K , b, {ηk}, ρ > 1,D, L̃
Ensure: w∗ ∈ Qm

1: ũ0 ∈ IRm×d, β ← 1 . Initialization
2: for k ← 0 . . .K do
3: uk ← softmax(βũk ) . Projection
4: Db = {(xi ,yi)}bi=1 ∼ D . Sample a mini-batch
5: gk

u ← ∇uL̃(u;Db)
∣∣
u=uk . Gradient w.r.t. u at uk

6: gk
ũ ← gk

u
∂u
∂ũ

∣∣
ũ=ũk . Gradient w.r.t. ũ at uk

7: ũk+1 ← ũk − ηkgk
ũ . Gradient descent on ũ

8: β ← ρβ . Increase β

9: w∗ ← hardmax(ũK )q . Quantization


	Proximal Mean-field

