
Proximal Mean-field for Neural Network
Quantization

Thalaiyasingam Ajanthan

University of Oxford

ANU, January 2019

Collaborators

Puneet K. Dokania Richard Hartley Philip Torr

Neural Network (nn) Quantization

Objective

I Learn a network while the parameters are restricted to a
small discrete set.

Why?

I Reduced memory and time complexity at inference time.
E.g. Binary ⇒ 32 times less memory

I Better generalization bounds? [Arora-2018]

I Robustness to adversarial examples?

Idea

I Formulate nn quantization as a discrete labelling problem.

nn quantization as mrf optimization

Neural Network (nn) Quantization

Objective

I Learn a network while the parameters are restricted to a
small discrete set.

Why?

I Reduced memory and time complexity at inference time.
E.g. Binary ⇒ 32 times less memory

I Better generalization bounds? [Arora-2018]

I Robustness to adversarial examples?

Idea

I Formulate nn quantization as a discrete labelling problem.

nn quantization as mrf optimization

Neural Network (nn) Quantization

Objective

I Learn a network while the parameters are restricted to a
small discrete set.

Why?

I Reduced memory and time complexity at inference time.
E.g. Binary ⇒ 32 times less memory

I Better generalization bounds? [Arora-2018]

I Robustness to adversarial examples?

Idea

I Formulate nn quantization as a discrete labelling problem.

nn quantization as mrf optimization

Neural Network (nn) Quantization

Objective

I Learn a network while the parameters are restricted to a
small discrete set.

Why?

I Reduced memory and time complexity at inference time.
E.g. Binary ⇒ 32 times less memory

I Better generalization bounds? [Arora-2018]

I Robustness to adversarial examples?

Idea

I Formulate nn quantization as a discrete labelling problem.

nn quantization as mrf optimization

nn Quantization as Discrete Labelling

min
w

L(w;D) :=
1

n

n∑
i=1

`(w; (xi ,yi)) ,

w ∈ Qm .

D Dataset (D = {xi ,yi}ni=1)

` Loss function (I/O mapping + cross-entropy)

w Learnable parameters (m)

Q Set of quantization levels (Q = {−1, 1})

wj ∈ Q

Difficulties

I Exponentially many feasible points: |Q|m with m ≈ 106.

I L is highly non-convex.

nn Quantization as Discrete Labelling

min
w

L(w;D) :=
1

n

n∑
i=1

`(w; (xi ,yi)) ,

w ∈ Qm .

D Dataset (D = {xi ,yi}ni=1)

` Loss function (I/O mapping + cross-entropy)

w Learnable parameters (m)

Q Set of quantization levels (Q = {−1, 1})

wj ∈ Q

Difficulties

I Exponentially many feasible points: |Q|m with m ≈ 106.

I L is highly non-convex.

nn Quantization as Discrete Labelling

min
w

L(w;D) :=
1

n

n∑
i=1

`(w; (xi ,yi)) ,

w ∈ Qm .

Difficulties

I Exponentially many feasible points: |Q|m with m ≈ 106.

I L is highly non-convex.

Idea

I Continuous relaxation of the solution space.

I Iteratively optimize the first-order approximation of L .

Lifting and Relaxation

Lifting: Indicator variables

uj :λ = 1 ⇔ wj = λ ∈ Q

For w ∈ Qm ,

w = uq ,

s.t. u ∈ V =

{
u

∑
λ uj :λ = 1, ∀ j

uj :λ ∈ {0, 1}, ∀ j , λ

}
,

where q is the vector of quantization levels.

Qm ⇔ V

Lifting and Relaxation

Lifting: Indicator variables

uj :λ = 1 ⇔ wj = λ ∈ Q

For w ∈ Qm ,

w = uq ,

s.t. u ∈ V =

{
u

∑
λ uj :λ = 1, ∀ j

uj :λ ∈ {0, 1}, ∀ j , λ

}
,

where q is the vector of quantization levels.

Qm ⇔ V

Lifting and Relaxation

Lifting: Indicator variables

uj :λ = 1 ⇔ wj = λ ∈ Q

For w ∈ Qm ,

w = uq ,

s.t. u ∈ V =

{
u

∑
λ uj :λ = 1, ∀ j

uj :λ ∈ {0, 1}, ∀ j , λ

}
,

where q is the vector of quantization levels.

Qm ⇔ V

Lifting and Relaxation

Relaxation

uj :λ = {0, 1} ⇒ uj :λ = [0, 1]

For w ∈ conv(Q)m ,

w = uq ,

s.t. u ∈ S =

{
u

∑
λ uj :λ = 1, ∀ j

uj :λ ∈ [0, 1], ∀ j , λ

}
,

where q is the vector of quantization levels.

I S decomposes over j .

uj :λ ∈ S is the probability of parameter wj taking label λ ∈ Q

Lifting and Relaxation

Relaxation

uj :λ = {0, 1} ⇒ uj :λ = [0, 1]

For w ∈ conv(Q)m ,

w = uq ,

s.t. u ∈ S =

{
u

∑
λ uj :λ = 1, ∀ j

uj :λ ∈ [0, 1], ∀ j , λ

}
,

where q is the vector of quantization levels.

I S decomposes over j .

uj :λ ∈ S is the probability of parameter wj taking label λ ∈ Q

Lifting and Relaxation

Relaxation

uj :λ = {0, 1} ⇒ uj :λ = [0, 1]

For w ∈ conv(Q)m ,

w = uq ,

s.t. u ∈ S =

{
u

∑
λ uj :λ = 1, ∀ j

uj :λ ∈ [0, 1], ∀ j , λ

}
,

where q is the vector of quantization levels.

I S decomposes over j .

uj :λ ∈ S is the probability of parameter wj taking label λ ∈ Q

Relaxed Optimization Problem

min
u

L̃(u;D) := L(uq;D) ,

u ∈ S .

I Any local minimum in the u-space is also a local minimum
in the relaxed w-space and vice versa.

min
u∈S

L̃(u;D) ≡ min
w∈ conv(Q)m

L(w;D)

Relaxed Optimization Problem

min
u

L̃(u;D) := L(uq;D) ,

u ∈ S .

I Any local minimum in the u-space is also a local minimum
in the relaxed w-space and vice versa.

min
u∈S

L̃(u;D) ≡ min
w∈ conv(Q)m

L(w;D)

Relaxed Optimization Problem

min
u

L̃(u;D) := L(uq;D) ,

u ∈ S .

I Any local minimum in the u-space is also a local minimum
in the relaxed w-space and vice versa.

min
u∈S

L̃(u;D) ≡ min
w∈ conv(Q)m

L(w;D)

Projected (Stochastic) Gradient Descent (pgd)

At iteration k ,

ũk+1 = uk − η gk , sgd

uk+1 = PS

(
ũk+1

)
,

where η > 0 and gk is the (stochastic) gradient evaluated at uk .

I Any off-the-shelf sgd algrorithm can be used.

I For softmax projection, pgd ≡ Proximal Mean-Field.

I Projection free algorithms may also be employed
[Lacoste-2012, Ajanthan-2017].

Projected (Stochastic) Gradient Descent (pgd)

At iteration k ,

ũk+1 = uk − η gk , sgd

uk+1 = PS

(
ũk+1

)
,

where η > 0 and gk is the (stochastic) gradient evaluated at uk .

I Any off-the-shelf sgd algrorithm can be used.

I For softmax projection, pgd ≡ Proximal Mean-Field.

I Projection free algorithms may also be employed
[Lacoste-2012, Ajanthan-2017].

Projected (Stochastic) Gradient Descent (pgd)

At iteration k ,

ũk+1 = uk − η gk , sgd

uk+1 = PS

(
ũk+1

)
,

where η > 0 and gk is the (stochastic) gradient evaluated at uk .

I Any off-the-shelf sgd algrorithm can be used.

I For softmax projection, pgd ≡ Proximal Mean-Field.

I Projection free algorithms may also be employed
[Lacoste-2012, Ajanthan-2017].

Projected (Stochastic) Gradient Descent (pgd)

At iteration k ,

ũk+1 = uk − η gk , sgd

uk+1 = PS

(
ũk+1

)
,

where η > 0 and gk is the (stochastic) gradient evaluated at uk .

I Any off-the-shelf sgd algrorithm can be used.

I For softmax projection, pgd ≡ Proximal Mean-Field.

I Projection free algorithms may also be employed
[Lacoste-2012, Ajanthan-2017].

Softmax Projection and Exploration

For each j ∈ {1 . . .m},

uk
j = softmax(βũk

j) ,

uk
j :λ =

eβ(ũ
k
j :λ)∑

µ∈Q eβ(ũ
k
j :µ)

∀λ ∈ Q ,

where β > 0.

I Preserves relative order
of uj :λ.

I Differentiable.

Ultimate objective

I A quantized solution ⇒ u ∈ V attained when β →∞.

Softmax ⇒ noisy projection to V

Softmax Projection and Exploration

For each j ∈ {1 . . .m},

uk
j = softmax(βũk

j) ,

uk
j :λ =

eβ(ũ
k
j :λ)∑

µ∈Q eβ(ũ
k
j :µ)

∀λ ∈ Q ,

where β > 0.

Ultimate objective

I A quantized solution ⇒ u ∈ V attained when β →∞.

Softmax ⇒ noisy projection to V

Softmax Projection and Exploration

For each j ∈ {1 . . .m},

uk
j = softmax(βũk

j) ,

uk
j :λ =

eβ(ũ
k
j :λ)∑

µ∈Q eβ(ũ
k
j :µ)

∀λ ∈ Q ,

where β > 0.

Ultimate objective

I A quantized solution ⇒ u ∈ V attained when β →∞.

Softmax ⇒ noisy projection to V

Softmax Projection and Exploration

For each j ∈ {1 . . .m},

uk
j = softmax(βũk

j) ,

uk
j :λ =

eβ(ũ
k
j :λ)∑

µ∈Q eβ(ũ
k
j :µ)

∀λ ∈ Q ,

where β > 0.

Ultimate objective

I A quantized solution ⇒ u ∈ V attained when β →∞.

Softmax ⇒ noisy projection to V

Mean-Field Method

Let L(w) be the energy (or loss), then

P(w) =
1

Z
e−L(w) .

I Mean-field approximates P(w) with a fully-factorized
distribution U (w) =

∏m
j=1 Uj (wj).

I From the probabilistic interpretation of u ∈ S,
Uj (wj = λ) = uj :λ, for each j ∈ {1 . . .m}.

Objective

argmin
u∈S

KL(u‖P) = argmin
u∈S

Eu[L(w)]−H (u) ,

where Eu[·] is the expectation over u and H (u) is the entropy.

Mean-Field Method

Let L(w) be the energy (or loss), then

P(w) =
1

Z
e−L(w) .

I Mean-field approximates P(w) with a fully-factorized
distribution U (w) =

∏m
j=1 Uj (wj).

I From the probabilistic interpretation of u ∈ S,
Uj (wj = λ) = uj :λ, for each j ∈ {1 . . .m}.

Objective

argmin
u∈S

KL(u‖P) = argmin
u∈S

Eu[L(w)]−H (u) ,

where Eu[·] is the expectation over u and H (u) is the entropy.

Mean-Field Method

Let L(w) be the energy (or loss), then

P(w) =
1

Z
e−L(w) .

I Mean-field approximates P(w) with a fully-factorized
distribution U (w) =

∏m
j=1 Uj (wj).

I From the probabilistic interpretation of u ∈ S,
Uj (wj = λ) = uj :λ, for each j ∈ {1 . . .m}.

Objective

argmin
u∈S

KL(u‖P) = argmin
u∈S

Eu[L(w)]−H (u) ,

where Eu[·] is the expectation over u and H (u) is the entropy.

Mean-Field Method

Let L(w) be the energy (or loss), then

P(w) =
1

Z
e−L(w) .

I Mean-field approximates P(w) with a fully-factorized
distribution U (w) =

∏m
j=1 Uj (wj).

I From the probabilistic interpretation of u ∈ S,
Uj (wj = λ) = uj :λ, for each j ∈ {1 . . .m}.

Objective

argmin
u∈S

KL(u‖P) = argmin
u∈S

Eu[L(w)]−H (u) ,

where Eu[·] is the expectation over u and H (u) is the entropy.

Mean-Field Method

Objective

argmin
u∈S

KL(u‖P) = argmin
u∈S

Eu[L(w)]−H (u) ,

where Eu[·] is the expectation over u and H (u) is the entropy.

Difficulty

I For a neural network L(w) has no explicit factorization.

Simple Idea

I Replace L(w) with its first-order approximation L̂k (w).

Mean-Field Method

Objective

argmin
u∈S

KL(u‖P) = argmin
u∈S

Eu[L(w)] −H (u) ,

where Eu[·] is the expectation over u and H (u) is the entropy.

Difficulty

I For a neural network L(w) has no explicit factorization.

Simple Idea

I Replace L(w) with its first-order approximation L̂k (w).

Mean-Field Method

Objective

argmin
u∈S

KL(u‖P) = argmin
u∈S

Eu[L(w)] −H (u) ,

where Eu[·] is the expectation over u and H (u) is the entropy.

Difficulty

I For a neural network L(w) has no explicit factorization.

Simple Idea

I Replace L(w) with its first-order approximation L̂k (w).

Softmax based pgd as Proximal Mean-Field (pmf)

At iteration k ,

uk+1 = softmax
(
β
(
uk − η gk

))
, pgd

uk+1 = argmin
u∈S

η Eu

[
L̂k (w)

]
−
〈
uk ,u

〉
F
− 1

β
H (u) , pmf

where η > 0 and β > 0.

I L̂k (w) is the first-order Taylor approximation of L at
wk = ukq.

I Negative of cosine similarity ⇒ proximal term.

I Entropy term vanishes when β →∞.

Softmax update is an exact fixed point of the pmf objective

Binary Connect [Courbariaux-2015] is a special case of pmf

Softmax based pgd as Proximal Mean-Field (pmf)
At iteration k ,

uk+1 = softmax
(
β
(
uk − η gk

))
, pgd

uk+1 = argmin
u∈S

η Eu

[
L̂k (w)

]
−
〈
uk ,u

〉
F
− 1

β
H (u) , pmf

where η > 0 and β > 0.

I L̂k (w) is the first-order Taylor approximation of L at
wk = ukq.

I Negative of cosine similarity ⇒ proximal term.

I Entropy term vanishes when β →∞.

Softmax update is an exact fixed point of the pmf objective

Binary Connect [Courbariaux-2015] is a special case of pmf

Softmax based pgd as Proximal Mean-Field (pmf)

At iteration k ,

uk+1 = softmax
(
β
(
uk − η gk

))
, pgd

uk+1 = argmin
u∈S

η Eu

[
L̂k (w)

]
−
〈
uk ,u

〉
F

− 1

β
H (u) , pmf

where η > 0 and β > 0.

I L̂k (w) is the first-order Taylor approximation of L at
wk = ukq.

I Negative of cosine similarity ⇒ proximal term.

I Entropy term vanishes when β →∞.

Softmax update is an exact fixed point of the pmf objective

Binary Connect [Courbariaux-2015] is a special case of pmf

Softmax based pgd as Proximal Mean-Field (pmf)

At iteration k ,

uk+1 = softmax
(
β
(
uk − η gk

))
, pgd

uk+1 = argmin
u∈S

η Eu

[
L̂k (w)

]
−
〈
uk ,u

〉
F

− 1
βH (u) , pmf

where η > 0 and β > 0.

I L̂k (w) is the first-order Taylor approximation of L at
wk = ukq.

I Negative of cosine similarity ⇒ proximal term.

I Entropy term vanishes when β →∞.

Softmax update is an exact fixed point of the pmf objective

Binary Connect [Courbariaux-2015] is a special case of pmf

Softmax based pgd as Proximal Mean-Field (pmf)

At iteration k ,

uk+1 = softmax
(
β
(
uk − η gk

))
, pgd

uk+1 = argmin
u∈S

η Eu

[
L̂k (w)

]
−
〈
uk ,u

〉
F
− 1

β
H (u) , pmf

where η > 0 and β > 0.

I L̂k (w) is the first-order Taylor approximation of L at
wk = ukq.

I Negative of cosine similarity ⇒ proximal term.

I Entropy term vanishes when β →∞.

Softmax update is an exact fixed point of the pmf objective

Binary Connect [Courbariaux-2015] is a special case of pmf

Softmax based pgd as Proximal Mean-Field (pmf)

At iteration k ,

uk+1 = softmax
(
β
(
uk − η gk

))
, pgd

uk+1 = argmin
u∈S

η Eu

[
L̂k (w)

]
−
〈
uk ,u

〉
F
− 1

β
H (u) , pmf

where η > 0 and β > 0.

I L̂k (w) is the first-order Taylor approximation of L at
wk = ukq.

I Negative of cosine similarity ⇒ proximal term.

I Entropy term vanishes when β →∞.

Softmax update is an exact fixed point of the pmf objective

Binary Connect [Courbariaux-2015] is a special case of pmf

Why MRF Perspective?

I Encoding parameter dependency:
I Tree-structured entropy [Ravikumar-2008].
I Second-order approximation of L.

I Connection to Bayesian deep learning methods.

I Uncertainty estimatation.

Why MRF Perspective?

I Encoding parameter dependency:
I Tree-structured entropy [Ravikumar-2008].
I Second-order approximation of L.

I Connection to Bayesian deep learning methods.

I Uncertainty estimatation.

Why MRF Perspective?

I Encoding parameter dependency:
I Tree-structured entropy [Ravikumar-2008].
I Second-order approximation of L.

I Connection to Bayesian deep learning methods.

I Uncertainty estimatation.

Results

Dataset Architecture
ref (32 bit) bc (1 bit) pmf (1 bit)
Top-1/5 (%) Top-1/5 (%) Top-1/5 (%)

MNIST
LeNet-300 98.55/99.93 98.05/99.93 98.24/99.97
LeNet-5 99.39/99.98 99.30/99.98 99.44/100.0

CIFAR-10
VGG-16 93.01/99.38 86.40/98.43 90.51/99.56
ResNet-18 94.64/99.78 91.60/99.74 92.55/99.80

CIFAR-100
VGG-16 70.33/88.58 43.70/73.43 61.52/85.83
ResNet-18 73.85/92.49 69.93/90.75 71.85/91.88

TinyImageNet ResNet-18 56.41/79.75 49.33/74.13 50.78/75.01

Classification accuracies on the test set for different methods.

pmf obtains accuracies very close to floating point counterparts

Results

Dataset Architecture
ref (32 bit) bc (1 bit) pmf (1 bit)
Top-1/5 (%) Top-1/5 (%) Top-1/5 (%)

MNIST
LeNet-300 98.55/99.93 98.05/99.93 98.24/99.97
LeNet-5 99.39/99.98 99.30/99.98 99.44/100.0

CIFAR-10
VGG-16 93.01/99.38 86.40/98.43 90.51/99.56
ResNet-18 94.64/99.78 91.60/99.74 92.55/99.80

CIFAR-100
VGG-16 70.33/88.58 43.70/73.43 61.52/85.83
ResNet-18 73.85/92.49 69.93/90.75 71.85/91.88

TinyImageNet ResNet-18 56.41/79.75 49.33/74.13 50.78/75.01

Classification accuracies on the test set for different methods.

pmf obtains accuracies very close to floating point counterparts

Results

0 50 100 150 200 250 300
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

REF
BC
PICM
PMF

0 50 100 150 200 250 300
Epochs

0

20

40

60

80

100

Va
lid

at
io

n
Ac

cu
ra

cy

REF
BC
PICM
PMF

CIFAR-10, ResNet-18

0 50 100 150 200 250 300
Epochs

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

REF
BC
PICM
PMF

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

80

Va
lid

at
io

n
Ac

cu
ra

cy

REF
BC
PICM
PMF

CIFAR-100, ResNet-18

pmf is less noisy and closely resembles the reference network

Results

0 50 100 150 200 250 300
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

REF
BC
PICM
PMF

0 50 100 150 200 250 300
Epochs

0

20

40

60

80

100

Va
lid

at
io

n
Ac

cu
ra

cy

REF
BC
PICM
PMF

CIFAR-10, ResNet-18

0 50 100 150 200 250 300
Epochs

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

REF
BC
PICM
PMF

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

80

Va
lid

at
io

n
Ac

cu
ra

cy

REF
BC
PICM
PMF

CIFAR-100, ResNet-18

pmf is less noisy and closely resembles the reference network

Summary

I We have introduced a projected stochastic gradient descent
algorithm to optimize the nn quantization problem.

I By showing our algorithm as a proximal version of
mean-field, we have also provided an mrf optimization
perspective to nn quantization.

Current Limitations

I Training time memory complexity is linear in |Q|.
I No theoretical proof for the convergence to a vertex when
β →∞.

Thank you!

First-order Approximation and Optimization

At iteration k ,

uk+1 = argmin
u∈S

L̃(uk) +
〈
gk ,u− uk

〉
F

+
1

2η

∥∥∥u− uk
∥∥∥2
F
,

where η > 0 and gk is the (stochastic) gradient.

Proximal Mean-Field (pmf)

Algorithm

Require: K , b, {ηk}, ρ > 1,D, L̃
Ensure: w∗ ∈ Qm

1: ũ0 ∈ IRm×d, β ← 1 . Initialization
2: for k ← 0 . . .K do
3: uk ← softmax(βũk) . Projection
4: Db = {(xi ,yi)}bi=1 ∼ D . Sample a mini-batch
5: gk

u ← ∇uL̃(u;Db)
∣∣
u=uk . Gradient w.r.t. u at uk

6: gk
ũ ← gk

u
∂u
∂ũ

∣∣
ũ=ũk . Gradient w.r.t. ũ at uk

7: ũk+1 ← ũk − ηkgk
ũ . Gradient descent on ũ

8: β ← ρβ . Increase β

9: w∗ ← hardmax(ũK)q . Quantization

	Proximal Mean-field

