Proximal Mean-field for Neural Network Quantization

Thalaiyasingam Ajanthan

University of Oxford

ANU, January 2019

Australian National University

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Collaborators

Puneet K. Dokania

Richard Hartley

Philip Torr

- Objective
 - Learn a network while the parameters are restricted to a small discrete set.

Why?

- ▶ Reduced memory and time complexity at inference time. E.g. Binary ⇒ 32 times less memory
- ▶ Better generalization bounds? [Arora-2018]
- ▶ Robustness to adversarial examples?

Idea

Formulate NN quantization as a discrete labelling problem.

Objective

• Learn a network while the parameters are restricted to a small discrete set.

Why?

- ▶ Reduced memory and time complexity at inference time.
 E.g. Binary ⇒ 32 times less memory
- ▶ Better generalization bounds? [Arora-2018]
- ▶ Robustness to adversarial examples?

Idea

Formulate NN quantization as a discrete labelling problem.

Objective

• Learn a network while the parameters are restricted to a small discrete set.

Why?

- ▶ Reduced memory and time complexity at inference time.
 E.g. Binary ⇒ 32 times less memory
- ▶ Better generalization bounds? [Arora-2018]
- ▶ Robustness to adversarial examples?

Idea

▶ Formulate NN quantization as a discrete labelling problem.

Objective

• Learn a network while the parameters are restricted to a small discrete set.

Why?

- ▶ Reduced memory and time complexity at inference time. E.g. Binary ⇒ 32 times less memory
- ▶ Better generalization bounds? [Arora-2018]
- ▶ Robustness to adversarial examples?

Idea

▶ Formulate NN quantization as a discrete labelling problem.

NN quantization as MRF optimization

NN Quantization as Discrete Labelling

$$\min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) := \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,$$
$$\mathbf{w} \in \mathcal{Q}^m .$$

 \mathcal{D} Dataset $(\mathcal{D} = {\mathbf{x}_i, \mathbf{y}_i}_{i=1}^n)$

- ℓ Loss function (I/O mapping + cross-entropy)
- w Learnable parameters (m)
- \mathcal{Q} Set of quantization levels $(\mathcal{Q} = \{-1, 1\})$

Difficulties

- Exponentially many feasible points: $|\mathcal{Q}|^m$ with $m \approx 10^6$.
- \blacktriangleright L is highly non-convex.

$$w_j \in \mathcal{Q}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

NN Quantization as Discrete Labelling

$$\min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) := \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,$$
$$\mathbf{w} \in \mathcal{Q}^m .$$

 \mathcal{D} Dataset $(\mathcal{D} = {\mathbf{x}_i, \mathbf{y}_i}_{i=1}^n)$

- ℓ Loss function (I/O mapping + cross-entropy)
- w Learnable parameters (m)
- Q Set of quantization levels $(Q = \{-1, 1\})$

Difficulties

- Exponentially many feasible points: $|\mathcal{Q}|^m$ with $m \approx 10^6$.
- \blacktriangleright L is highly non-convex.

$$w_j \in \mathcal{Q}$$

NN Quantization as Discrete Labelling

$$\min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) := \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,$$
$$\mathbf{w} \in \mathcal{Q}^m .$$

Difficulties

- Exponentially many feasible points: $|\mathcal{Q}|^m$ with $m \approx 10^6$.
- \blacktriangleright L is highly non-convex.

Idea

- ▶ Continuous relaxation of the solution space.
- \blacktriangleright Iteratively optimize the first-order approximation of L .

Lifting: Indicator variables

 $u_{j:\lambda} = 1 \quad \Leftrightarrow \quad w_j = \lambda \in \mathcal{Q}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For $\mathbf{w} \in \mathcal{Q}^m$,

$$\mathbf{w} = \mathbf{u}\mathbf{q} ,$$

s.t. $\mathbf{u} \in \mathcal{V} = \left\{ \begin{array}{cc} \mathbf{u} \mid \sum_{\lambda} u_{j:\lambda} = 1, & \forall j \\ u_{j:\lambda} \in \{0,1\}, & \forall j, \lambda \end{array} \right\} ,$

where \mathbf{q} is the vector of quantization levels.

Lifting: Indicator variables

 $u_{j:\lambda} = 1 \quad \Leftrightarrow \quad w_j = \lambda \in \mathcal{Q}$

For $\mathbf{w} \in \mathcal{Q}^m$,

$$\begin{split} \mathbf{w} &= \mathbf{u}\mathbf{q} \ ,\\ \text{s.t.} \quad \mathbf{u} \in \mathcal{V} = \left\{ \begin{array}{cc} \mathbf{u} & \sum_{\lambda} u_{j:\lambda} = 1, & \forall j \\ u_{j:\lambda} \in \{0,1\}, & \forall j, \lambda \end{array} \right\} \ , \end{split}$$

where \mathbf{q} is the vector of quantization levels.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lifting: Indicator variables

 $u_{j:\lambda} = 1 \quad \Leftrightarrow \quad w_j = \lambda \in \mathcal{Q}$

For $\mathbf{w} \in \mathcal{Q}^m$,

$$\begin{split} \mathbf{w} &= \mathbf{u}\mathbf{q} \ ,\\ \text{s.t.} \quad \mathbf{u} \in \mathcal{V} = \left\{ \begin{array}{cc} \mathbf{u} & \sum_{\lambda} u_{j:\lambda} = 1, \quad \forall j \\ u_{j:\lambda} \in \{0,1\}, \quad \forall j, \lambda \end{array} \right\} \ , \end{split}$$

where \mathbf{q} is the vector of quantization levels.

 $\mathcal{Q}^m \Leftrightarrow \mathcal{V}$

Relaxation

$$u_{j:\lambda} = \{0,1\} \quad \Rightarrow \quad u_{j:\lambda} = [0,1]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For $\mathbf{w} \in \operatorname{conv}(\mathcal{Q})^m$,

$$\begin{split} \mathbf{w} &= \mathbf{u}\mathbf{q} \;, \\ \text{s.t.} \quad \mathbf{u} \in \mathcal{S} = \left\{ \begin{array}{cc} \mathbf{u} \; \left| \begin{array}{c} \sum_{\lambda} u_{j:\lambda} = 1, & \forall j \\ u_{j:\lambda} \in [0,1], & \forall j, \lambda \end{array} \right\} \;, \end{split} \right. \end{split}$$

where \mathbf{q} is the vector of quantization levels.

• S decomposes over j.

Relaxation

$$u_{j:\lambda} = \{0,1\} \quad \Rightarrow \quad u_{j:\lambda} = [0,1]$$

For $\mathbf{w} \in \operatorname{conv}(\mathcal{Q})^m$,

$$\begin{split} \mathbf{w} &= \mathbf{u}\mathbf{q} \ ,\\ \text{s.t.} \quad \mathbf{u} \in \boldsymbol{\mathcal{S}} = \left\{ \begin{array}{cc} \mathbf{u} \ \left| \begin{array}{c} \sum_{\lambda} u_{j:\lambda} = 1, & \forall j \\ u_{j:\lambda} \in [0,1], & \forall j, \lambda \end{array} \right. \right\} \right. \end{split}$$

where ${\bf q}$ is the vector of quantization levels.

 \triangleright S decomposes over j.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Relaxation

$$u_{j:\lambda} = \{0,1\} \quad \Rightarrow \quad u_{j:\lambda} = [0,1]$$

For $\mathbf{w} \in \operatorname{conv}(\mathcal{Q})^m$,

$$\mathbf{w} = \mathbf{u}\mathbf{q} ,$$

s.t. $\mathbf{u} \in \mathcal{S} = \left\{ \begin{array}{cc} \mathbf{u} \mid \sum_{\lambda} u_{j:\lambda} = 1, & \forall j \\ u_{j:\lambda} \in [0,1], & \forall j, \lambda \end{array} \right\}$

where \mathbf{q} is the vector of quantization levels.

 \triangleright S decomposes over j.

 $u_{j:\lambda} \in \mathcal{S}$ is the probability of parameter w_j taking label $\lambda \in \mathcal{Q}$

Relaxed Optimization Problem

$$\min_{\mathbf{u}} \tilde{L}(\mathbf{u}; \mathcal{D}) := L(\mathbf{u}\mathbf{q}; \mathcal{D}) ,$$
$$\mathbf{u} \in \mathcal{S} .$$

Any local minimum in the u-space is also a local minimum in the relaxed w-space and vice versa.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Relaxed Optimization Problem

$$\min_{\mathbf{u}} \tilde{L}(\mathbf{u}; \mathcal{D}) := L(\mathbf{u}\mathbf{q}; \mathcal{D}) ,$$
$$\mathbf{u} \in \mathcal{S} .$$

Any local minimum in the u-space is also a local minimum in the relaxed w-space and vice versa.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Relaxed Optimization Problem

$$\min_{\mathbf{u}} \tilde{L}(\mathbf{u}; \mathcal{D}) := L(\mathbf{u}\mathbf{q}; \mathcal{D}) ,$$
$$\mathbf{u} \in \mathcal{S} .$$

Any local minimum in the u-space is also a local minimum in the relaxed w-space and vice versa.

$$\min_{\mathbf{u}\in\mathcal{S}}\tilde{L}(\mathbf{u};\mathcal{D})\equiv\min_{\mathbf{w}\in\operatorname{conv}(\mathcal{Q})^m}L(\mathbf{w};\mathcal{D})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

At iteration k,

$$\begin{split} \tilde{\mathbf{u}}^{k+1} &= \mathbf{u}^k - \eta \, \mathbf{g}^k \,, \quad \frac{\text{SGD}}{\mathbf{u}^{k+1}} \\ \mathbf{u}^{k+1} &= P_{\mathcal{S}} \left(\tilde{\mathbf{u}}^{k+1} \right) \,, \end{split}$$

where $\eta > 0$ and \mathbf{g}^k is the (stochastic) gradient evaluated at \mathbf{u}^k .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Any off-the-shelf SGD algorithm can be used.

- For softmax projection, PGD \equiv Proximal Mean-Field.
- Projection free algorithms may also be employed [Lacoste-2012, Ajanthan-2017].

At iteration k,

$$\begin{split} \tilde{\mathbf{u}}^{k+1} &= \mathbf{u}^k - \eta \, \mathbf{g}^k \,, \quad \frac{\text{SGD}}{\mathbf{u}^{k+1}} \\ \mathbf{u}^{k+1} &= P_{\mathcal{S}} \left(\tilde{\mathbf{u}}^{k+1} \right) \,, \end{split}$$

where $\eta > 0$ and \mathbf{g}^k is the (stochastic) gradient evaluated at \mathbf{u}^k .

- ► Any off-the-shelf SGD algrorithm can be used.
- For softmax projection, $PGD \equiv Proximal Mean-Field$.
- Projection free algorithms may also be employed [Lacoste-2012, Ajanthan-2017].

At iteration k,

$$\begin{split} \tilde{\mathbf{u}}^{k+1} &= \mathbf{u}^k - \eta \, \mathbf{g}^k \,, \quad \text{SGD} \\ \mathbf{u}^{k+1} &= P_{\mathcal{S}} \left(\tilde{\mathbf{u}}^{k+1} \right) \,, \end{split}$$

where $\eta > 0$ and \mathbf{g}^k is the (stochastic) gradient evaluated at \mathbf{u}^k .

- ▶ Any off-the-shelf SGD algorithm can be used.
- ▶ For softmax projection, $PGD \equiv Proximal Mean-Field$.
- Projection free algorithms may also be employed [Lacoste-2012, Ajanthan-2017].

At iteration k,

$$\begin{split} \tilde{\mathbf{u}}^{k+1} &= \mathbf{u}^k - \eta \, \mathbf{g}^k \,, \quad \text{SGD} \\ \mathbf{u}^{k+1} &= P_{\mathcal{S}} \left(\tilde{\mathbf{u}}^{k+1} \right) \,, \end{split}$$

where $\eta > 0$ and \mathbf{g}^k is the (stochastic) gradient evaluated at \mathbf{u}^k .

- ▶ Any off-the-shelf SGD algorithm can be used.
- ▶ For softmax projection, $PGD \equiv Proximal Mean-Field$.
- Projection free algorithms may also be employed [Lacoste-2012, Ajanthan-2017].

For each
$$j \in \{1 \dots m\}$$
,
 $\mathbf{u}_{j}^{k} = \operatorname{softmax}(\beta \tilde{\mathbf{u}}_{j}^{k}) ,$
 $u_{j:\lambda}^{k} = \frac{e^{\beta(\tilde{u}_{j:\lambda}^{k})}}{\sum_{\mu \in \mathcal{Q}} e^{\beta(\tilde{u}_{j:\mu}^{k})}} \quad \forall \lambda \in \mathcal{Q} ,$

• Preserves relative order of $u_{j:\lambda}$.

where $\beta > 0$.

Ultimate objective

• A quantized solution \Rightarrow $\mathbf{u} \in \mathcal{V}$ attained when $\beta \to \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

For each
$$j \in \{1 \dots m\}$$
,
 $\mathbf{u}_{j}^{k} = \operatorname{softmax}(\beta \tilde{\mathbf{u}}_{j}^{k}) ,$
 $u_{j:\lambda}^{k} = \frac{e^{\beta(\tilde{u}_{j:\lambda}^{k})}}{\sum_{\mu \in \mathcal{Q}} e^{\beta(\tilde{u}_{j:\mu}^{k})}} \quad \forall \lambda \in \mathcal{Q} ,$

where $\beta > 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ultimate objective

• A quantized solution \Rightarrow $\mathbf{u} \in \mathcal{V}$ attained when $\beta \to \infty$.

For each
$$j \in \{1 \dots m\}$$
,
 $\mathbf{u}_{j}^{k} = \operatorname{softmax}(\beta \tilde{\mathbf{u}}_{j}^{k}) ,$
 $u_{j:\lambda}^{k} = \frac{e^{\beta(\tilde{u}_{j:\lambda}^{k})}}{\sum_{\mu \in \mathcal{Q}} e^{\beta(\tilde{u}_{j:\mu}^{k})}} \quad \forall \lambda \in \mathcal{Q} ,$

where $\beta > 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ultimate objective

► A quantized solution \Rightarrow **u** $\in \mathcal{V}$ attained when $\beta \to \infty$.

For each
$$j \in \{1 \dots m\}$$
,
 $\mathbf{u}_{j}^{k} = \operatorname{softmax}(\beta \tilde{\mathbf{u}}_{j}^{k}) ,$
 $u_{j:\lambda}^{k} = \frac{e^{\beta(\tilde{u}_{j:\lambda}^{k})}}{\sum_{\mu \in \mathcal{Q}} e^{\beta(\tilde{u}_{j:\mu}^{k})}} \quad \forall \lambda \in \mathcal{Q} ,$

where $\beta > 0$.

Ultimate objective

► A quantized solution \Rightarrow **u** $\in \mathcal{V}$ attained when $\beta \to \infty$.

Softmax \Rightarrow noisy projection to \mathcal{V}

Let $L(\mathbf{w})$ be the energy (or loss), then

$$P(\mathbf{w}) = \frac{1}{Z} e^{-L(\mathbf{w})}$$

- Mean-field approximates $P(\mathbf{w})$ with a fully-factorized distribution $U(\mathbf{w}) = \prod_{j=1}^{m} U_j(w_j)$.
- From the probabilistic interpretation of $\mathbf{u} \in S$, $U_j(w_j = \lambda) = u_{j:\lambda}$, for each $j \in \{1 \dots m\}$.

Objective

 $\underset{\mathbf{u}\in\mathcal{S}}{\operatorname{argmin}} \ \operatorname{KL}(\mathbf{u}\|\mathbf{P}) = \underset{\mathbf{u}\in\mathcal{S}}{\operatorname{argmin}} \ \mathbb{E}_{\mathbf{u}}[L(\mathbf{w})] - H(\mathbf{u}) \ ,$

・ロット (雪) (日) (日) (日)

Let $L(\mathbf{w})$ be the energy (or loss), then

$$P(\mathbf{w}) = \frac{1}{Z} e^{-L(\mathbf{w})}$$

٠

うして ふゆ く 山 マ ふ し マ う く し マ

• Mean-field approximates $P(\mathbf{w})$ with a fully-factorized distribution $U(\mathbf{w}) = \prod_{j=1}^{m} U_j(w_j)$.

From the probabilistic interpretation of $\mathbf{u} \in S$, $U_j(w_j = \lambda) = u_{j:\lambda}$, for each $j \in \{1 \dots m\}$.

Objective

 $\underset{\mathbf{u}\in\mathcal{S}}{\operatorname{argmin}} \operatorname{KL}(\mathbf{u}\|\mathbf{P}) = \underset{\mathbf{u}\in\mathcal{S}}{\operatorname{argmin}} \mathbb{E}_{\mathbf{u}}[L(\mathbf{w})] - H(\mathbf{u}) ,$

Let $L(\mathbf{w})$ be the energy (or loss), then

$$P(\mathbf{w}) = \frac{1}{Z}e^{-L(\mathbf{w})}$$

٠

うして ふゆ く 山 マ ふ し マ う く し マ

- Mean-field approximates $P(\mathbf{w})$ with a fully-factorized distribution $U(\mathbf{w}) = \prod_{j=1}^{m} U_j(w_j)$.
- From the probabilistic interpretation of $\mathbf{u} \in S$, $U_j(w_j = \lambda) = u_{j:\lambda}$, for each $j \in \{1 \dots m\}$.

Objective

$$\underset{\mathbf{u}\in\mathcal{S}}{\operatorname{argmin}} \operatorname{KL}(\mathbf{u}\|\mathbf{P}) = \underset{\mathbf{u}\in\mathcal{S}}{\operatorname{argmin}} \mathbb{E}_{\mathbf{u}}[L(\mathbf{w})] - H(\mathbf{u}) ,$$

Let $L(\mathbf{w})$ be the energy (or loss), then

$$P(\mathbf{w}) = \frac{1}{Z} e^{-L(\mathbf{w})}$$

٠

うして ふゆ く 山 マ ふ し マ う く し マ

- Mean-field approximates $P(\mathbf{w})$ with a fully-factorized distribution $U(\mathbf{w}) = \prod_{j=1}^{m} U_j(w_j)$.
- From the probabilistic interpretation of $\mathbf{u} \in S$, $U_j(w_j = \lambda) = u_{j:\lambda}$, for each $j \in \{1 \dots m\}$.

Objective

$$\underset{\mathbf{u}\in\mathcal{S}}{\operatorname{argmin}} \operatorname{KL}(\mathbf{u} \| \mathbf{P}) = \underset{\mathbf{u}\in\mathcal{S}}{\operatorname{argmin}} \mathbb{E}_{\mathbf{u}}[L(\mathbf{w})] - H(\mathbf{u}) ,$$

Objective

 $\label{eq:constraint} \begin{array}{l} \mathop{\rm argmin}_{\mathbf{u}\in\mathcal{S}} \ \operatorname{KL}(\mathbf{u}\|\mathbf{P}) = \mathop{\rm argmin}_{\mathbf{u}\in\mathcal{S}} \ \mathbb{E}_{\mathbf{u}}[L(\mathbf{w})] - H(\mathbf{u}) \ , \end{array}$ where $\mathbb{E}_{\mathbf{u}}[\cdot]$ is the expectation over \mathbf{u} and $H(\mathbf{u})$ is the entropy. Difficulty

For a neural network $L(\mathbf{w})$ has no explicit factorization.

Simple Idea

▶ Replace $L(\mathbf{w})$ with its first-order approximation $\hat{L}^k(\mathbf{w})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Objective

 $\underset{\mathbf{u} \in \mathcal{S}}{\operatorname{argmin}} \quad \underset{\mathbf{u} \in \mathcal{S}}{\operatorname{KL}(\mathbf{u} \| \mathbf{P})} = \underset{\mathbf{u} \in \mathcal{S}}{\operatorname{argmin}} \quad \underset{\mathbf{u} \in \mathcal{S}}{\mathbb{E}_{\mathbf{u}}[L(\mathbf{w})]} - H(\mathbf{u}) ,$ where $\mathbb{E}_{\mathbf{u}}[\cdot]$ is the expectation over \mathbf{u} and $H(\mathbf{u})$ is the entropy. Difficulty

For a neural network $L(\mathbf{w})$ has no explicit factorization.

Simple Idea

Replace $L(\mathbf{w})$ with its first-order approximation $\hat{L}^k(\mathbf{w})$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Objective

 $\underset{\mathbf{u} \in \mathcal{S}}{\operatorname{argmin}} \quad \underset{\mathbf{u} \in \mathcal{S}}{\operatorname{KL}(\mathbf{u} \| \mathbf{P})} = \underset{\mathbf{u} \in \mathcal{S}}{\operatorname{argmin}} \quad \underset{\mathbf{u} \in \mathcal{S}}{\mathbb{E}_{\mathbf{u}}[L(\mathbf{w})]} - H(\mathbf{u}) ,$ where $\mathbb{E}_{\mathbf{u}}[\cdot]$ is the expectation over \mathbf{u} and $H(\mathbf{u})$ is the entropy. Difficulty

▶ For a neural network $L(\mathbf{w})$ has no explicit factorization.

Simple Idea

▶ Replace $L(\mathbf{w})$ with its first-order approximation $\hat{L}^k(\mathbf{w})$.

At iteration k,

$$\begin{split} \mathbf{u}^{k+1} &= \operatorname{softmax} \left(\beta \left(\mathbf{u}^k - \eta \, \mathbf{g}^k \right) \right) \ , \quad \text{PGD} \\ \mathbf{u}^{k+1} &= \operatornamewithlimits{argmin}_{\mathbf{u} \in \mathcal{S}} \eta \, \mathbb{E}_{\mathbf{u}} \left[\hat{L}^k(\mathbf{w}) \right] - \left\langle \mathbf{u}^k, \mathbf{u} \right\rangle_F - \frac{1}{\beta} H(\mathbf{u}) \ , \quad \text{PMF} \\ \text{where } \eta > 0 \text{ and } \beta > 0. \end{split}$$

 $L^{k}(\mathbf{w})$ is the first-order Taylor approximation of L at $\mathbf{w}^{k} = \mathbf{u}^{k}\mathbf{q}$.

ション ふゆ さい シャリン しょうくしゃ

- Negative of cosine similarity \Rightarrow proximal term.
- Entropy term vanishes when $\beta \rightarrow \infty$.

Softmax based PGD as Proximal Mean-Field (PMF) At iteration k,

$$\begin{aligned} \mathbf{u}^{k+1} &= \operatorname{softmax} \left(\beta \left(\mathbf{u}^k - \eta \, \mathbf{g}^k \right) \right) \ , \quad \text{PGD} \\ \mathbf{u}^{k+1} &= \operatorname{argmin}_{\mathbf{u} \in \mathcal{S}} \qquad \eta \, \mathbb{E}_{\mathbf{u}} \left[\hat{L}^k(\mathbf{w}) \right] \qquad - \left\langle \mathbf{u}^k, \mathbf{u} \right\rangle_F - \frac{1}{\beta} H(\mathbf{u}) \ , \quad \text{PMF} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\eta > 0$ and $\beta > 0$.

- ▶ $\hat{L}^k(\mathbf{w})$ is the first-order Taylor approximation of L at $\mathbf{w}^k = \mathbf{u}^k \mathbf{q}$.
- Negative of cosine similarity \Rightarrow proximal term.
- Entropy term vanishes when $\beta \to \infty$.

At iteration k,

$$\mathbf{u}^{k+1} = \operatorname{softmax} \left(\beta \left(\mathbf{u}^{k} - \eta \, \mathbf{g}^{k} \right) \right) , \quad \operatorname{PGD} \\ \mathbf{u}^{k+1} = \operatorname{argmin}_{\mathbf{u} \in \mathcal{S}} \eta \, \mathbb{E}_{\mathbf{u}} \left[\hat{L}^{k}(\mathbf{w}) \right] - \left\langle \mathbf{u}^{k}, \mathbf{u} \right\rangle_{F} - \frac{1}{\beta} H(\mathbf{u}) , \quad \operatorname{PMF}$$

where $\eta > 0$ and $\beta > 0$.

▶ $\hat{L}^k(\mathbf{w})$ is the first-order Taylor approximation of L at $\mathbf{w}^k = \mathbf{u}^k \mathbf{q}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- ▶ Negative of cosine similarity \Rightarrow proximal term.
- Entropy term vanishes when $\beta \to \infty$.

At iteration k,

$$\begin{split} \mathbf{u}^{k+1} &= \operatorname{softmax} \left(\beta \left(\mathbf{u}^k - \eta \, \mathbf{g}^k \right) \right) \ , \quad \text{PGD} \\ \mathbf{u}^{k+1} &= \operatorname*{argmin}_{\mathbf{u} \in \mathcal{S}} \eta \, \mathbb{E}_{\mathbf{u}} \left[\hat{L}^k(\mathbf{w}) \right] - \left\langle \mathbf{u}^k, \mathbf{u} \right\rangle_F \quad -\frac{1}{\beta} H(\mathbf{u}) \quad , \quad \text{PMF} \end{split}$$

where $\eta > 0$ and $\beta > 0$.

▶ $\hat{L}^k(\mathbf{w})$ is the first-order Taylor approximation of L at $\mathbf{w}^k = \mathbf{u}^k \mathbf{q}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Negative of cosine similarity \Rightarrow proximal term.
- Entropy term vanishes when $\beta \to \infty$.

At iteration k,

$$\begin{split} \mathbf{u}^{k+1} &= \operatorname{softmax} \left(\beta \left(\mathbf{u}^k - \eta \, \mathbf{g}^k \right) \right) \;, \quad \text{PGD} \\ \mathbf{u}^{k+1} &= \operatornamewithlimits{argmin}_{\mathbf{u} \in \mathcal{S}} \; \eta \, \mathbb{E}_{\mathbf{u}} \left[\hat{L}^k(\mathbf{w}) \right] - \left\langle \mathbf{u}^k, \mathbf{u} \right\rangle_F - \frac{1}{\beta} H(\mathbf{u}) \;, \quad \text{PMF} \end{split}$$

where $\eta > 0$ and $\beta > 0$.

▶ $\hat{L}^k(\mathbf{w})$ is the first-order Taylor approximation of L at $\mathbf{w}^k = \mathbf{u}^k \mathbf{q}$.

- Negative of cosine similarity \Rightarrow proximal term.
- Entropy term vanishes when $\beta \to \infty$.

Softmax update is an exact fixed point of the PMF objective

At iteration k,

$$\begin{split} \mathbf{u}^{k+1} &= \operatorname{softmax} \left(\beta \left(\mathbf{u}^k - \eta \, \mathbf{g}^k \right) \right) \;, \quad \text{PGD} \\ \mathbf{u}^{k+1} &= \operatornamewithlimits{argmin}_{\mathbf{u} \in \mathcal{S}} \; \eta \, \mathbb{E}_{\mathbf{u}} \left[\hat{L}^k(\mathbf{w}) \right] - \left\langle \mathbf{u}^k, \mathbf{u} \right\rangle_F - \frac{1}{\beta} H(\mathbf{u}) \;, \quad \text{PMF} \end{split}$$

where $\eta > 0$ and $\beta > 0$.

▶ $\hat{L}^k(\mathbf{w})$ is the first-order Taylor approximation of L at $\mathbf{w}^k = \mathbf{u}^k \mathbf{q}$.

- Negative of cosine similarity \Rightarrow proximal term.
- Entropy term vanishes when $\beta \to \infty$.

Softmax update is an exact fixed point of the PMF objective

Binary Connect [Courbariaux-2015] is a special case of PMF

Why MRF Perspective?

• Encoding parameter dependency:

- ▶ Tree-structured entropy [Ravikumar-2008].
- Second-order approximation of *L*.
- Connection to Bayesian deep learning methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

▶ Uncertainty estimatation.

Why MRF Perspective?

• Encoding parameter dependency:

- ► Tree-structured entropy [Ravikumar-2008].
- Second-order approximation of L.
- ▶ Connection to Bayesian deep learning methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

▶ Uncertainty estimatation.

Why MRF Perspective?

• Encoding parameter dependency:

- ► Tree-structured entropy [Ravikumar-2008].
- Second-order approximation of *L*.
- ▶ Connection to Bayesian deep learning methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

▶ Uncertainty estimatation.

Dataset	Architecture	REF <mark>(32 bit)</mark> Top-1/5 (%)	вс <mark>(1 bit)</mark> Top-1/5 (%)	РМF <mark>(1 bit)</mark> Тор-1/5 (%)
MNIST	LeNet-300	98.55/99.93	98.05/99.93	$\frac{98.24}{99.97}$
	LeNet-5	99.39/99.98	99.30/99.98	$\frac{99.44}{100.0}$
CIFAR-10	VGG-16	93.01/99.38	86.40/98.43	90.51/99.56
	ResNet-18	94.64/99.78	91.60/99.74	92.55/99.80
CIFAR-100	VGG-16	70.33/88.58	43.70/73.43	61.52/85.83
	ResNet-18	73.85/92.49	69.93/90.75	71.85/91.88
TinyImageNet	ResNet-18	56.41/79.75	49.33/74.13	50.78 /75.01

Classification accuracies on the test set for different methods.

Dataset	Architecture	REF <mark>(32 bit)</mark> Top-1/5 (%)	вс <mark>(1 bit)</mark> Top-1/5 (%)	РМF <mark>(1 bit)</mark> Тор-1/5 (%)
MNIST	LeNet-300	98.55/99.93	98.05/99.93	$\frac{98.24}{99.97}$
	LeNet-5	99.39/99.98	99.30/99.98	$\frac{99.44}{100.0}$
CIFAR-10	VGG-16	93.01/99.38	86.40/98.43	90.51/99.56
	ResNet-18	94.64/99.78	91.60/99.74	92.55/99.80
CIFAR-100	VGG-16	70.33/88.58	43.70/73.43	61.52/85.83
	ResNet-18	73.85/92.49	69.93/90.75	71.85/91.88
TinyImageNet	ResNet-18	56.41/79.75	49.33/74.13	50.78 /75.01

Classification accuracies on the test set for different methods.

PMF obtains accuracies very close to floating point counterparts

CIFAR-10, ResNet-18

CIFAR-100, ResNet-18

• • • • • • • •

PMF is less noisy and closely resembles the reference network

Summary

▶ We have introduced a projected stochastic gradient descent algorithm to optimize the NN quantization problem.

・ロト・日本・モート モー うへで

 By showing our algorithm as a proximal version of mean-field, we have also provided an MRF optimization perspective to NN quantization.

Current Limitations

- Training time memory complexity is linear in $|\mathcal{Q}|$.
- ▶ No theoretical proof for the convergence to a vertex when $\beta \to \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you!

(ロ)、

First-order Approximation and Optimization

At iteration k,

$$\mathbf{u}^{k+1} = \operatorname*{argmin}_{\mathbf{u}\in\mathcal{S}} \tilde{L}(\mathbf{u}^k) + \left\langle \mathbf{g}^k, \mathbf{u} - \mathbf{u}^k \right\rangle_F + \frac{1}{2\eta} \left\| \mathbf{u} - \mathbf{u}^k \right\|_F^2,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

where $\eta > 0$ and \mathbf{g}^k is the (stochastic) gradient.

Proximal Mean-Field (PMF)

Algorithm

Require: $K, b, \{\eta^k\}, \rho > 1, \mathcal{D}, L$ Ensure: $\mathbf{w}^* \in \mathcal{Q}^m$ 1: $\tilde{\mathbf{u}}^0 \in \mathbb{R}^{m \times d}$, $\beta \leftarrow 1$ 2: for $k \leftarrow 0 \dots K$ do $\mathbf{u}^k \leftarrow \operatorname{softmax}(\beta \tilde{\mathbf{u}}^k)$ 3: $\mathcal{D}^b = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^b \sim \mathcal{D}$ 4: $\mathbf{g}_{\mathbf{u}}^{k} \leftarrow \nabla_{\mathbf{u}} \tilde{L}(\mathbf{u}; \mathcal{D}^{b}) \big|_{\mathbf{u}=\mathbf{u}^{k}}$ 5: $\mathbf{g}_{ ilde{\mathbf{u}}}^k \leftarrow \mathbf{g}_{\mathbf{u}}^k \left. rac{\partial \mathbf{u}}{\partial ilde{\mathbf{u}}}
ight|_{ ilde{\mathbf{u}} = ilde{\mathbf{u}}^k}$ 6: $\tilde{\mathbf{u}}^{k+1} \leftarrow \tilde{\mathbf{u}}^{k} - \eta^{k} \mathbf{g}_{\tilde{\mathbf{u}}}^{k}$ 7: $\beta \leftarrow \rho \beta$ 8: 9: $\mathbf{w}^* \leftarrow \operatorname{hardmax}(\tilde{\mathbf{u}}^K)\mathbf{q}$

 \triangleright Initialization

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ