

Objective: Learn a network while the parameters are restricted At iteration k, to a small discrete set:

 $\min_{\mathbf{w}\in\mathcal{Q}^m} L(\mathbf{w};\mathcal{D}) ,$

where the set Q is usually binary, *i.e.*, $Q = \{-1, 1\}$.

Australian National University

Why?

- Reduced memory and time complexity at inference time. *E.g.*, Binary \Rightarrow 32 times less memory.
- ► Better generalization bounds [1].

Approach: Formulate NN quantization as **discrete labelling**.

- **Difficulties:**
- Exponentially many feasible points ($|\mathcal{Q}|^m$ with $m \approx 10^6$).
- $\blacktriangleright L$ is highly non-convex.

Relaxations:

- Continuous relaxation of the solution space.
- ► Iteratively optimize the first-order approximation of *L*.

Relaxed NN Quantization

Lifting: Introduce indicator variables. $|u_{j:\lambda} = 1 \iff w_j = \lambda \in \mathcal{Q}$

Relaxation:

 $u_{j:\lambda} = \{0, 1\} \quad \Rightarrow \quad u_{j:\lambda} = [0, 1]$

For $\mathbf{w} \in \operatorname{conv}(\mathcal{Q})^m$, $\mathbf{w} = \mathbf{uq}$, where

$$\mathbf{u} \in \boldsymbol{\mathcal{S}} = \begin{cases} \mathbf{u} \middle| \sum_{\lambda} u_{j:\lambda} = 1, & \forall j \\ u_{j:\lambda} \in [0, 1], & \forall j, \lambda \end{cases}$$

where q is the vector of quantization levels.

 $u_{j:\lambda} \in S$ is the probability of parameter w_j taking label $\lambda \in Q$

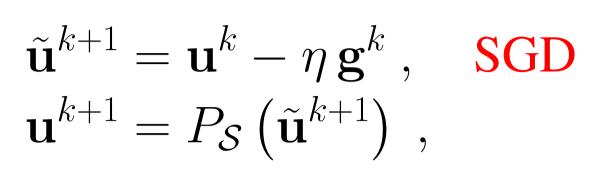
> Any local minimum in the u-space is also a local minimum in the relaxed w-space and vice versa.

 $\min_{\mathbf{u}\in\mathcal{S}} L(\mathbf{uq};\mathcal{D}) \equiv \min_{\mathbf{w}\in\operatorname{conv}(\mathcal{Q})^m} L(\mathbf{w};\mathcal{D})$

Proximal Mean-field for Neural Network Quantization

Thalaiyasingam Ajanthan^{1,2} Puneet K. Dokania² Richard Hartley¹ Philip H. S. Torr² ¹Australian National University ²University of Oxford

Projected (Stochastic) Gradient Descent (PGD)



where $\eta > 0$ and g^k is the (stochastic) gradient of L evaluated at u^k .

Any off-the-shelf SGD algorithm can be used.

Softmax Projection and Exploration

▶ Preserves relative order of $u_{i:\lambda}$. ► Differentiable.

Ultimate objective: A quantized solution $\mathbf{u} \in \mathcal{V}$ is attained when $\beta \to \infty$. \Rightarrow

> noisy projection to \mathcal{V} Softmax \Rightarrow

Softmax based PGD as Proximal Mean-field (PMF)

Mean-field:

 $\operatorname{argmin} \operatorname{KL}(\mathbf{u} \| \mathbf{P}) = \operatorname{argmin}$ $\mathbb{E}_{\mathbf{u}}$ $\mathbf{u} \in \mathcal{S}$ $\mathbf{u} \in \mathcal{S}$ where $\mathbb{E}_{\mathbf{u}}[\cdot]$ is the expectation over \mathbf{u} and $H(\mathbf{u})$ is the entropy.

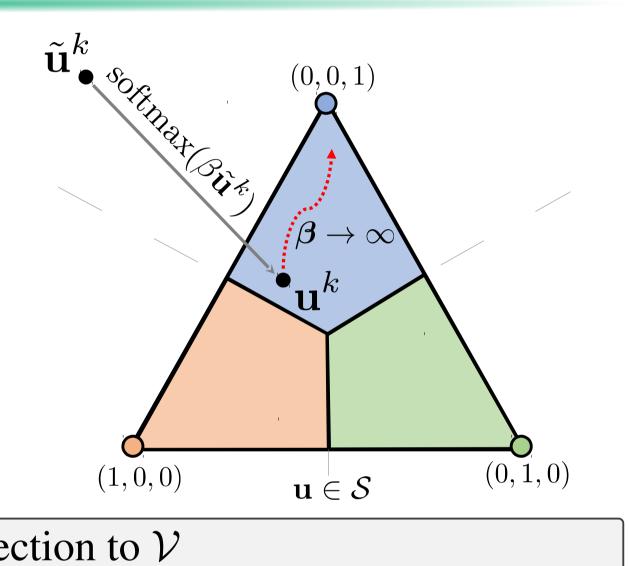
For a neural network $L(\mathbf{w})$ has no explicit factorization. **Proximal Mean-field:** Replace $L(\mathbf{w})$ with the first-order approximation $\hat{L}^k(\mathbf{w})$ augmented by a proximal term.

Softmax based PGD \equiv Proximal Mean-field

At iteration k, $\mathbf{u}^{k+1} = \operatorname{softmax} \left(\beta \left(\mathbf{u}^k - \eta \, \mathbf{g}^k \right) \right) , \quad \mathbf{PGD}$

(1,0,0) $\mathbf{u} \in \mathcal{S} = \operatorname{conv}(\mathcal{V})$ (0,1,0)

 $\mathbf{u}^{k+1} = \underset{\mathbf{u}\in\mathcal{S}}{\operatorname{argmin}} \eta \mathbb{E}_{\mathbf{u}} \left[\hat{L}^k(\mathbf{w}) \right] - \left\langle \mathbf{u}^k, \mathbf{u} \right\rangle$ $\blacktriangleright \hat{L}^k(\mathbf{w})$ is the first-order Taylor approximation \blacktriangleright Negative of cosine similarity \Rightarrow proximal term. Entropy term vanishes when $\beta \to \infty$.



$$[L(\mathbf{w})] - H(\mathbf{u})$$

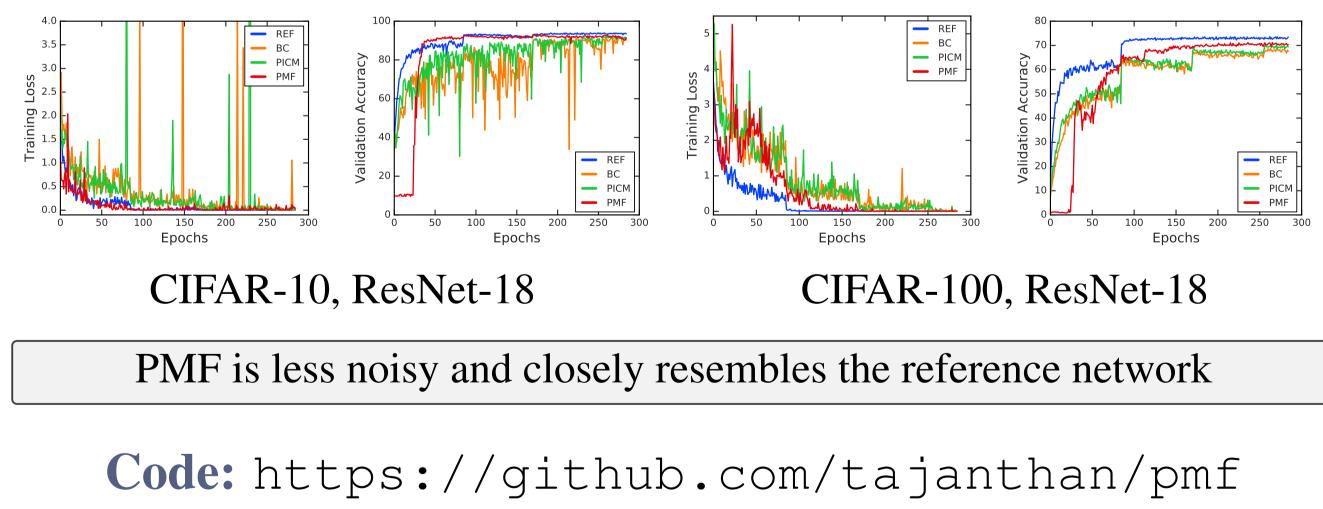
$$\mathbf{u} \rangle_F - \frac{1}{\beta} H(\mathbf{u}) \cdot \mathbf{PMF}$$

on of *L* at $\mathbf{w}^k = \mathbf{u}^k \mathbf{q}$.

Algorithm One iteration of PMF	
$\mathbf{u}^k \leftarrow \operatorname{softmax}(\beta \tilde{\mathbf{u}}^k)$	⊳ Projection
$\mathcal{D}^b = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^b \sim \mathcal{D}$	⊳ Sample a mini-batch
$\mathbf{g}_{\mathbf{u}}^{k} \leftarrow \nabla_{\mathbf{u}} \tilde{L}(\mathbf{u}; \mathcal{D}^{b}) \big _{\mathbf{u} = \mathbf{u}^{k}}$	\triangleright Gradient w.r.t. u at u ^k
$\mathbf{g}_{\tilde{\mathbf{u}}}^k \leftarrow \mathbf{g}_{\mathbf{u}}^k \frac{\partial \mathbf{u}}{\partial \tilde{\mathbf{u}}} \Big _{\tilde{\mathbf{u}} = \tilde{\mathbf{u}}^k}$	\triangleright Gradient w.r.t. $\tilde{\mathbf{u}}$ at \mathbf{u}^k
$\tilde{\mathbf{u}}^{k+1} \leftarrow \tilde{\mathbf{u}}^k - \eta^k \mathbf{g}_{\tilde{\mathbf{u}}}^k$	\triangleright Gradient descent on $\tilde{\mathbf{u}}$
$\beta \leftarrow \rho \beta$	\triangleright Increase β , initialized to 1

Dataset	Architecture	REF	BC [3]	PQ [2]	PMF
		(32 bit)	(1 bit)	$(1 \text{ bit})^*$	(1 bit)
MNIST	LeNet-300	98.55	98.05	98.13	98.24
	LeNet-5	99.39	99.30	99.27	99.44
CIFAR-10	VGG-16	93.01	86.40	90.11	90.51
	ResNet-18	94.64	91.60	92.32	92.73
CIFAR-100	VGG-16	70.33	43.70	55.10	61.52
	ResNet-18	73.85	69.93	68.35	71.85
TinyImageNet	ResNet-18	56.41	49.33	49.97	51.00

Classification accuracies on the test set for different methods.



- [1] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger generalization bounds for deep nets via a compression approach. *ICML*, 2018.
- [2] Y. Bai, Y.-X. Wang, and E. Liberty. Proxquant: Quantized neural networks via proximal operators. *ICLR*, 2019.
- [3] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural networks with binary weights during propagations. NIPS, 2015.

Final PMF Algorithm

Results

References