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Neural Network (NN) Quantization

Objective: Learn a network while the parameters are restricted
to a small discrete set:

min
w∈Qm

L(w;D) ,

where the set Q is usually binary, i.e., Q = {−1, 1}.
Why?

IReduced memory and time complexity at inference time.
E.g., Binary ⇒ 32 times less memory.

IBetter generalization bounds [1].

Approach: Formulate NN quantization as discrete labelling.

Difficulties:

IExponentially many feasible points (|Q|m with m ≈ 106).
IL is highly non-convex.

Relaxations:

IContinuous relaxation of the solution space.
I Iteratively optimize the first-order approximation of L.

Relaxed NN Quantization

Lifting: Introduce indicator variables. uj:λ = 1 ⇔ wj = λ ∈ Q

Relaxation:
uj:λ = {0, 1} ⇒ uj:λ = [0, 1]

For w ∈ conv(Q)m, w = uq, where

u ∈ S =
{

u
∑

λ uj:λ = 1, ∀ j
uj:λ ∈ [0, 1], ∀ j, λ

}
,

where q is the vector of quantization
levels.

uj:λ ∈ S is the probability of parameter wj taking label λ ∈ Q

IAny local minimum in the u-space is also a local minimum in
the relaxed w-space and vice versa.

min
u∈S

L(uq;D) ≡ min
w∈ conv(Q)m

L(w;D)

Projected (Stochastic) Gradient Descent (PGD)

At iteration k,
ũk+1 = uk − η gk , SGD
uk+1 = PS

(
ũk+1) ,

where η > 0 and gk is the (stochastic) gradient of L evaluated at uk.

IAny off-the-shelf SGD algorithm can be used.

Softmax Projection and Exploration

IPreserves relative order of uj:λ.
IDifferentiable.

Ultimate objective: A quantized solution
⇒ u ∈ V is attained when β →∞.

Softmax ⇒ noisy projection to V

Softmax based PGD as Proximal Mean-field (PMF)

Mean-field:
argmin

u∈S
KL(u‖P) = argmin

u∈S
Eu[L(w)] −H(u) ,

where Eu[·] is the expectation over u and H(u) is the entropy.

IFor a neural network L(w) has no explicit factorization.
Proximal Mean-field: Replace L(w) with the first-order approximation
L̂k(w) augmented by a proximal term.

Softmax based PGD ≡ Proximal Mean-field

At iteration k,

uk+1 = softmax
(
β
(
uk − η gk

))
, PGD

uk+1 = argmin
u∈S

η Eu

[
L̂k(w)

]
−
〈
uk,u

〉
F
− 1
β
H(u) . PMF

I L̂k(w) is the first-order Taylor approximation of L at wk = ukq.
INegative of cosine similarity⇒ proximal term.
IEntropy term vanishes when β →∞.

Binary Connect (BC) [3] is a special case of PMF

Final PMF Algorithm

Algorithm One iteration of PMF
uk ← softmax(βũk) B Projection
Db = {(xi,yi)}bi=1 ∼ D B Sample a mini-batch
gku← ∇uL̃(u;Db)

∣∣
u=uk B Gradient w.r.t. u at uk

gkũ← gku ∂u
∂ũ

∣∣
ũ=ũk B Gradient w.r.t. ũ at uk

ũk+1← ũk − ηkgkũ B Gradient descent on ũ
β ← ρβ B Increase β, initialized to 1

Results

Dataset Architecture
REF BC [3] PQ [2] PMF

(32 bit) (1 bit) (1 bit)* (1 bit)

MNIST
LeNet-300 98.55 98.05 98.13 98.24
LeNet-5 99.39 99.30 99.27 99.44

CIFAR-10
VGG-16 93.01 86.40 90.11 90.51
ResNet-18 94.64 91.60 92.32 92.73

CIFAR-100
VGG-16 70.33 43.70 55.10 61.52
ResNet-18 73.85 69.93 68.35 71.85

TinyImageNet ResNet-18 56.41 49.33 49.97 51.00

Classification accuracies on the test set for different methods.
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CIFAR-10, ResNet-18
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CIFAR-100, ResNet-18

PMF is less noisy and closely resembles the reference network

Code: https://github.com/tajanthan/pmf
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