Proximal Mean-field for Neural Network Quantization

UNIVERSITY OF

OXFORD

AUSTRALIAN CENTRE FOR

ORDBDTIE
VISION

Richard Hartley'
‘University of Oxford

Thalaiyasingam Ajanthan'® Puneet K. Dokania® Philip H. S. Torr?

Australian
National

2, University 'Australian National University

Neural Network (NN) Quantization Projected (Stochastic) Gradient Descent (PGD) Final PMF Algorithm

Objective: Learn a network while the parameters are restricted At iteration k,

Algorithm One iteration of PMF

o a small discrete set: uo =u-ng ., SGD u” < softmax(gu") > Projection
. k41 _ ~ k1
WHEllQHm L(w; D), . ut = Fs .(u ) ’ X D' = {(xi,y:)}0_, ~ D > Sample a mini-batch
where the set Q is usually binary, i.e., O — {—1,1}. where n > 0 and g" 1s the (stochastic) gradient of L evaluated at u”. g‘Zl “ Vk“ i(u; D) }uzuk - Grad%ent Wt El at u]]:
» Any off-the-shelf SGD algorithm can be used. i < 8u a—ﬁ‘ﬁ:ﬁk > Gradient w.r.t. u at u

Why? LR

—u* —ntgk > Gradient descent on u

> Reduc§d memory and tilpe complexity at inference time. Softmax Projection and Exploration B < pf3 > Increase 3, initialized to 1
E.g.,Binary = 32 times less memory.
» Better generalization bounds [1]. Results
Approach: Formulate NN quantization as discrete labelling. .
PP 4 S » Preserves relative order of u;.).
Difficulties: . . . REF BC [3] PQ[2] PMF
» Differentiable. Dataset Architecture (32bi)  (1bi)  (1biy" (1 bit
» Exponentially many feasible points (| Q|" with m =~ 10). Ultimate obiective: A quantized solution LeNet-300 9855 9805 9813 | 98.24
J q MNIST
= L is hlghly non-convex. — uc V iS attained When 6 S 0. [.eNet-5 99.39 99.30 990.27 99.44
VGG-16 93.01 86.40 90.11 | 90.51
' . 0, (0,1,0) _
Relaxations: OO ues CIFAR-ID  pesNet-18 9464 9160 9232 9273
: : : Softmax = noisy projection to V
» Continuous relaxation of the solution space. [ Y PIO) CIFAR.100 Y OOU-16 70.33 4370 55.10 1 61.52
, o , , ) ResNet-18 73.85 69.93 68.35 | 71.85
» Iteratively optimize the first-order approximation of L. Softmax based PGD as Proximal Mean-field (PMF) TinyImageNet ResNet-18 5641 4933 49.97 | 51.00

Classification accuracies on the test set for different methods.
Mean-field: f Jor dif

argmin KL(u||P) =argmin  E4|L(w)] — H(u), T T TR

ucesd ucsd 2l — pur |

©u/-] 1s the expectation over u and H (u) is the entropy. g ! ' f
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Relaxed NN Quantization
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Lifting: Introduce indicator variables. | u;., = 1
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Relaxation:
Uj\ = {O, 1} —

150
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CIFAR-100, ResNet-18

0.1 ‘ » For a neural network L(w) has no explicit factorization.
Ui\ = Y,

Proximal Mean-field: Replace L(w) with the first-order approximation CIFAR-10, ResNet-13

L*(w) augmented by a proximal term.
Softmax based PGD = Proximal Mean-field

(0,0,1)

For w € conv(9)™, w = uq, where

where q 1s the vector of quantization
levels.

PMF 1s less noisy and closely resembles the reference network

Code: https://github.com/tajanthan/pmf

(1,0,0) u€e S =conv(V) (0,1,0)

At iteration £,
u"! = softmax (8 (u* —ng")) , PGD References
1 —.

u"™ = argmin nE, [zk(w)} — (u", u), — EH(U) . PMF
R ucs
» LF(w) is the first-order Taylor approximation of L at w* = u”q.

u;.n € S 1s the probability of parameter w; taking label A € O
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» Any local minimum in the u-space 1s also a local minimum 1n

the relaxed w-space and vice versa. » Negative of cosine similarity = proximal term.

min  L(w:D) » Entropy term vanishes when 5 — oo.

we conv(Q)™ [

min L(uq; D) =

ucs

Binary Connect (BC) [3] 1s a special case of PMF
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