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Here, we first provide the proofs and the technical derivations. Later we give additional experiments and the
details of our experimental setting.

A md Proofs and Derivations

A.1 More details on Projections

Here, we provide more details on projections used in the paper for Neural Network (nn) quantization. Even
though we consider differentiable projections, Theorem 1 in the main paper does not require the projection to be
differentiable. For the rest of the section, we assume m = 1, i.e., consider projections that are independent for
each j ∈ {1, . . . ,m}.
Example 1 (w-space, binary, tanh). Consider the tanh function, which projects a real value to the interval
[−1, 1]:

w = Pβk(w̃) := tanh(βkw̃) =
exp(2βkw̃)− 1

exp(2βkw̃) + 1
, (1)

where βk ≥ 1 is the annealing hyperparameter and when βk →∞, tanh approaches the step function. The inverse
of the tanh is:

P−1
βk

(w) =
1

βk
tanh−1(w) =

1

2βk
log

1 + w

1− w
. (2)

Note that, P−1
βk

is monotonically increasing for a fixed βk. Correspondingly, the mirror map from Theorem 1 in
the main paper can be written as:

Φβk(w) =

∫
P−1
βk

(w)dw

=
1

2βk

[
(1 + w) log(1 + w) + (1− w) log(1− w)

]
. (3)

Here, the constant from the integration is ignored. It can be easily verified that Φβk(w) is in fact a valid mirror
map. Correspondingly, the Bregman divergence can be written as:

DΦβk
(w, v) = Φβk(w)− Φβk(v)− Φ′βk(v)(w − v) , where Φ′βk(v) = 1

2βk
log 1+v

1−v , (4)

=
1

2βk

[
w log

(1 + w)(1− v)

(1− w)(1 + v)
+ log(1− w)(1 + w)− log(1− v)(1 + v)

]
.

Now, consider the proximal form of Mirror Descent (md) update

wk+1 = argmin
x∈(−1,1)

〈η gk, w〉+DΦβk
(w,wk) . (5)

The idea is to find w such that the kkt conditions are satisfied. To this end, let us first write the Lagrangian
of Eq. (5) by introducing dual variables y and z corresponding to the constraints w > −1 and w < 1, respectively:

F (w, x, y) = ηgkw + y(−w − 1) + z(w − 1) (6)

+
1

2βk

[
w log

(1 + w)(1− wk)

(1− w)(1 + wk)
+ log(1− w)(1 + w)− log(1− wk)(1 + wk)

]
.

Now, setting the derivatives with respect to w to zero:

∂F

∂w
= ηgk +

1

2βk
log

(1 + w)(1− wk)

(1− w)(1 + wk)
− y + z = 0 . (7)

From complementary slackness conditions,

y(−w − 1) = 0 , since w > −1 ⇒ y = 0 , (8)
z(w − 1) = 0 , since w < 1 ⇒ z = 0 .
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Algorithm 1 md-tanh

Require: K, b, {ηk}, ρ > 1,D, L
Ensure: w∗ ∈ Qm
1: w0 ∈ IRm, β0 ← 1 . Initialization
2: w0 ← tanh(β0w

0) . Projection
3: for k ← 0, . . . ,K do
4: Db = {(xi,yi)}bi=1 ∼ D . Sample a mini-batch
5: gk ← ∇wL(w;Db)

∣∣
w=wk

. Gradient w.r.t. w at wk (Adam based gradients)
6: for j ← 1, . . . ,m do

7: wk+1
j ←

1+wkj

1−wk
j

exp(−2βkη
kgkj )−1

1+wk
j

1−wk
j

exp(−2βkηkgkj )+1

. md update

8: end for
9: βk+1 ← ρβk . Increase β
10: end for
11: w∗ ← sign(w̃K) . Quantization

Algorithm 2 md-tanh-s

Require: K, b, {ηk}, ρ > 1,D, L
Ensure: w∗ ∈ Qm
1: w̃0 ∈ IRm, β0 ← 1 . Initialization
2: for k ← 0, . . . ,K do
3: wk ← tanh(βkw̃

k) . Projection
4: Db = {(xi,yi)}bi=1 ∼ D . Sample a mini-batch
5: gk ← ∇wL(w;Db)

∣∣
w=wk

. Gradient w.r.t. w at wk (Adam based gradients)
6: w̃k+1 ← w̃k − ηkgk . Gradient descent on w̃
7: βk+1 ← ρβk . Increase β
8: end for
9: w∗ ← sign(w̃K) . Quantization

Therefore, Eq. (7) now simplifies to:

∂F

∂w
= ηgk +

1

2βk
log

(1 + w)(1− wk)

(1− w)(1 + wk)
= 0 , (9)

log
(1 + w)(1− wk)

(1− w)(1 + wk)
= −2βkηg

k ,

1 + w

1− w
=

1 + wk

1− wk
exp(−2βkηg

k) ,

w =
1+wk

1−wk exp(−2βkηg
k)− 1

1+wk

1−wk exp(−2βkηgk) + 1
.

A similar derivation can also be performed for the sigmoid function, where C̄ = X = [0, 1]. Note that the sign
function has been used for binary quantization in Courbariaux et al. (2015) and tanh can be used as a soft version
of sign function as pointed out by Zhang et al. (2015). Mirror map corresponding to tanh is used for online
linear optimization in Bubeck et al. (2012) but here we use it for nn quantization. The pseudocodes of original
(md-tanh) and numerically stable versions (md-tanh-s) for tanh are presented in Algorithms 1 and 2 respectively.

Example 2 (u-space, multi-label, softmax). Now we consider the softmax projection used in Proximal Mean-
Field (pmf) (Ajanthan et al. (2019)) to optimize in the lifted probability space. In this case, the projection is
defined as Pβk(ũ) := softmax(βkũ) where Pβk : IRd → C with C̄ = X = ∆. Here ∆ is the (d − 1)-dimensional
probability simplex and |Q| = d. Note that the softmax projection is not invertible as it is a many-to-one mapping.
In particular, it is invariant to translation, i.e.,
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Figure 1: Plots of shifted tanh projections, and their inverses corresponding to the tanh projection. Note that, the
inverse is monotonically increasing. Moreover, when βk →∞, the projections approaches their respective hard
versions.

u = softmax(ũ + c1) = softmax(ũ) ,

where uλ =
exp(ũλ)∑
µ∈Q exp(ũµ)

,

for any scalar c ∈ IR (1 denotes a vector of all ones). Therefore, the softmax projection does not satisfy
Theorem 1 in the main paper. However, one could obtain a solution of the inverse of softmax as follows: given
u ∈ ∆, find a unique point ṽ = ũ + c1, for a particular scalar c, such that u = softmax(ṽ). Now, by choosing
c = − log(

∑
µ=Q exp(ũµ)), softmax can be written as:

u = softmax(ṽ) , where uλ = exp(ṽλ) , ∀λ ∈ Q . (10)
Now, the inverse of the projection Pβk can be written as:

ṽ = P−1
βk

(u) =
1

βk
softmax−1(u) , where ṽλ =

1

βk
log(uλ) , ∀λ . (11)

Indeed, log is a monotonically increasing function and from Theorem 1 in the main paper, by summing the
integrals, the mirror map can be written as:

Φβk(u) =
1

βk

[∑
λ

uλ log(uλ)− uλ

]
= − 1

βk
H(u)− 1/βk . (12)

Here,
∑
λ uλ = 1 as u ∈ ∆, and H(u) is the entropy. Interestingly, as the mirror map in this case is the negative

entropy (up to a constant), the md update leads to the well-known Exponentiated Gradient Descent (egd) (or
Entropic Descent Algorithm (eda)) (Beck and Teboulle (2003); Bubeck (2015)). Consequently, the update takes
the following form:

uk+1
λ =

ukλ exp(−βkηgkλ)∑
µ∈Q ukµ exp(−βkηgkµ)

∀λ . (13)

The derivation follows the same approach as in the tanh case above. It is interesting to note that the md
variant of softmax is equivalent to the well-known egd. Notice, the authors of pmf (Ajanthan et al. (2019))
hinted that pmf is related to egd but here we have clearly showed that the md variant of pmf under the above
reparametrization (10) is exactly egd.

Example 3 (w-space, multi-label, shifted tanh). Note that, similar to softmax, we wish to extend the tanh
projection beyond binary. The idea is to use a function that is an addition of multiple shifted tanh functions.
To this end, as an example we consider ternary quantization, with Q = {−1, 0, 1} and define our shifted tanh
projection Pβk : IR→ C as:

w = Pβk(w̃) =
1

2

[
tanh (βk(w̃ + 0.5)) + tanh (βk(w̃ − 0.5))

]
, (14)

where βk ≥ 1 and w = C̄ = X = [−1, 1]. When βk → ∞, Pβk approaches a stepwise function with inflection
points at −0.5 and 0.5 (here, ±0.5 is chosen heuristically), meaning w move towards one of the quantization
levels in the set Q. This behaviour together with its inverse is illustrated in Fig. 1. Now, one could potentially
find the functional form of P−1

βk
and analytically derive the mirror map corresponding to this projection. Note

that, while Theorem 1 in the main paper provides an analytical method to derive mirror maps, in some cases
such as the above, the exact form of mirror map and the md update might be nontrivial. In such cases, as shown
in the paper, the md update can be easily implemented by storing an additional set of auxiliary variables w̃.
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A.2 Convergence Proof for md with Adaptive Mirror Maps

Theorem 1. Let X ⊂ IRr be a convex compact set and C ⊂ IRr be a convex open set with X ∩ C 6= ∅ and X ⊂ C̄.
Let Φ : C → IR be a mirror map ρ-strongly convex on X ∩ C with respect to ‖·‖, R2 = supx∈X∩C Φ(x) − Φ(x0)
where x0 = argminx∈X∩C Φ(x) is the initialization, and f : X → IR be a convex function and L-Lipschitz with

respect to ‖·‖. Then md with mirror map Φβk(x) = Φ(x)/βk with 1 ≤ βk ≤ B and η = R
L

√
2ρ
Bt satisfies

f

(
1

t

t−1∑
k=0

xk

)
− f(x∗) ≤ RL

√
2B

ρt
, (15)

where βk is the annealing hyperparameter, η > 0 is the learning rate, t is the iteration index, and x∗ is the optimal
solution.

Proof. The proof is a slight modification to the proof of standard md and we refer the reader to the proof of
Theorem 4.2 of Bubeck (2015) for step by step derivation. We first discuss the intuition and then turn to the
detailed proof. For the standard md the bound is:

f

(
1

t

t−1∑
k=0

xk

)
− f(x∗) ≤ RL

√
2

ρt
, (16)

with η = R
L

√
2ρ
t . Here, since βk ≤ B, the adaptive mirror map Φβk(x) = Φ(x)/βk is ρ/B-strongly convex for all

k. Therefore, by simply replacing ρ with ρ/B the desired bound is obtained.

We now provide the step-by-step derivation for completeness. First note the md update with the adaptive mirror
map:

∇Φβk(yk+1) = ∇Φβk(xk)− ηgk , where gk ∈ ∂f(xk) and yk+1 ∈ C , (17)

gk = (∇Φβk(xk)−∇Φβk(yk+1))/η, η > 0 .

Now, let x ∈ X ∩ C. The claimed bound will be obtained by taking a limit x→ x∗.

f(xk)− f(x) ≤ 〈gk,xk − x〉 , f is convex , (18)

= 〈∇Φβk(xk)−∇Φβk(yk+1),xk − x〉/η , Eq. (17) ,

=
(
DΦβk

(x,xk) +DΦβk
(xk,yk+1)−DΦβk

(x,yk+1)
)
/η , Bregman div. ,

≤
(
DΦβk

(x,xk) +DΦβk
(xk,yk+1)−DΦβk

(x,xk+1)−DΦβk
(xk+1,yk+1)

)
/η .

The last line is due to the inequality DΦβk
(x,xk+1) +DΦβk

(xk+1,yk+1) ≥ DΦβk
(x,yk+1), where xk+1 =

argminx∈X∩C DΦβk
(x,yk+1). Notice that,

t−1∑
k=0

DΦβk
(x,xk)−DΦβk

(x,xk+1) =

t−1∑
k=0

(
DΦ(x,xk)−DΦ(x,xk+1)

)
/βk , (19)

= β−1
0

(
DΦ(x,x0)−DΦ(x,x1)

)
+ β−1

1

(
DΦ(x,x1)−DΦ(x,x2)

)
+ . . .+

β−1
t−1

(
DΦ(x,xt−1)−DΦ(x,xt)

)
,

= β−1
0 DΦ(x,x0) + (β−1

1 − β−1
0 )DΦ(x,x1) + . . .+ (β−1

t−1 − β
−1
t−2)DΦ(x,xt−1)−

β−1
t−1DΦ(x,xt),

≤ β−1
0 DΦ(x,x0), DΦ(x, z) ≥ 0, ∀x, z ∈ C and β−1

k+1 − β
−1
k < 0,∀ k

≤ DΦ(x,x0), β0 ≥ 1
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Now we bound the remaining term:

DΦβk
(xk,yk+1)−DΦβk

(xk+1,yk+1) (20)

= Φβk(xk)− Φβk(xk+1)− 〈∇Φβk(yk+1),xk − xk+1〉 , Bregman divergence def. ,

≤ 〈∇Φβk(xk)−∇Φβk(yk+1),xk − xk+1〉 − ρ

2βk

∥∥xk − xk+1
∥∥2

, Φ is ρ-strongly convex ,

= 〈ηgk,xk − xk+1〉 − ρ

2βk

∥∥xk − xk+1
∥∥2

, Eq. (17) ,

≤ ηL(xk − xk+1)− ρ

2βk

∥∥xk − xk+1
∥∥2

, f is L-Lipschitz ,

≤ (ηL)2βk
2ρ

, az − bz2 ≤ a2/(4b), ∀ z ∈ IR ,

≤ (ηL)2B

2ρ
, βk ≤ B .

Putting Eqs. (19) and (20) in Eq. (18),

1

t

t−1∑
k=0

(
f(xk)− f(x)

)
≤ DΦ(x,x0)

ηt
+
ηBL2

2ρ
, (21)

f

(
1

t

t−1∑
k=0

xk

)
− f(x) ≤ R2

ηt
+
ηBL2

2ρ
, Jensen inequality, defs. of x0 and R ,

= RL

√
2B

ρt
, Substituting η = R

L

√
2ρ
Bt .

Note the additional multiplication by
√
B compared to the standard md bound. However, the convergence rate is

still O(1/
√
t).

A.3 Proof for Epsilon Convergence to a Discrete Solution via Annealing

Proposition 1. For a given B > 0 and 0 < ε < 1, there exists a γ > 0 such that if |x̃| ≥ γ then 1− | tanh(Bx̃)| < ε.
Here | · | denotes the absolute value and γ > tanh−1(1− ε)/B.

Proof. For a given B and ε, we derive a condition on |x̃| for the inequality to be satisfied.

1− | tanh(Bx̃)| < ε , (22)
| tanh(Bx̃)| > 1− ε , (23)
tanh(B|x̃|) > 1− ε , | tanh(x̃)| = tanh(|x̃|) (24)

|x̃| > tanh−1(1− ε)/B . tanh is monotone (25)

Therefore for any γ > tanh−1(1− ε)/B, the above inequality is satisfied.

B Additional Experiments

We first give training curves of all compared methods, provide ablation study of ImageNet experiments as well as
ternary quantization results as a proof of concept. Later, we provide experimental details.

B.1 Convergence Analysis

The training curves for CIFAR-10 and CIFAR-100 datasets with ResNet-18 are shown in Fig. 2. Notice, after the
initial exploration phase (due to low β) the validation accuracies of our md-tanh-s increase sharply while this
steep rise is not observed in regularization methods such as pq. The training behaviour for both our stable
md-variants (softmax and tanh) is quite similar.



Thalaiyasingam Ajanthan*, Kartik Gupta*, Philip H. S. Torr, Richard Hartley, Puneet K. Dokania

0 50 100 150 200 250
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 L
os

s

REF
BC
PQ
PMF
MD-tanh-S

0 50 100 150 200 250
Epochs

20

40

60

80

Va
lid

at
io

n 
Ac

cu
ra

cy

REF
BC
PQ
PMF
MD-tanh-S

0 50 100 150 200 250
Epochs

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

REF
BC
PQ
PMF
MD-tanh-S

0 50 100 150 200 250
Epochs

0

10

20

30

40

50

60

70

Va
lid

at
io

n 
Ac

cu
ra

cy

REF
BC
PQ
PMF
MD-tanh-S

Figure 2: Training curves for binarization for CIFAR-10 (first two columns) and CIFAR-100 (last two columns)
with ResNet-18. Compared to BinaryConnect (bc), our md-tanh-s and pmf are less noisy and after the initial
exploration phase (up to 60 in CIFAR-10 and 25 epochs CIFAR-100), the validation accuracies rise sharply and
closely resembles the floating point network afterwards. This steep increase is not observed in regularization
methods such as ProxQuant (pq).

Pretrained Conv1 and fc Bias bn Layerwise Scaling Accuracy

m
d
-t
a
n
h
-s

X Float Float Float 7 66.78/87.01
7 Float Float Float 7 65.92/86.29
X Binary Float Float 7 60.39/82.77
7 Binary Float Float 7 59.92/82.42
X Binary Binary Float 7 56.60/79.79
7 Binary Binary Float 7 56.67/79.66
X Binary Float Float X 61.91/83.87
X Binary Binary Float X 56.05/79.69

Table 1: Ablation study on ImageNet with ResNet-18 for weights binarization using md-tanh-s. While the best
performance is obtained for the case where Conv1, fc and biases are not quantized, md-tanh-s obtains good
performance even when fully-quantized regardless of either using a pretrained network or training from scratch.

B.2 ImageNet Ablation Study

We provide an ablation study for various experimental settings for weights binarization on ImageNet dataset
using ResNet-18 architecture in Table 1. We perform experiments for both training for scratch and pretrained
networks with variation in binarization of first convolution layer, fully connected layer and biases. Note that the
performance degradation of our binary networks is minimal on all layers binarized network except biases using
simple layerwise scaling as mentioned in McDonnell (2018). Contrary to the standard setup of binarized network
training for ImageNet, where first and last layers are kept floating point, our md-tanh-s method achieves good
performance even on the fully-quantized network irrespective of either using a pretrained network or network
trained from scratch.

Algorithm Space CIFAR-10 CIFAR-100 TinyImageNet
VGG-16 ResNet-18 VGG-16 ResNet-18 ResNet-18

ref (float) w 93.33 94.84 71.50 76.31 58.35
pq w 83.32 90.50 32.16 59.18 41.46
pq* w 92.20 93.85 57.64 70.98 45.72
gd-tanh w 91.21 93.20 53.88 69.48 50.65

O
ur
s md-softmax-s u 91.69 93.30 65.11 72.01 52.21

md-tanh-s w 91.70 93.42 66.15 71.29 52.69

Table 2: Classification accuracies on the test set for ternary quantization. pq* denotes performance with fully-
connected layers, first convolution layer, and shortcut layers in floating point whereas pq represent results with all
layers quantized. Also, pq* optimize for the quantization levels as well (different for each layer), in contrast we
fix it to Q = {−1, 0, 1}. gd-tanh denotes results without using ste and actually calculating the gradient through
the projection.
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Dataset Image # class Train / Val. b K

CIFAR-10 32× 32 10 45k / 5k 128 100k
CIFAR-100 32× 32 100 45k / 5k 128 100k
TinyImageNet 64× 64 200 100k / 10k 128 100k
ImageNet 224× 224 1000 1.2M / 50k 2048/256 90/55

Table 3: Experiment setup. Here, b is the batch size and K is the total number of iterations for all datasets except
ImageNet where K indicates number of epochs for training from scratch and pretrained network respectively. For
ImageNet, b represents batch size for training from scratch and pretrained networks respectively.

Hyperparameters Fine-tuning grid

learning_rate [0.1, 0.01, 0.001, 0.0001]
lr_scale [0.1, 0.2, 0.3, 0.5]

beta_scale [1.01, 1.02, 1.05, 1.1, 1.2]
beta_scale_interval [100, 200, 500, 1000, 2000]

Table 4: The hyperparameter search space for all the experiments. Chosen parameters are given in Tables 5, 6 and 7.

B.3 Ternary Quantization Results

As a proof of concept for our shifted tanh projection (refer Example 3), we also show results for ternary
quantization with quantization levels Q = {−1, 0, 1} in Table 2. Note that the performance improvement of
our ternary networks compared to their respective binary networks is marginal as only 0 is included as the 3rd

quantization level. In contrast to us, the baseline method pq (Bai et al. (2019)) optimizes for the quantization levels
(differently for each layer) as well in an alternating optimization regime rather than fixing it to Q = {−1, 0, 1}.
Also, pq does ternarize the first convolution layer, fully-connected layers and the shortcut layers. We crossvalidate
hyperparameters for both the original pq setup and the equivalent setting of our md-variants where we optimize
all the weights and denote them as pq* and pq respectively.

Our md-tanh variant performs on par or sometimes even better in comparison to tanh projection results where
gradient is calculated through the projection instead of performing md. This again empirically validates the
hypothesis that md yields in good approximation for the task of network quantization. The better performance
of pq in their original quantization setup, compared to our approach in CIFAR-10 can be accounted to their
non-quantized layers and different quantization levels. We believe similar explorations are possible with our md
framework as well.

B.4 Experimental Details

As mentioned in the main paper the experimental protocol is similar to Ajanthan et al. (2019). To this end, the
details of the datasets and their corresponding experiment setups are given in Table 3. For CIFAR-10/100 and
TinyImageNet, VGG-16 (Simonyan and Zisserman (2015)), ResNet-18 (He et al. (2016)) and MobileNetV2 (Sandler
et al. (2018)) architectures adapted for CIFAR dataset are used. In particular, for CIFAR experiments, similar
to Lee et al. (2019), the size of the fully-connected (fc) layers of VGG-16 is set to 512 and no dropout layers are
employed. For TinyImageNet, the stride of the first convolutional layer of ResNet-18 is set to 2 to handle the
image size (Huang et al. (2017)). In all the models, batch normalization (Ioffe and Szegedy (2015)) (with no
learnable parameters) and ReLU nonlinearity are used. Only for the floating point networks (i.e., ref), we keep
the learnable parameters for batch norm. Standard data augmentation (i.e., random crop and horizontal flip) is
used.

For both of our md variants, hyperparameters such as the learning rate, learning rate scale, annealing hyperpa-
rameter β and its schedule are crossvalidated from the range reported in Table 4 and the chosen parameters are
given in the Table 5, Table 6 and Table 7. To generate the plots, we used the publicly available codes of bc1, pq2

1https://github.com/itayhubara/BinaryNet.pytorch
2https://github.com/allenbai01/ProxQuant

https://github.com/itayhubara/BinaryNet.pytorch
https://github.com/allenbai01/ProxQuant
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CIFAR-10 with ResNet-18
md-softmax md-tanh md-softmax-s md-tanh-s pmf* gd-tanh bc pq

learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01
lr_scale 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.5
beta_scale 1.02 1.01 1.02 1.02 1.1 1.1 - 0.0001
beta_scale_interval 200 100 200 200 1000 1000 - -

CIFAR-100 with ResNet-18
md-softmax md-tanh md-softmax-s md-tanh-s pmf* gd-tanh bc pq

learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.1
lr_scale 0.2 0.3 0.2 0.2 0.3 0.5 0.2 -
beta_scale 1.05 1.05 1.1 1.2 1.01 1.01 - 0.001
beta_scale_interval 500 500 200 500 100 100 - -

CIFAR-10 with VGG-16
md-softmax md-tanh md-softmax-s md-tanh-s pmf* gd-tanh bc pq

learning_rate 0.01 0.001 0.001 0.001 0.001 0.001 0.0001 0.01
lr_scale 0.2 0.3 0.3 0.2 0.5 0.3 0.3 0.5
beta_scale 1.05 1.1 1.2 1.2 1.05 1.1 - 0.0001
beta_scale_interval 500 1000 2000 2000 500 1000 - -

CIFAR-100 with VGG-16
md-softmax md-tanh md-softmax-s md-tanh-s pmf* gd-tanh bc pq

learning_rate 0.001 0.001 0.0001 0.001 0.0001 0.001 0.0001 0.01
lr_scale 0.3 0.3 0.2 0.5 0.5 0.5 0.2 0.5
beta_scale 1.01 1.05 1.2 1.05 1.02 1.1 - 0.0001
beta_scale_interval 100 500 500 500 200 1000 - -

TinyImageNet with ResNet-18
md-softmax md-tanh md-softmax-s md-tanh-s pmf* gd-tanh bc pq

learning_rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01
lr_scale 0.2 0.5 0.1 0.1 0.5 0.5 0.5 -
beta_scale 1.02 1.2 1.02 1.2 1.01 1.01 - 0.0001
beta_scale_interval 200 2000 100 500 100 100 - -

Table 5: Hyperparameter settings used for the binary quantization experiments. Here, the learning rate is multiplied
by lr_scale after every 30k iterations and annealing hyperparameter (β) is multiplied by beta_scale after every
beta_scale_interval iterations. We use Adam optimizer with zero weight decay. For pq, beta_scale denotes
regularization rate.

and pmf3.

All methods are trained from a random initialization and the model with the best validation accuracy is chosen
for each method. Note that, in md, even though we use an increasing schedule for β to enforce a discrete solution,
the chosen network may not be fully-quantized (as the best model could be obtained in an early stage of training).
Therefore, simple argmax rounding is applied to ensure that the network is fully-quantized.

B.5 ImageNet

We use the standard ResNet-18 architecture for ImageNet experiments where we train for 90 epochs and 55
epochs for training from scratch and pretrained network respectively. We perform all ImageNet experiments
using NVIDIA DGX-1 machine with 8 Tesla V-100 GPUs for training from scratch and single Tesla V-100 GPU
for training from a pretrained network. We provide detailed hyperparameter setup used for our experiments in
Table 8. Similar to experiments on the other datasets, to enforce a discrete solution simple rounding based on
sign operation is applied to ensure that the final network is fully-quantized. The final accuracy is reported based
on the sign operation based discrete model obtained at the end of the final epoch.

3https://github.com/tajanthan/pmf

https://github.com/tajanthan/pmf
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CIFAR-10 with ResNet-18
ref (float) md-softmax-s md-tanh-s gd-tanh pq pq*

learning_rate 0.1 0.001 0.01 0.01 0.01 0.01
lr_scale 0.3 0.3 0.2 0.5 0.3 -
beta_scale - 1.05 1.2 1.02 0.0001 0.0001
beta_scale_interval - 500 1000 500 - -
weight_decay 0.0001 0 0 0 0 0.0001

CIFAR-100 with ResNet-18
ref (float) md-softmax-s md-tanh-s gd-tanh pq pq*

learning_rate 0.1 0.001 0.001 0.01 0.01 0.001
lr_scale 0.1 0.1 0.5 0.5 0.2 -
beta_scale - 1.1 1.1 1.02 0.0001 0.0001
beta_scale_interval - 100 500 1000 - -
weight_decay 0.0001 0 0 0 0 0.0001

CIFAR-10 with VGG-16
ref (float) md-softmax-s md-tanh-s gd-tanh pq pq*

learning_rate 0.1 0.001 0.01 0.01 0.01 0.1
lr_scale 0.2 0.3 0.3 0.3 - -
beta_scale - 1.05 1.1 1.01 1e-07 0.0001
beta_scale_interval - 500 1000 500 - -
weight_decay 0.0001 0 0 0 0 0.0001

CIFAR-100 with VGG-16
ref (float) md-softmax-s md-tanh-s gd-tanh pq pq*

learning_rate 0.1 0.0001 0.001 0.01 0.01 0.0001
lr_scale 0.2 0.3 0.5 0.2 - -
beta_scale - 1.05 1.1 1.05 0.0001 0.0001
beta_scale_interval - 100 500 2000 - -
weight_decay 0.0001 0 0 0 0 0.0001

TinyImageNet with ResNet-18
ref (float) md-softmax-s md-tanh-s gd-tanh pq pq*

learning_rate 0.1 0.001 0.01 0.01 0.01 0.01
lr_scale 0.1 0.1 0.1 0.5 - -
beta_scale - 1.2 1.2 1.05 0.01 0.0001
beta_scale_interval - 500 2000 2000 - -
weight_decay 0.0001 0 0 0 0 0.0001

Table 6: Hyperparameter settings used for the ternary quantization experiments. Here, the learning rate is
multiplied by lr_scale after every 30k iterations and annealing hyperparameter (β) is multiplied by beta_scale
after every beta_scale_interval iterations. We use Adam optimizer except for ref for which sgd with momentum
0.9 is used. For pq, beta_scale denotes regularization rate.
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CIFAR-10 with MobileNet-V2
ref (float) bc md-softmax-s md-tanh-s

learning_rate 0.01 0.001 0.01 0.01
lr_scale 0.5 0.5 0.3 0.2
beta_scale - - 1.1 1.2
beta_scale_interval - - 1000 2000
weight_decay 0.0001 0 0 0

CIFAR-100 with MobileNet-V2
ref (float) bc md-softmax-s md-tanh-s

learning_rate 0.01 0.001 0.01 0.01
lr_scale 0.5 0.2 0.1 0.1
beta_scale - - 1.1 1.02
beta_scale_interval - - 500 100
weight_decay 0.0001 0 0 0

Table 7: Hyperparameter settings used for the binary quantization experiments. Here, the learning rate is multiplied
by lr_scale after every 30k iterations and annealing hyperparameter (β) is multiplied by beta_scale after every
beta_scale_interval iterations. We use Adam optimizer except for ref for which sgd with momentum 0.9 is
used.

ImageNet with ResNet-18
ref (float) md-tanh-s* md-tanh-s

base_learning_rate 2.048 2.048 0.0768
warmup_epochs 8 8 0
beta_scale - 1.02 1.02
beta_scale_interval (iterations) - 62 275
batch_size 2048 2048 256
weight_decay 3.0517e-05 3.0517e-05 3.0517e-05

Table 8: Hyperparameter settings used for the binary quantization experiments on ImageNet dataset using ResNet-
18 architecture. Here md-tanh-s* is trained from scratch while md-tanh-s is finetuned on the pretrained network.
We use sgd optimizer with momentum 0.875 and cosine learning rate scheduler for all experiments. For all
the experiments, weight decay in batchnorm layers are off. Similar to Goyal et al. (2017), for experiments with
larger batch size we use gradual warmup where learning rate is linearly scaled from small learning rate to the base
learning rate. Also, note that training schedule is fixed based on above hyperparameters for ablation study on
ImageNet dataset.
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