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Network Pruning: Background and Motivation

I Issues with overparameterization in large neural networks
. memory and time complexity
. energy consumption
. generalization capability

I Drawbacks of existing methods
. hyperparameters with heuristics
. architecture specific requirements
. optimization difficulties
. pretraining

I What we want
. No hyperparameters
. No pretraining
. No iterative prune–retrain cycle
. not require the whole training set

Single-shot pruning prior to training

Single-shot Network Pruning based on Connection Sensitivity

I Neural Network Pruning
Write pruning as constrained optimization:

min
w
L(w;D) = min

w
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n∑
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`(w; (xi,yi)) , (1)

s.t. w ∈ Rm, ‖w‖0 ≤ κ .

Here, D = {(xi,yi)}ni=1 is a dataset, κ is a desired sparsity level, `(·) is the
loss function, w is the set of parameters of the network.

I Connection Sensitivity: Architectural Perspective
. Introduce auxiliary indicator variables c ∈ {0, 1}m:

min
c,w

L(c�w;D) = min
c,w

1

n
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`(c�w; (xi,yi)) , (2)

s.t. w ∈ Rm ,

c ∈ {0, 1}m, ‖c‖0 ≤ κ .

The idea is to measure the effect of removing a parameter on the loss by
separating w from c:

. The effect of removing paramter j:
∆Lj(w;D) = L(1�w;D)− L((1− ej)�w;D) , (3)

where ej is the indicator vector of element j.

. Infinitesimal version of ∆Lj:

∆Lj(w;D) ≈ ∂L(c�w;D)

∂cj
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= lim
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L(c�w;D)− L((c− δ ej)�w;D)

δ

∣∣∣∣
c=1

,

(4)

which, denoted as gj(w;D), measures the rate of change of L with respect
to an infinitesimal change in cj from 1→ 1− δ.

. Define connection sensitivity as the saliency criterion by taking the
normalized magnitude of gj :

sj =
|gj(w;D)|∑m
k=1 |gk(w;D)|

. (5)

I Single-shot Pruning at Initialization
. Use variance scaling methods to initialize weights so that the impact of

weights on sj is minimized while making it robust to architecture variations.

. Using a reasonable number of training examples in one mini-batch can lead
to effective pruning.

Algorithm 1 SNIP

Require: Loss function L, training dataset D, sparsity level κ
Ensure: ‖w∗‖0 ≤ κ

1: w← VarianceScalingInitialization
2: Db = {(xi,yi)}bi=1 ∼ D . Sample a mini-batch of training data

3: sj ←
|gj(w;Db)|∑m
k=1|gk(w;Db)| , ∀j ∈ {1 . . .m}

4: cj ← 1[sj − s̃κ ≥ 0] , ∀ j ∈ {1 . . .m} . Pruning: choose top-κ connections
5: w∗← arg minw∈RmL(c�w;D) . Regular training
6: w∗← c�w∗

Results

I LeNets

Method Criterion
LeNet-300-100 LeNet-5-Caffe

Pretrain # Prune
Additional Augment Arch.

κ̄ (%) err. (%) κ̄ (%) err. (%) hyperparam. objective constraints
Ref. – – 1.7 – 0.9 – – – – –
LWC Magnitude 91.7 1.6 91.7 0.8 X many X 7 X
DNS Magnitude 98.2 2.0 99.1 0.9 X many X 7 X
LC Magnitude 99.0 3.2 99.0 1.1 X many X X 7

SWS Bayesian 95.6 1.9 99.5 1.0 X soft X X 7

SVD Bayesian 98.5 1.9 99.6 0.8 X soft X X 7

OBD Hessian 92.0 2.0 92.0 2.7 X many X 7 7

L-OBS Hessian 98.5 2.0 99.0 2.1 X many X 7 X

SNIP (ours)
Connection 95.0 1.6 98.0 0.8

7 1 7 7 7
sensitivity 98.0 2.4 99.0 1.1

SNIP is capable of pruning extreme sparsity levels (e.g., 99% for LeNet-5-Caffe),
while being significantly simpler than other approaches.

I Various modern architectures
Architecture Model Sparsity (%) # Parameters Error (%) ∆

Convolutional

AlexNet-s 90.0 5.1m→ 507k 14.12→ 14.99 +0.87

AlexNet-b 90.0 8.5m→ 849k 13.92→ 14.50 +0.58

VGG-C 95.0 10.5m→ 526k 6.82→ 7.27 +0.45

VGG-D 95.0 15.2m→ 762k 6.76→ 7.09 +0.33

VGG-like 97.0 15.0m→ 449k 8.26→ 8.00 −0.26

Residual
WRN-16-8 95.0 10.0m→ 548k 6.21→ 6.63 +0.42

WRN-16-10 95.0 17.1m→ 856k 5.91→ 6.43 +0.52

WRN-22-8 95.0 17.2m→ 858k 6.14→ 5.85 −0.29

Recurrent

LSTM-s 95.0 137k→ 6.8k 1.88→ 1.57 −0.31
LSTM-b 95.0 535k→ 26.8k 1.15→ 1.35 +0.20

GRU-s 95.0 104k→ 5.2k 1.87→ 2.41 +0.54

GRU-b 95.0 404k→ 20.2k 1.71→ 1.52 −0.19

SNIP is generally applicable to various architectures and models and reduces a sig-
nificant amount of parameters with minimal loss in performance.

I Visualizing pruned/retained parameters

(a) MNIST (b) Fashion-MNIST

The parameters connected to the discriminative part of image survive and the irrele-
vant parts gets pruned.

I Survived parameters and resulting performance for different batch sizes

|Db| = 1 |Db| = 10 |Db| = 100 |Db| = 1000 |Db| = 10000 train set
(1.94%) (1.72%) (1.64%) (1.56%) (1.40%) –

For |Db| = 1, the sample was 8; SNIP precisely retains valid connections. As |Db| in-
creases, connections get close to the train average, and the error decreases.

I Fitting random labels
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(left) The SNIP-pruned model does not fit the random labels. (right) The effect of
varying sparsity (κ̄). This indicates that the pruned network does not have sufficient
capacity to fit the random labels, but is capable of performing the task.

Conclusion

I SNIP: a new pruning algorithm that is simple, versatile and interpretable
I Pruning at single-shot prior to training
I Applicable to a variety of neural network models without modifications
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