SNIP: Single-shot Network Pruning based on Connection Sensitivity

Namhoon Lee, Thalaiyasingam Ajanthan, Philip H. S. Torr University of Oxford

Network Pruning: Background and Motivation

- Issues with overparameterization in large neural networks
- Description memory and time complexity
- ▷ energy consumption
- generalization capability

Drawbacks of existing methods

- by hyperparameters with heuristics > architecture specific requirements optimization difficulties
- ▷ pretraining

► What we want

- No hyperparameters
- No pretraining
- ▷ No iterative prune—retrain cycle
- b not require the whole training set

Results

► LeNets

Method	Criterion	LeNet $\bar{\kappa}$ (%)	-300-100 err. (%)			Pretrain	# Prune	Additional hyperparam.	Augment objective of	Arch. constraints
Ref.	_	_	1.7	_	0.9	_	_	_	_	_
LWC	Magnitude	91.7	1.6	91.7	0.8	\checkmark	many	\checkmark	×	\checkmark
DNS	Magnitude	98.2	2.0	99.1	0.9	\checkmark	many	\checkmark	×	\checkmark
LC	Magnitude	99.0	3.2	99.0	1.1	\checkmark	many	\checkmark	\checkmark	×
SWS	Bayesian	95.6	1.9	99.5	1.0	\checkmark	soft	\checkmark	\checkmark	×
SVD	Bayesian	98.5	1.9	99.6	0.8	\checkmark	soft	\checkmark	\checkmark	×
OBD	Hessian	92.0	2.0	92.0	2.7	\checkmark	many	\checkmark	×	×
L-OBS	Hessian	98.5	2.0	99.0	2.1	\checkmark	many	\checkmark	×	\checkmark
	Connection	95.0	1.6	98.0	0.8	×	1	×	×	×
SNIP (ours)	sensitivity	98.0	2.4	99.0	1.1					

Single-shot pruning prior to training

Single-shot Network Pruning based on Connection Sensitivity

Neural Network Pruning

Write pruning as constrained optimization:

$$\min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) , \qquad (1)$$

s.t. $\mathbf{w} \in \mathbb{R}^m, \quad \|\mathbf{w}\|_0 \le \kappa .$

Here, $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$ is a dataset, κ is a desired sparsity level, $\ell(\cdot)$ is the loss function, w is the set of parameters of the network.

Connection Sensitivity: Architectural Perspective

 \triangleright Introduce auxiliary indicator variables $\mathbf{c} \in \{0, 1\}^m$:

$$\min_{\mathbf{c},\mathbf{w}} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) = \min_{\mathbf{c},\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{c} \odot \mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) , \qquad (2)$$

s.t. $\mathbf{w} \in \mathbb{R}^m ,$
 $\mathbf{c} \in \{0, 1\}^m, \quad \|\mathbf{c}\|_0 \le \kappa .$

The idea is to measure the effect of removing a parameter on the loss by separating w from c:

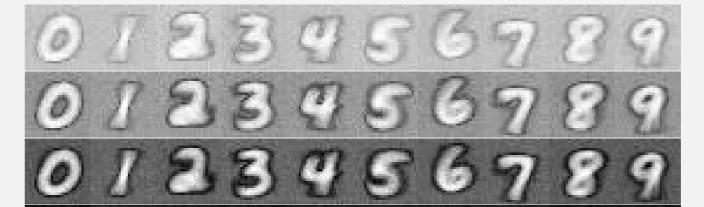
SNIP is capable of pruning extreme sparsity levels (e.g., 99% for LeNet-5-Caffe), while being significantly simpler than other approaches.

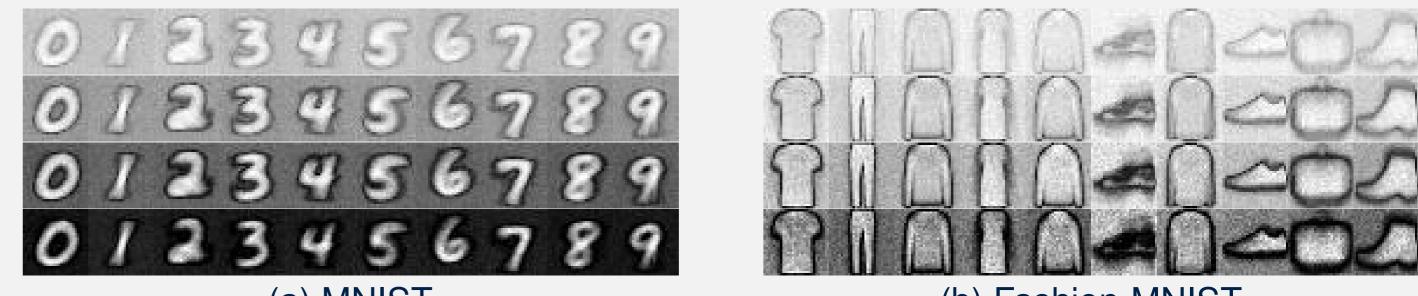
Various modern architectures

Architecture	Model	Sparsity (%)	# Parameters	Error (%)	Δ
	AlexNet-s	90.0	$5.1 \mathrm{m} \rightarrow 507 \mathrm{k}$	$14.12 \rightarrow 14.99$	+0.87
	AlexNet-b	90.0	$8.5 \mathrm{m} \rightarrow 849 \mathrm{k}$	$13.92 \rightarrow 14.50$	+0.58
Convolutional	VGG-C	95.0	$10.5 \mathrm{m} \rightarrow 526 \mathrm{k}$	$6.82 \rightarrow 7.27$	+0.45
	VGG-D	95.0	$15.2 \mathrm{m} \rightarrow 762 \mathrm{k}$	$6.76 \rightarrow 7.09$	+0.33
	VGG-like	97.0	15.0 m $\rightarrow 449$ k	$8.26 \rightarrow 8.00$	-0.26
	WRN-16-8	95.0	10.0 m $\rightarrow 548$ k	$6.21 \rightarrow 6.63$	+0.42
Residual	WRN-16-10	95.0	$17.1 \mathrm{m} \rightarrow 856 \mathrm{k}$	$5.91 \rightarrow 6.43$	+0.52
	WRN-22-8	95.0	$17.2 \mathrm{m} \rightarrow 858 \mathrm{k}$	$6.14 \rightarrow 5.85$	-0.29
	LSTM-s	95.0	$137 \mathbf{k} \rightarrow 6.8 \mathbf{k}$	$1.88 \rightarrow 1.57$	-0.31
Recurrent	LSTM-b	95.0	$535 \mathbf{k} \rightarrow 26.8 \mathbf{k}$	$1.15 \rightarrow 1.35$	+0.20
necurrent	GRU-s	95.0	$104\mathbf{k} \rightarrow 5.2\mathbf{k}$	$1.87 \rightarrow 2.41$	+0.54
	GRU-b	95.0	$404\mathbf{k} \rightarrow 20.2\mathbf{k}$	$1.71 \rightarrow 1.52$	-0.19

SNIP is generally applicable to various architectures and models and reduces a significant amount of parameters with minimal loss in performance.

Visualizing pruned/retained parameters





 \triangleright The effect of removing paramter *j*:

(3) $\Delta L_i(\mathbf{w}; \mathcal{D}) = L(\mathbf{1} \odot \mathbf{w}; \mathcal{D}) - L((\mathbf{1} - \mathbf{e}_i) \odot \mathbf{w}; \mathcal{D}) ,$

where e_i is the indicator vector of element j.

 \triangleright Infinitesimal version of ΔL_i :

$$\Delta L_{j}(\mathbf{w}; \mathcal{D}) \approx \frac{\partial L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})}{\partial c_{j}} \bigg|_{\mathbf{c}=\mathbf{1}} = \lim_{\delta \to 0} \frac{L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) - L((\mathbf{c} - \delta \mathbf{e}_{j}) \odot \mathbf{w}; \mathcal{D})}{\delta} \bigg|_{\mathbf{c}=\mathbf{1}}$$
(4)

which, denoted as $g_i(\mathbf{w}; \mathcal{D})$, measures the rate of change of L with respect to an infinitesimal change in c_i from $1 \rightarrow 1 - \delta$.

Define connection sensitivity as the saliency criterion by taking the normalized magnitude of g_i :

$$s_j = \frac{|g_j(\mathbf{w}; \mathcal{D})|}{\sum_{k=1}^m |g_k(\mathbf{w}; \mathcal{D})|} .$$
(5)

Single-shot Pruning at Initialization

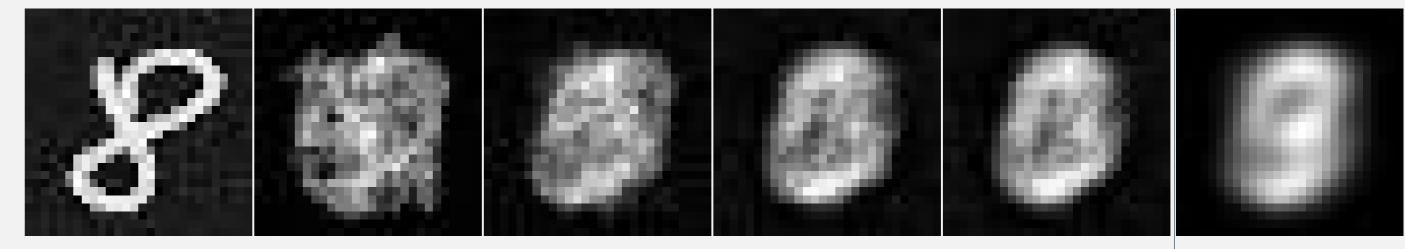
Use variance scaling methods to initialize weights so that the impact of weights on s_i is minimized while making it robust to architecture variations.

(a) MNIST

(b) Fashion-MNIST

The parameters connected to the discriminative part of image survive and the irrelevant parts gets pruned.

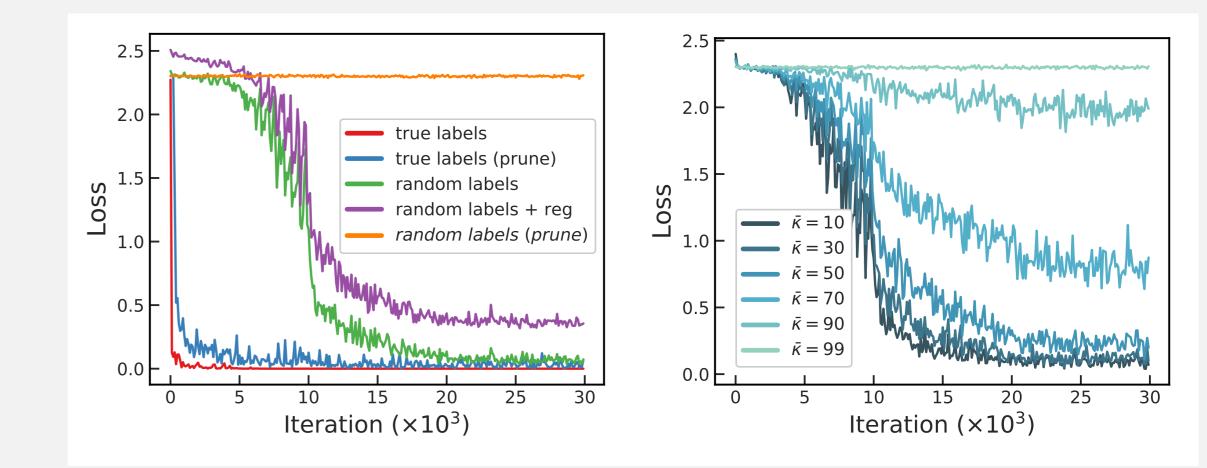
Survived parameters and resulting performance for different batch sizes



$|\mathcal{D}^b| = 100 |\mathcal{D}^b| = 1000 |\mathcal{D}^b| = 10000|$ $|\mathcal{D}^b| = 10$ $|\mathcal{D}^b| = 1$ train set (1.40%) (1.94%) (1.72%) (1.64%) (1.56%)

For $|\mathcal{D}^b| = 1$, the sample was 8; SNIP precisely retains valid connections. As $|\mathcal{D}^b|$ increases, connections get close to the train average, and the error decreases.

Fitting random labels



Using a reasonable number of training examples in one mini-batch can lead to effective pruning.

Algorithm 1 SNIP

Require: Loss function L, training dataset \mathcal{D} , sparsity level κ **Ensure:** $\|\mathbf{w}^*\|_0 \leq \kappa$ 1: $\mathbf{w} \leftarrow VarianceScalingInitialization$

2: $\mathcal{D}^b = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^b \sim \mathcal{D}$ Sample a mini-batch of training data

3: $s_j \leftarrow \frac{\left|g_j(\mathbf{w}; \mathcal{D}^b)\right|}{\sum_{k=1}^m \left|g_k(\mathbf{w}; \mathcal{D}^b)\right|}, \quad \forall j \in \{1 \dots m\}$ 4: $c_j \leftarrow \mathbb{I}[s_j - \tilde{s}_k \ge 0]$, $\forall j \in \{1 \dots m\} \triangleright$ Pruning: choose top- κ connections ▷ Regular training 5: $\mathbf{w}^* \leftarrow \arg\min_{\mathbf{w} \in \mathbb{R}^m} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})$ 6: $\mathbf{w}^* \leftarrow \mathbf{c} \odot \mathbf{w}^*$

(left) The SNIP-pruned model does not fit the random labels. (right) The effect of varying sparsity ($\bar{\kappa}$). This indicates that the pruned network does not have sufficient capacity to fit the random labels, but is capable of performing the task.

Conclusion

- SNIP: a new pruning algorithm that is simple, versatile and interpretable Pruning at single-shot prior to training
- Applicable to a variety of neural network models without modifications