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Abstract

Calibrating neural networks is of utmost importance when employing them in
safety-critical applications where the downstream decision making depends on the
predicted probabilities. Measuring calibration error amounts to comparing two em-
pirical distributions. In this work, we introduce a binning-free calibration measure
inspired by the classical Kolmogorov-Smirnov (KS) statistical test in which the
main idea is to compare the respective cumulative probability distributions. From
this, by approximating the empirical cumulative distribution using a differentiable
function via splines, we obtain a recalibration function, which maps the network
outputs to actual (calibrated) class assignment probabilities. The spine-fitting is
performed using a held-out calibration set and the obtained recalibration function is
evaluated on an unseen test set. We tested our method against existing calibration
approaches on various image classification datasets and our spline-based recalibra-
tion approach consistently outperforms existing methods on KS error as well as
other commonly used calibration measures.

1 Introduction

Despite the success of modern neural networks they are shown to be poorly calibrated [4], which has
led to a growing interest in the calibration of neural networks over the past few years [9, 11, 12, 16].
Considering classification problems, a classifier is said to be calibrated if the probability values it
associates with the class labels match the true probabilities of correct class assignments. For instance,
if an image classifier outputs 0.2 probability for the “horse” label for 100 test images, then out of
those 100 images approximately 20 images should be predicted as horse. It is important to ensure
calibration when using classifiers for safety-critical applications such as medical image analysis and
autonomous driving where the downstream decision making depends on the predicted probabilities.

One of the important aspects of machine learning research is the measure used to evaluate the
performance of a model and in the context of calibration, this amounts to measuring the difference
between two empirical probability distributions. To this end, the popular metric, Expected Calibration
Error (ECE) [17], approximates the classwise probability distributions using histograms and takes
an expected difference. This histogram approximation has a weakness that the resulting calibration
error depends on the binning scheme such as the number of bins and bin divisions. Even though the
drawbacks of ECE have been pointed out and some improvements have been proposed [11, 20], the
histogram approximation has not been eliminated.1

In this paper, we first introduce a simple, binning-free calibration measure inspired by the classical
Kolmogorov-Smirnov (KS) statistical test [7, 24], which also provides an effective visualization of
the degree of miscalibration similar to the reliability diagram [19]. To this end, the main idea of the

1We consider metrics that measure classwise (top-r) calibration error [9]. Refer to section 2 for details.
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KS-test is to compare the respective classwise cumulative (empirical) distributions. Furthermore, by
approximating the empirical cumulative distribution using a differentiable function via splines [14],
we obtain an analytical recalibration function which maps the given network outputs to the actual
class assignment probabilities. Such a direct mapping was previously unavailable and the problem
has been approached indirectly via learning, for example, by optimizing the (modified) cross-entropy
loss [4, 15, 16]. Similar to the existing methods [4, 9] the spline-fitting is performed using a held-out
calibration set and the obtained recalibration function is evaluated on an unseen test set.

We evaluated our method against existing calibration approaches on various image classification
datasets and our spline-based recalibration approach consistently outperforms existing methods on
KS error, ECE as well as other commonly used calibration measures. Our approach to calibration
does not update the model parameters, which allows it to be applied on any trained network and it
retains the original classification accuracy in all the tested cases.

2 Notation and Preliminaries

We abstract the network as a function fθ : D → [0, 1]K , where D ⊂ IRd, and write fθ(x) = z. Here,
x may be an image, or other input datum, and z is a vector, sometimes known as the vector of logits.
In this paper, the parameters θ will not be relevant, and we write simply f to represent the network
function. Moreover, a function of this type will be referred to as a classifier, which may be of some
other kind than a neural network.

In a classification problem, K is the number of classes to be distinguished, and we call the value
zk (the k-th component of vector z) the score for the class k. If the final layer of a network is a
softmax layer, then the values zk satisfy

∑K
k=1 zk = 1, and zk ≥ 0. Hence, the zk are pseudo-

probabilities, though they do not necessarily have anything to do with real probabilities of correct
class assignments. Typically, the value y∗ = argmaxk zk is taken as the (top-1) prediction of the
network, and the corresponding score, maxk zk is called the confidence of the prediction. However,
the term confidence does not have any mathematical meaning in this context and we deprecate its use.

We assume we are given a set of training data (xi, yi)
n
i=1, where xi ∈ D is an input data element,

which for simplicity we call an image, and yi ∈ K = {1, . . . ,K} is the so-called ground-truth label.
Our method also uses two other sets of data, called calibration data and test data.

It would be desirable if the numbers zk output by a network represented true probabilities. For this
to make sense, we posit the existence of joint random variables (X,Y ), where X takes values in
a domain D ⊂ IRd, and Y takes values in K. Further, let Z = f(X), another random variable,
and Zk = fk(X) be its k-th component. Note that in this formulation X and Y are joint random
variables, and the probability P (Y | X) is not assumed to be 1 for single class, and 0 for the others.

A network is said to be calibrated if for every class k,

P (Y = k | Z = z) = zk . (1)

This can be written briefly as P (k | f(x)) = fk(x) = zk. Thus, if the network takes input x and
outputs z = f(x), then zk represents the probability (given f(x)) that image x belongs to class k.

The probability P (k | z) is difficult to evaluate, even empirically, and most metrics (such as ECE)
use or measure a different notion called classwise calibration [9, 30], defined as,

P (Y = k | Zk = zk) = zk . (2)

This paper uses this definition (2) of calibration in the proposed KS metric.

Calibration and accuracy of a network are different concepts. For instance, one may consider a
classifier that simply outputs the class probabilities for the data, ignoring the input x. Thus, if
fk(x) = zk = P (Y = k), this classifier f is calibrated but the accuracy is no better than the random
predictor. Therefore, in calibration of a classifier, it is important that this is not done while sacrificing
classification (for instance top-1) accuracy.

The top-r prediction. The classifier f being calibrated means that fk(x) is calibrated for each
class k, not only for the top class. This means that scores zk for all classes k give a meaningful
estimate of the probability of the sample belonging to class k. This is particularly important in
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medical diagnosis where one may wish to have a reliable estimate of the probability of certain
unlikely yet possible diagnoses.

Frequently, however, one is most interested in the probability of the top scoring class, the top-1
prediction, or in general the top-r prediction. Suppose a classifier f is given with values in [0, 1]K and
let y be the ground truth label. Let us use f (−r) to denote the r-th top score (so f (−1) would denote
the top score; the notation follows python semantics in which A[−1] represents the last element in
array A). Similarly we define max(−r) for the r-th largest value. Let f (−r) : D → [0, 1] be defined
as

f (−r)(x) = max(−r)
k fk(x) , and y(−r) =

{
1 if y = argmax

(−r)
k fk(x)

0 otherwise .
(3)

In words, y(−r) is 1 if the r-th top predicted class is the correct (ground-truth) choice. The network is
calibrated for the top-r predictor if for all scores σ,

P (y(−r) = 1 | f (−r)(x) = σ) = σ . (4)

In words, the conditional probability that the top-r-th choice of the network is the correct choice, is
equal to the r-th top score.

Similarly, one may consider probabilities that a datum belongs to one of the top-r scoring classes.
The classifier is calibrated for being within-the-top-r classes if

P
(∑r

s=1 y
(−s) = 1

∣∣ ∑r
s=1 f

(−s)(x) = σ
)
= σ . (5)

Here, the sum on the left is 1 if the ground-truth label is among the top r choices, 0 otherwise, and
the sum on the right is the sum of the top r scores.

3 Kolmogorov-Smirnov Calibration Error

We now consider a way to measure if a classifier is classwise calibrated, including top-r and within-
top-r calibration. This test is closely related to the Kolmogorov-Smirnov test [7, 24] for the equality of
two probability distributions. This may be applied when the probability distributions are represented
by samples.

We start with the definition of classwise calibration:

P (Y = k | fk(X) = zk) = zk . (6)
P (Y = k, fk(X) = zk) = zk P (fk(X) = zk) , Bayes’ rule .

This may be written more simply but with a less precise notation as

P (zk, k) = zk P (zk) .

Motivation of the KS test. One is motivated to test the equality (or difference between) two
distributions, defined on the interval [0, 1]. However, instead of having a functional form of these
distributions, one has only samples from them. Given samples (xi, yi), it is not straight-forward to
estimate P (zk) or P (zk | k), since a given value zk is likely to occur only once, or not at all, since the
sample set is finite. One possibility is to use histograms of these distributions. However, this requires
selection of the bin size, and the division between bins, and the result depends on these parameters.
For this reason, we abjure this solution.

The approach suggested by the Kolmogorov-Smirnov test is to compare the cumulative distributions.
Thus, with k given, one tests the equality∫ σ

0

P (zk, k) dzk =

∫ σ

0

zk P (zk) dzk . (7)

Writing φ1(σ) and φ2(σ) to be the two sides of this equation, then the KS-distance between these
two distributions is maxσ |φ1(σ)− φ2(σ)|.
The fact that simply the maximum is used here may suggest a lack of robustness, but this is a
maximum difference between two integrals, so it reflects an accumulated difference between the two
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distributions. In fact, if zk consistently over or under-estimates P (k | zk) (which is usually the case,
at least for top-1 classification), then P (k | zk)− zk has constant sign for all values of zk.

It follows that P (zk, k)− zkP (zk) has constant sign and so the maximum value in the KS-distance
is achieved when σ = 1. In this case,

KS =

∫ 1

0

∣∣P (zk, k)− zkP (zk)∣∣ dzk =

∫ 1

0

∣∣P (k | zk)− zk∣∣P (zk) dzk , (8)

which is the expected difference between zk and P (k | zk). This can be equivalently referred to as
the expected calibration error for the class k.

Sampled distributions. Given samples (xi, yi)Ni=1, and a fixed k, one can estimate these cumula-
tive distributions by ∫ σ

0

P (zk, k) dzk ≈
1

N

N∑
i=1

1(fk(xi) ≤ σ)× 1(yi = k) , (9)

where 1 : B → {0, 1} is the function that returns 1 if the Boolean expression is true and otherwise 0.
Thus, the sum is simply a count of the number of samples for which yi = k and fk(xi) ≤ σ, and so
the integral represents the proportion of the data satisfying this condition. Similarly,∫ σ

0

zk P (zk) dzk ≈
1

N

N∑
i=1

1(fk(xi) ≤ σ)fk(xi) . (10)

These sums can be computed quickly by sorting the data according to the values fk(xi), then defining
two sequences as follows.

h̃0 = h0 = 0 ,

h̃i = h̃i−1 + 1(yi = k)/N ,

hi = hi−1 + fk(xi)/N .

(11)

The two sequences should be the same, and the metric
KS(fk) = max

i
|hi − h̃i| , (12)

gives a numerical estimate of the similarity, and hence a measure of the degree of calibration of fk.
This is essentially a version of the Kolmogorov-Smirnov test for equality of two distributions.

Remark. All this discussion holds also when k < 0, for top-r and within-top-r predictions as
discussed in section 2. In (11), for instance, f−1(xi) means the top score, f−1(xi) = maxk(fk(xi)),
or more generally, f−r(xi) means the r-th top score. Similarly, the expression yi = −r means that
yi is the class that has the r-th top score.

4 Recalibration using Splines

The function hi defined in (11) computes an empirical approximation
hi ≈ P (Y = k, fk(X) ≤ fk(xi)) . (13)

For convenience, the value of fk will be referred to as the score. We now define a continuous function
h(t) for t ∈ [0, 1] by

h(t) = P (Y = k, fk(X) ≤ s(t)) , (14)
where s(t) is the t-th fractile score, namely the value that a proportion t of the scores fk(X) lie below.
For instance s(0.5) is the median score. So, hi is an empirical approximation to h(t) where t = i/N .
We now provide the basic observation that allows us to compute probabilities given the scores.

Proposition 4.1. If h(t) = P (Y = k, fk(X) ≤ s(t)) as in (14) where s(t) is the t-th fractile score,
then h′(t) = P (Y = k | fk(X) = s(t)), where h′(t) = dh/dt.

Proof. The proof relies on the equality P (fk(X) ≤ s(t)) = t. In words, since s(t) is the value that a
fraction t of the scores are less than or equal, the probability that a score is less than or equal to s(t),
is (obviously) equal to t. See the supplementary material for a detailed proof.

Notice h′(t) allows a direct conversion from score to probability. Therefore, our idea is to approximate
hi using a differentiable function and take the derivative which would be our recalibration function.

4



0 20 40 60 80 100

Percentile

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

S
co

re
 / 

P
ro

ba
bi

li
ty

(a)

Cumulative Score

Cumulative Probability

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative Score

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Cumulative Score

Cumulative Probability

0 20 40 60 80 100

Percentile

0.2

0.4

0.6

0.8

1.0

S
co

re
 / 

P
ro

ba
bi

li
ty

(c)

Score

Probability

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Score

0.2

0.4

0.6

0.8

1.0

(d)

Score

Probability

Test Class[-1] | Uncalibrated
KS-error =  5.493%, Probability=92.420%

Figure 1: Calibration graphs for an uncalibrated DenseNet-40 [6] trained on CIFAR-10 for top-1 class with a
KS error of 5.5%, and top-1 accuracy of 92.4% on the test set. Here (a) shows the plot of cumulative score and
probability versus the fractile of the test set, (b) shows the same information with the horizontal axis warped so
that the cumulative-score graph is a straight line. This is created as scatter plots of cumulative (score, score):
blue and (score, probability): orange. If the network is perfectly calibrated, the probability line will be a straight
line coincident with the (score, score) line. This shows that the network is substantially overestimating (score)
the probability of the computation. (c) and (d) show plots of (non-cumulative) score and probability plotted
against fractile, or score. How these plots are produced is described in section 4.

4.1 Spline fitting

The function hi (shown in fig 1a) is obtained through sampling only. Nevertheless, the sampled graph
is smooth and increasing. There are various ways to fit a smooth curve to it, so as to take derivatives.
We choose to fit the sampled points hi to a cubic spline and take its derivative.

Given sample points (ui, vi)
N
i=1 in IR × IR, easily available references show how to fit a smooth

spline curve that passes directly through the points (ui, vi). A very clear description is given in [14],
for the case where the points ui are equally spaced. We wish, however, to fit a spline curve with a
small number of knot points to do a least-squares fit to the points. For convenience, this is briefly
described here.

A cubic spline v(u) is defined by its values at certain knot points (ûk, v̂k)Kk=1. In fact, the value of
the curve at any point u can be written as a linear function v(u) =

∑K
k=1 ak(u)v̂k = a>(u) v̂, where

the coefficients ak depend on u.2 Therefore, given a set of further points (ui, vi)Ni=1, which may be
different from the knot points, and typically more in number, least-squares spline fitting of the points
(ui, vi) can be written as a least-squares problem minv̂ ‖A(u)v̂ − v‖2, which is solved by standard
linear least-squares techniques. Here, the matrix A has dimension N ×K with N > K. Once v̂ is
found, the value of the spline at any further points u is equal to v(u) = a(u)>v̂, a linear combination
of the knot-point values v̂k.

Since the function is piecewise cubic, with continuous second derivatives, the first derivative of the
spline is computed analytically. Furthermore, the derivative v′(u) can also be written as a linear
combination v′(u) = a′(u)>v̂, where the coefficients a′(u) can be written explicitly.

Our goal is to fit a spline to a set of data points (ui, vi) = (i/N, hi) defined in (11), in other words,
the values hi plotted against fractile score. Then according to Proposition 4.1, the derivative of
the spline is equal to P (k | fk(X) = s(t)). This allows a direct computation of the conditional
probability that the sample belongs to class k.

Since the derivative of hi is a probability one might constrain the derivative to be in the range [0, 1]
while fitting splines. This can be easily incorporated because the derivative of the spline is a linear
expression in v̂i. The spline fitting problem thereby becomes a linearly-constrained quadratic program
(QP). However, although we tested this, in all the reported experiments, a simple least-squares solver
is used without the constraints.

2 Here and elsewhere, notation such as v and a denotes the vector of values vi or ak, as appropriate.
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Figure 2: The result of the spline calibration method, on the example given in fig 1 for top-1
calibration. A recalibration function γ : IR→ IR is used to adjust the scores, replacing fk(x) with
γ(fk(x)) (see section 4.2). As is seen, the network is now almost perfectly calibrated when tested
on the “calibration” set (top row) used to calibrate it. In bottom row, the recalibration function is
tested on a further set “test”. It is seen that the result is not perfect, but much better than the original
results in fig 1d. It is also notable that the improvement in calibration is achieved without any loss of
accuracy.

4.2 Recalibration

We suppose that the classifier f = fθ is fixed, through training on the training set. Typically, if the
classifier is tested on the training set, it is very close to being calibrated. However, if a classifier f is
then tested on a different set of data, it may be substantially mis-calibrated. See fig 1.

Our method of calibration is to find a further mapping γ : [0, 1]→ [0, 1], such that γ ◦fk is calibrated.
This is easily obtained from the direct mapping from score fk(x) to P (k | fk(x)) (refer to fig 1d). In
equations, γ(σ) = h′(s−1(σ)). The function h′ is known analytically, from fitting a spline to h(t)
and taking its derivative. The function s−1 is a mapping from the given score σ to its fractile s−1(σ).
Note that, a held out calibration set is used to fit the splines and the obtained recalibration function γ
is evaluated on an unseen test set.

To this end, given a sample x from the test set with fk(x) = σ, one can compute h′(s−1(σ)) directly
in one step by interpolating its value between the values of h′(fk(xi)) and h′(fk(xi+1)) where xi
and xi+1 are two samples from the calibration set, with closest scores on either side of σ. Assuming
the samples in the calibration set are ordered, the samples xi and xi+1 can be quickly located using
binary search. Given a reasonable number of samples in the calibration set, (usually in the order of
thousands), this can be very accurate. In our experiments, improvement in calibration is observed
in the test set with no difference to the accuracy of the network (refer to fig 2d). Our code will be
published to ensure reproducibility.

5 Related Work

Modern calibration methods. In recent years, neural networks are shown to overfit to the Negative
Log-Likelihood (NLL) loss and in turn produce overconfident predictions which is cited as the main
reason for miscalibration [4]. To this end, modern calibration methods can be broadly categorized into
1) methods that adapt the training procedure of the classifier, and 2) methods that learn a recalibration
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Dataset Model Uncalibrated Temp. Scaling Vector Scaling MS-ODIR Dir-ODIR Ours (Spline)

CIFAR-10

Resnet-110 4.750 0.916 0.996 0.977 1.060 0.643
Resnet-110-SD 4.102 0.362 0.430 0.358 0.389 0.269
DenseNet-40 5.493 0.900 0.890 0.897 1.057 0.773
Wide Resnet-32 4.475 0.296 0.267 0.305 0.291 0.367
Lenet-5 5.038 0.799 0.839 0.646 0.854 0.348

CIFAR-100

Resnet-110 18.481 1.489 1.827 2.845 2.575 0.575
Resnet-110-SD 15.832 0.748 1.303 3.572 1.645 1.028
DenseNet-40 21.156 0.304 0.483 2.350 0.618 0.454
Wide Resnet-32 18.784 1.130 1.642 2.524 1.788 0.930
Lenet-5 12.117 1.215 0.768 1.047 2.125 0.391

ImageNet Densenet-161 5.721 0.744 2.014 4.723 3.103 0.406
Resnet-152 6.544 0.791 1.985 5.805 3.528 0.441

SVHN Resnet-152-SD 0.852 0.552 0.570 0.573 0.607 0.556

Table 1: KS Error (in %) for top-1 prediction (with lowest in bold and second lowest underlined)
on various image classification datasets and models with different calibration methods. Note, our
method consistently reduces calibration error to < 1% in almost all experiments, outperforming
state-of-the-art methods.

function post training. Among the former, the main idea is to increase the entropy of the classifier to
avoid overconfident predictions, which is accomplished via modifying the training loss [12, 15, 23],
label smoothing [16, 21], and data augmentation techniques [25, 28, 32].

On the other hand, we are interested in calibrating an already trained classifier due to the simplistic
nature that eliminates the need for training from scratch. In this regard, a popular approach is Platt
scaling [22] which transforms the outputs of a binary classifier into probabilities by fitting a scaled
logistic function on a held out calibration set. Similar approaches on binary classifiers include Isotonic
Regression [29], histogram and Bayesian binning [17, 29], and Beta calibration [10], which are later
extended to the multiclass setting [4, 9, 30]. Among these, the most popular method is temperature
scaling [4], which learns a single scalar on a held out set to calibrate the network predictions. Despite
being simple and one of the early works, temperature scaling is the method to beat in calibrating
modern networks. Our approach falls into this category, however, as opposed to minimizing a loss
function, we obtain a recalibration function via spline-fitting, which directly maps the classifier
outputs to the calibrated probabilities.

Calibration measures. Expected Calibration Error (ECE) [17] is the most popular measure in the
literature, however, it has a weaknesses that the resulting calibration error depends on the histogram
binning scheme such as the bin endpoints and the number of bins. Even though, some improvements
have been proposed [20, 26], the binning scheme has not been eliminated and it is recently showed
that any binning scheme leads to underestimated calibration errors [11, 27]. Note that, there are
binning-free metrics exist such as Brier score [1], NLL, and kernel based metrics for the multiclass
setting [12, 27]. Nevertheless, Brier score and NLL measure a combination of calibration error and
classification error (not just the calibration which is the focus). Whereas kernel based metrics, besides
being computationally expensive, measure the calibration of the predicted probability vector rather
than the classwise calibration error [9] (or top-r prediction) which is typically the quantity of interest.
To this end, we introduce a binning-free calibration measure based on the classical KS-test, which
has the same benefits of ECE and provides effective visualizations similar to reliability diagrams.
Furthermore, KS-error can be shown to be a special case of kernel based measures [3].

6 Experiments

Experimental setup. We evaluate our proposed calibration method on four different image-
classification datasets namely CIFAR-10/100 [8], SVHN [18] and ImageNet [2] using LeNet [13],
ResNet [5], ResNet with stochastic depth [6], Wide ResNet [31] and DenseNet [6] network archi-
tectures against state-of-the-art methods that calibrate post training. We use the pretrained network
logits3 for spline fitting where we choose validation set as the calibration set, similar to the standard
practice. Our final results for calibration are then reported on test set of all datasets. Since, ImageNet

3Pre-trained network logits are obtained from https://github.com/markus93/NN_calibration.
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Dataset Model Uncalibrated Temp. Scaling Vector Scaling MS-ODIR Dir-ODIR Ours (Spline)

CIFAR-10

Resnet-110 3.011 0.947 0.948 0.598 0.953 0.347
Resnet-110-SD 2.716 0.478 0.486 0.401 0.500 0.310
DenseNet-40 3.342 0.535 0.543 0.598 0.696 0.695
Wide Resnet-32 2.669 0.426 0.369 0.412 0.382 0.364
Lenet-5 1.708 0.367 0.279 0.409 0.426 0.837

CIFAR-100

Resnet-110 4.731 1.401 1.436 0.961 1.269 0.371
Resnet-110-SD 3.923 0.315 0.481 0.772 0.506 0.595
DenseNet-40 5.803 0.305 0.653 0.219 0.135 0.903
Wide Resnet-32 5.349 0.790 1.095 0.646 0.845 0.372
Lenet-5 2.615 0.571 0.439 0.324 0.799 0.587

ImageNet Densenet-161 1.689 1.044 1.166 1.288 1.321 0.178
Resnet-152 1.793 1.151 1.264 1.660 1.430 0.580

SVHN Resnet-152-SD 0.373 0.226 0.216 0.973 0.218 0.492

Table 2: KS Error (in %) for top-2 prediction (with lowest in bold and second lowest underlined)
on various image classification datasets and models with different calibration methods. Again, our
method consistently reduces calibration error to < 1% (less then 0.7%, except for one case), in all
experiments, the only one of the methods to achieve this.

does not comprise of the validation set, test set is divided into two halves: calibration set and test set.
We use the natural cubic spline fitting method (that is, cubic splines with linear run-out) with 6 knots
for all our experiments. Further experimental details are provided in the supplementary. For baseline
methods namely: Temperature scaling, Vector scaling, Matrix scaling with ODIR (Off-diagonal and
Intercept Regularisation) and Dirichlet calibration, we use the implementation of Kull et al. [9].

Results. We provide comparisons of our method using proposed Kolmogorov-Smirnov Calibration
Error for the top most prediction against state-of-the-art calibration methods namely temperature
scaling [4], vector scaling, MS-ODIR and Dirichlet Calibration (Dir-ODIR) [9] in Table 1. Our
method reduces calibration error to 1% in almost all experiments performed on different datasets
without any loss in accuracy. It clearly reflects the efficacy of our method irrespective of the scale of
the dataset as well as depth of the network architecture. It consistently performs better than recently
introduced Dirichlet calibration and Matrix scaling with ODIR [9] in all the experiments. The closest
competitor to our method is temperature scaling, against which our method performs better in 9 out
of 13 experiments. Note, in the cases where temperature scaling outperforms our method, the gap
in KS error between the two methods is marginal (< 0.3%) and our method is the second best. We
provide comparisons using other calibration metrics in the supplementary.

From the practical point of view, it is also important for a network to be calibrated for top second/third
predictions and so on, and not only for the top-1 prediction. We thus show comparisons for top-2
prediction KS error in Table 2. An observation similar to the one noted in Table 1 can be made for
the top-2 predictions as well. Our method achieves < 1% calibration error in all the experiments. It
consistently performs well especially for experiments performed on large scale ImageNet dataset
where it sets new state-of-the-art for calibration. We would like to emphasize here, though for
some cases Kull et al. [9] and Vector Scaling perform better than our method in terms of top-2 KS
calibration error, overall (considering both top-1 and top-2 predictions) our method performs better.

7 Conclusion

In this work, we have introduced a binning-free calibration metric based on the Kolmogorov-Smirnov
test to measure classwise or (within)-top-r calibration errors. Our KS error eliminates the shortcom-
ings of the popular ECE measure and its variants while accurately measuring the expected calibration
error and provides effective visualizations similar to reliability diagrams. Furthermore, we introduced
a simple and effective calibration method based on spline-fitting which does not involve any learning
and yet consistently yields the lowest calibration error in majority of our experiments. We believe,
the KS metric would be of wide-spread use to measure classwise calibration and our spline method
would inspire learning-free approaches to neural network calibration.
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Appendices
Here, we first provide the proof of our main result, discuss more about top-r calibration and spline-
fitting, and then turn to additional experiments.

A Proof of Proposition 4.1

We first restate our proposition below.

Proposition A.2. If h(t) = P (Y = k, fk(X) ≤ s(t)) as in (14) of the main paper where s(t) is the
t-th fractile score. Then h′(t) = P (Y = k | fk(X) = s(t)), where h′(t) = dh/dt.

Proof. Taking derivatives, we see (writing P (k) instead of P (Y = k)):

h′(t) = P (k, fk(X) = s(t)) . s′(t)

= P (k | fk(X) = s(t)) . P (fk(X) = s(t)) . s′(t)

= P (k | fk(X) = s(t)) .
d

dt

(
P (fk(X) ≤ s(t))

)
= P (k | fk(X) = s(t)) .

d

dt
(t)

= P (k | fk(X) = s(t)) .

(15)

The proof relies on the equality P (fk(X) ≤ s(t)) = t. In words: s(t) is the value that a fraction t of
the scores are less than or equal. This equality then says: the probability that a score is less than or
equal to the value that a fraction t of the scores lie below, is (obviously) equal to t.

B More on top-r and within-top-r Calibration

In the main paper, definitions of top-r and within-top-r calibration are given in equations (4) and
(5). Here, a few more details are given of how to calibrate the classifier f for top-r and within-top-r
calibration.

The method of calibration using splines described in this paper consists in fitting a spline to the
cumulative accuracy, defined as hi in equation (11) in the main paper. For top-r classification, the
method is much the same as for the classification for class k. Equation (11) is replaced by sorting the
data according to the r-th top score, then defining

h̃0 = h0 = 0 ,

h̃i = h̃i−1 + 1(y(−r) = 1)/N ,

hi = hi−1 + f (−r)(xi)/N ,

(16)

where y(−r) and f (−r)(xi) are defined in the main paper, equation (3). These sequences may then
be used both as a metric for the correct top-r calibration and for calibration using spline-fitting as
described.

For within-top-r calibration, one sorts the data according to the sum of the top r scores, namely∑r
s=1 f

(−s)(xi), then computes

h̃0 = h0 = 0 ,

h̃i = h̃i−1 + 1
( r∑
s=1

y(−s) = 1
)/

N ,

hi = hi−1 +

r∑
s=1

f (−s)(xi)/N ,

(17)

As before, this can be used as a metric, or as the starting point for within-top-r calibration by our
method. Examples of this type of calibration (graphs for uncalibrated networks in fig 7 and fig 9)
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is given in the graphs provided in fig 8 and fig 10 for within-top-2 predictions and within-top-3
predictions respectively.

It is notable that if a classifier is calibrated in the sense of equation (1) in the main paper (also called
multi-class-calibrated), then it is also calibrated for top-r and within-top-r classification.

C Least Square Spline Fitting

Least-square fitting using cubic splines is a known technique. However, details are given here for the
convenience of the reader. Our primary reference is [14], which we adapt to least-squares fitting. We
consider the case where the knot-points are evenly spaced.

We change notation from that used in the main paper by denoting points by (x, y) instead of (u, v).
Thus, given knot points (x̂i, ŷi)Kk=1 one is required to fit some points (xi, yi)Ni=1. Given a point x,
the corresponding spline value is given by y = a(x)>Mŷ, where ŷ is the vector of values ŷi. The
form of the vector a(x) and the matrix M are given in the following.

The form of the matrix M is derived from equation (25) in [14]. Define the matrices

A =



4 1
1 4 1

1 4 1
. . .

1 4 1
1 4

 ; B =
6

h2


1 −2 1

1 −2 1
. . .

1 −2 1

 ,

where h is the distance between the knot points. These matrices are of dimensions K − 2×K − 2
and K − 2×K respectively. Finally, let M be the matrix

M =

 0K
>

A−1B
0K
>

IK×K

 .

Here, 0K is a vector of zeros of length K, and IK×K is the identity matrix. The matrix M has
dimension 2K ×K.

Next, let the point x lie between the knots j and j + 1 and let u = x− x̂j . Then define the vector
v = a(x) by values

vj = −u3/(6h) + u2/2− hu/3 ,
vj+1 = u3/(6h)− hu/6 ,
vj+K = −u/h+ 1 ,

vj+1+K = u/h ,

with other entries equal to 0.

Then the value of the spline is given by

y = a(x)>Mŷ ,

as required. This allows us to fit the spline (varying the values of ŷ) to points (xi, yi) by least-squares
fit, as described in the main paper.

The above description is for so-called natural (linear-runout) splines. For quadratic-runout or cubic-
runout splines the only difference is that the first and last rows of matrix A are changed – see [14] for
details.

As described in the main paper, it is also possible to add linear constraints to this least-squares
problem, such as constraints on derivatives of the spline. This results in a linearly-constrained
quadratic programming problem.
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Dataset Image Size # class Calibration set Test set

CIFAR-10 32× 32 10 5000 10000
CIFAR-100 32× 32 100 5000 10000
SVHN 32× 32 10 6000 26032
ImageNet 224× 224 1000 25000 25000

Table 3: Dataset splits used for all the calibration experiments. Note, “calibration” set is used for spline fitting
in our method and calibration for the baseline methods and then different methods are evaluated on “test” set.

Dataset Model Uncalibrated Temp. Scaling Vector Scaling MS-ODIR Dir-ODIR Ours (Spline)

CIFAR-10

Resnet-110 1.805 0.097 0.176 0.140 0.195 0.277
Resnet-110-SD 1.423 0.111 0.089 0.082 0.073 0.104
DenseNet-40 2.256 0.435 0.409 0.395 0.348 0.571
Wide Resnet-32 1.812 0.145 0.105 0.124 0.139 0.537
Lenet-5 3.545 0.832 0.831 0.631 0.804 0.670

CIFAR-100

Resnet-110 14.270 0.885 0.649 1.425 1.190 0.503
Resnet-110-SD 12.404 0.762 1.311 2.120 1.588 0.684
DenseNet-40 15.901 0.437 0.368 2.205 0.518 0.724
Wide Resnet-32 14.078 0.414 0.548 1.915 1.099 1.017
Lenet-5 14.713 0.787 1.249 0.643 2.682 0.518

ImageNet Densenet-161 4.266 1.051 0.868 3.372 2.536 0.408
Resnet-152 4.851 1.167 0.776 4.093 2.839 0.247

SVHN Resnet-152-SD 0.485 0.388 0.410 0.407 0.388 0.158

Table 4: Within-top-2 predictions. KS Error (in %) within-top-2 prediction (with lowest in bold and second
lowest underlined) on various image classification datasets and models with different calibration methods. Note,
for this experiment we use 14 knots for spline fitting.

D Additional Experiments

We first provide the experimental setup for different datasets in Table 3. Note, the calibration set is
used for spline fitting in our method and then final evaluation is based on an unseen test set.

We also provide comparisons of our method against baseline methods for within-top-2 predictions
(equation 5 of the main paper) in Table 4 using KS error. Our method achieves comparable or
better results for within-top-2 predictions. It should be noted that the scores for top-3 (f (−3)(x)) or
even top-4, top-5, etc., are very close to zero for majority of the samples (due to overconfidence of
top-1 predictions). Therefore the calibration error for top-r with r > 2 predictions are very close
to zero and comparing different methods with respect to it is of little value. Furthermore, for visual
illustration, we provide calibration graphs of top-2 predictions in fig 3 and fig 4 for uncalibrated and
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Test Class[-2] | Uncalibrated
KS-error =  3.343%, Probability= 5.080%

Figure 3: Top-2 predictions, Uncalibrated. Calibration graphs for an uncalibrated DenseNet-40 [6] trained
on CIFAR-10 for top-2 class with a KS error of 3.343% on the test set. Here (a) shows the plot of cumulative
score and probability versus the fractile of the test set, (b) shows the same information with the horizontal axis
warped so that the cumulative-score graph is a straight line. This is created as scatter plots of cumulative (score,
score): blue and (score, probability): orange. If the network is perfectly calibrated, the probability line will be a
straight line coincident with the (score, score) line. This shows that the network is substantially overestimating
(score) the probability of the computation. (c) and (d) show plots of (non-cumulative) score and probability
plotted against fractile, or score. How these plots are produced is described in Section 4 of main paper.
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Figure 4: Top-2 predictions, Calibrated. The result of the spline calibration method, on the example given in
fig 3 for top-2 calibration. A recalibration function γ : IR→ IR is used to adjust the scores, replacing fk(x)
with γ(fk(x)) (see Section 4 of main paper). As is seen, the network is now almost perfectly calibrated when
tested on the “calibration” set (top row) used to calibrate it. In bottom row, the recalibration function is tested
on a further set “test”. It is seen that the result is not perfect, but much better than the original results in fig 3d.
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Figure 5: Top-3 predictions, Uncalibrated. Calibration graphs for an uncalibrated DenseNet-40 trained on
CIFAR-10 for top-3 class with a KS error of 1.277% on the test set. Here (a) shows the plot of cumulative
score and probability versus the fractile of the test set, (b) shows the same information with the horizontal axis
warped so that the cumulative-score graph is a straight line. (c) and (d) show plots of (non-cumulative) score
and probability plotted against fractile, or score.
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Figure 6: Top-3 predictions, Calibrated. The result of the spline calibration method, on the example given in
fig 5 for top-3 calibration. A recalibration function γ : IR→ IR is used to adjust the scores, replacing fk(x)
with γ(fk(x)). As is seen, the network is now almost perfectly calibrated when tested on the “calibration” set
(top row) used to calibrate it. In bottom row, the recalibration function is tested on a further set “test”. It is
seen that the result is not perfect, but much better than the original results in fig 5d.
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Figure 7: Within-top-2 predictions, Uncalibrated. Calibration graphs for an uncalibrated DenseNet-40
trained on CIFAR-10 for within-top-2 predictions with a KS error of 2.256% on the test set. Here (a) shows
the plot of cumulative score and probability versus the fractile of the test set, (b) shows the same information
with the horizontal axis warped so that the cumulative-score graph is a straight line. (c) and (d) show plots of
(non-cumulative) score and probability plotted against fractile, or score.
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Figure 8: Within-top-2 predictions, Calibrated. The result of the spline calibration method, on the example
given in fig 7 for within-top-2 calibration. A recalibration function γ : IR → IR is used to adjust the scores,
replacing fk(x) with γ(fk(x)). As is seen, the network is now almost perfectly calibrated when tested on the

“calibration” set (top row) used to calibrate it. In bottom row, the recalibration function is tested on a further set
“test”. It is seen that the result is not perfect, but much better than the original results in fig 7d.
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Figure 9: Within-top-3 predictions, Uncalibrated. Calibration graphs for an uncalibrated DenseNet-40
trained on CIFAR-10 for within-top-3 predictions with a KS error of 0.983% on the test set. Here (a) shows
the plot of cumulative score and probability versus the fractile of the test set, (b) shows the same information
with the horizontal axis warped so that the cumulative-score graph is a straight line. (c) and (d) show plots of
(non-cumulative) score and probability plotted against fractile, or score.
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Figure 10: Within-top-3 predictions, Calibrated. The result of the spline calibration method, on the example
given in fig 9 for within-top-3 calibration. A recalibration function γ : IR → IR is used to adjust the scores,
replacing fk(x) with γ(fk(x)). As is seen, the network is now almost perfectly calibrated when tested on the

“calibration” set (top row) used to calibrate it. In bottom row, the recalibration function is tested on a further set
“test”. It is seen that the result is not perfect, but much better than the original results in fig 9d.

Dataset Model Uncalibrated Temp. Scaling Vector Scaling MS-ODIR Dir-ODIR Ours (Spline)

CIFAR-10

Resnet-110 93.56 93.56 93.50 93.53 93.52 93.55
Resnet-110-SD 94.04 94.04 94.04 94.18 94.20 94.05
DenseNet-40 92.42 92.42 92.50 92.52 92.47 92.31
Wide Resnet-32 93.93 93.93 94.21 94.22 94.22 93.76
Lenet-5 72.74 72.74 74.48 74.44 74.52 72.64

CIFAR-100

Resnet-110 71.48 71.48 71.58 71.55 71.62 71.50
Resnet-110-SD 72.83 72.83 73.60 73.53 73.14 72.81
DenseNet-40 70.00 70.00 70.13 70.40 70.24 70.17
Wide Resnet-32 73.82 73.82 73.87 74.05 73.99 73.74
Lenet-5 33.59 33.59 36.42 37.58 37.52 33.55

ImageNet Densenet-161 77.05 77.05 76.72 77.15 77.19 77.05
Resnet-152 76.20 76.20 75.87 76.12 76.24 76.07

SVHN Resnet-152-SD 98.15 98.15 98.13 98.12 98.19 98.17

Table 5: Classification (top-1) accuracy (with highest in bold and second highest underlined) post calibration
on various image classification datasets and models with different calibration methods. Note, only a negligible
change in accuracy is observed in our method compared to the uncalibrated networks.

calibrated network respectively. Similar graphs for top-3, within-top-2, and within-top-3 predictions
are presented in figures 5 – 10.

We also provide classification accuracy comparisons for different post-hoc calibration methods against
our method if we apply calibration for all top-1, 2, 3, . . . ,K predictions for K-class classification
problem in Table 5. We would like to point out that there is negligible change in accuracy between
the calibrated networks (using our method) and the uncalibrated ones.

For the sake of completeness, we present calibration results using the existing calibration metric,
Expected Calibration Error (ECE) [17] in Table 6. We would like to reiterate the fact that ECE metric
is highly dependent on the chosen number of bins and thus does not really reflect true calibration
performance.
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Dataset Model Uncalibrated Temp. Scaling Vector Scaling MS-ODIR Dir-ODIR Ours (Spline)

CIFAR-10

Resnet-110 4.750 1.224 1.092 1.276 1.240 1.011
Resnet-110-SD 4.135 0.777 0.752 0.684 0.859 0.992
DenseNet-40 5.507 1.006 1.207 1.250 1.268 1.389
Wide Resnet-32 4.512 0.905 0.852 0.941 0.965 1.003
Lenet-5 5.188 1.999 1.462 1.504 1.300 1.333

CIFAR-100

Resnet-110 18.480 2.428 2.722 3.011 2.806 1.868
Resnet-110-SD 15.861 1.335 2.067 2.277 2.046 1.766
DenseNet-40 21.159 1.255 1.598 2.855 1.410 2.114
Wide Resnet-32 18.784 1.667 1.785 2.870 2.128 1.672
Lenet-5 12.117 1.535 1.350 1.696 2.159 1.029

ImageNet Densenet-161 5.720 2.059 2.637 4.337 3.989 0.798
Resnet-152 6.545 2.166 2.641 5.377 4.556 0.913

SVHN Resnet-152-SD 0.877 0.675 0.630 0.646 0.651 0.832

Table 6: ECE for top-1 predictions (in %) using 25 bins (with lowest in bold and second lowest underlined) on
various image classification datasets and models with different calibration methods. Note, for this experiment
we use 13 knots for spline fitting.
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