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Abstract

Calibration of neural networks is a critical aspect to consider when incorporating
machine learning models in real-world decision-making systems where the con-
fidence of decisions are equally important as the decisions themselves. In recent
years, there is a surge of research on neural network calibration and the majority of
the works can be categorized into post-hoc calibration methods, defined as methods
that learn an additional function to calibrate an already trained base network. In this
work, we intend to understand the post-hoc calibration methods from a theoretical
point of view. Especially, it is known that minimizing Negative Log-Likelihood
(NLL) will lead to a calibrated network on the training set if the global optimum
is attained [1]. Nevertheless, it is not clear learning an additional function in a
post-hoc manner would lead to calibration in the theoretical sense. To this end, we
prove that even though the base network (f ) does not lead to the global optimum
of NLL, by adding additional layers (g) and minimizing NLL by optimizing the
parameters of g one can obtain a calibrated network g ◦ f . This not only provides a
less stringent condition to obtain a calibrated network but also provides a theoretical
justification of post-hoc calibration methods. Our experiments on various image
classification benchmarks confirm the theory.

1 Introduction

In this paper we consider the problem of calibration of neural networks, or classification functions
in general. This problem has been considered in the context of Support Vector Machines [17], but
has recently been considered in the context of Convolutional Neural Networks (CNNs) [4]. In this
case, a CNN used for classification takes an input x ∈ DX , belonging to one of n classes, and outputs
a vector f(x) in IRn, where the k-th component, fk(x) is often interpreted as a probability that
input x belongs to class k. If this value is to represent probabilities accurately, then we require that
fk(x) = P (k | f(x)). In this case, the classifier f is said to be calibrated, or multi-class calibrated. 1

A well-known condition ([1]) for a classifier to be calibrated is that it minimizes the cross-entropy
cost function, over all functions f : DX → ∆n−1, where ∆n−1 is the standard probability simplex
(see definition below). If the absolute minimum is attained, it is true that fk(x) = P (k | x). However,
this condition is rarely satisfied, since DX may be a very large space (for instance a set of images, of
very high dimension) and the task of finding the absolute (or even a local) minimum of the loss is
difficult: it requires the network to have sufficient capacity, and also that the network manages to
find the optimal value through training. To fulfil this requirement, two networks that reach different
minima of the loss function cannot both be calibrated. However, the requirement that a network be
calibrated is separate from that of finding the optimal classifier.

1 In many papers, e.g. [11] and calibration metrics, e.g. ECE [15] a slightly different condition known as
classwise-calibration is preferred: fk(x) = P (k | fk(x)).
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In this paper, it is shown that a far less stringent condition is sufficient for the network to be
calibrated; we say that the network is optimal with respect to calibration or calibration-optimal
provided no adjustment of the output of the network in the output space can improve the calibration
(see definition 3.3). This is a far simpler problem, since it requires that a function between far
smaller-dimensional spaces should be optimal.

Achieving optimality with respect to calibration can be achieved in either of two ways:

1. by addition of extra layers at the end of the network and post-hoc training on a hold-out
calibration set to minimize the cross-entropy cost function. The extra layers (which we call
g-layers) can be added before or after the usual softmax layer. Since the output space of the
network is of small dimension (compared to the input of the whole network), optimization
of the loss by training the g-layers is a far easier task;

2. by training the network with the small g-layers in place from the beginning, on the training
set. Since the g-layers are small, and near the end of the network, the expectation is that
they will become trained far more easily and more quickly than the rest of the network. A
final training of the g-layers alone on a small hold-out calibration set should also be applied.

We conduct experiments on various image classification datasets by learning a small fully-connected
network for the g-layers on a hold-out calibration set and evaluate on an unseen test set. Our
experiments confirm the theory that if the calibration set and the test set are statistically similar, our
method outperforms existing post-hoc calibration methods while retaining the original accuracy.

2 Preliminaries

We consider a pair of joint random variables, (X,K). Random variable X should take values in some
domain DX for instance a set of images, and K takes values in a finite class set K = {1, 2, . . . , n}.
The variable n will refer always to the number of labels, and k denotes an element of the class set.

We shall be concerned with a (measurable) function f : DX → DZ = IRm, and random variable Z
defined by Z = f(X). Note that DZ is the same as IRm, but we shall usually use the notation DZ
to remind us that it is the range of function f . The distribution of the random variable X induces
the distribution for the random variable Z = f(X). The symbol z will always represent f(x) where
x is a value of random variable X . The notation x ∼ X means that x is a value sampled from
the random variable X . The situation we have in mind is that f is the function implemented by a
(convolutional) neural network. A notation P (·) (with upper-case P ) always refers to probability,
whereas a lower case p represents a probability distribution. We use the notation P (k | z) for brevity
to mean P (K = k | Z = z).

A common way of doing classification, given n classes, is that the neural net is terminated with a
layer represented by a function q : IRm → IRn (where typically m = n, but this is not required),
taking value q(z) = (q1(z), . . . , qn(z)) in IRn, and satifying qk(z) > 0 and

∑n
k=1 qk(z) = 1. The

set of such vectors q(z) satisfying these conditions is called the standard probability simplex, ∆n−1,
or simply the standard (open) simplex. This is an n− 1 dimensional subset of IRn. An example of
such a function q is the softmax function defined by qk(z) = exp(zk)/

∑n
j=1 exp(zj).

Thus, the function implemented by a neural net is q ◦ f , where f : DX → DZ = IRm, and
q : IRm → ∆n−1. The function q will be called the activation in this paper. The notation q ◦ f
represents the composition of the two functions f and q. One is tempted to declare (or hope) that
qk(z) = P (k | z), in other words that the neural network outputs the correct conditional class
probabilities given the network output. At least it is assumed that the most probable class assignment
is equal to argmaxk∈K qk(z). It will be investigated how justified these assumptions are. Clearly,
since f can be any function, this is not going to be true in general.

2.1 Loss

Given a pair (x, k) ∈ DX ×K, the negative-log loss is given by L(q ◦ f, x, k) = − log(qk(f(x))) .
The expected loss over the distribution given by the random variables (X,K) is

L(q ◦ f,X,K) = E(x,k)∼(X,K)L(q ◦ f, x, k) = −E(x,k)∼(X,K) log(qk(f(x))) . (1)
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We cannot know the complete distribution of the random variables (X,K) in a real situation, however,
if the distributions are represented by data pairs D = {(xi, ki)Ni=1} sampled from the distribution of
(X,K), then the expected loss is approximated by the empirical loss

L(q ◦ f,D) ≈ −E(x,k)∼D log(qk(f(x)) = −
N∑
i=1

log(qki(f(xi)) . (2)

The training process of the neural network is intended to find the function f∗ that minimizes the loss.
Thus f∗ = argminf :DX→IRm L(q ◦ f,D) .

3 Calibration

According to the theory (see [1]), if the trained network is f∗ = argminf :DX→∆n−1 L(f,X,K),
where L(f,X,K) is the loss given in (1) then the network (function f∗) is calibrated, in the sense
that f∗k (x) = P (k | x), as stated in the following theorem.

Theorem 3.1. Consider joint random variables (X,K), taking values in DX and K respectively,
whereDX is some Cartesian space. Let f : DX → ∆n−1 be a function. Define the loss L(f,X,K) =

−E(x,k)∼(X,K) log
(
fk(x)

)
. If f = argminf̂ :DX→∆n−1 L(f̂ , X,K) then P (k | x) = fk(x) .

This theorem is a simple corollary of the following slight generalization, which is proved in the
supplementary material. (The theorem is stated in terms of a function q, rather than f for convenience
later.)

Theorem 3.2. Consider joint random variables (Z,K), taking values in IRm and K respectively. Let
q : IRm → ∆n−1 be a submersion.2 Define the loss L(q, Z,K) = −E(z,k)∼(Z,K) log

(
qk(z)

)
. If

id = argmin
g:IRm→IRm

L(q ◦ g, Z,K) ,

where id : IRm → IRm is the identify function. Then P (k | z) = qk(z).

This theorem weakens the condition for optimality of f (or q) by the weaker requirement that it be
optimal with respect to the prepended modification by g : IRm → IRm. The theorem in this form
will be used to derive our main theorem.

Theorem 3.1 is a fundamental result, but it leaves the following difficulties. Even if the network is
trained to completion, or trained with early-stopping, there is no expectation that the loss will be
exactly minimized over all possible functions f : DX → ∆n−1. If this were always the case, then
research into different network architectures would be largely superfluous. We define a less ambitious
minimum which does not require the whole network to be optimal, as follows.

Definition 3.3. A function f : DX → IRm is said to be optimal with respect to calibration for a
loss-function L(·, X,K) and activation q if

argmin
g:IRm→IRm

L(q ◦ g ◦ f,X,K) = id ,

where id : IRm → IRm is the identify function.

In other words f is optimal with respect to calibration if replacing f by the composite function g ◦ f
does not result in a decrease in the loss function.

Now, we can state and prove our theorem on calibration.

Theorem 3.4. Consider joint random variables (X,K), taking values in DX and K respectively. Let
f : DX → IRm, and let q : IRm → ∆n−1 be a submersion. Define the loss

L(q ◦ f,X,K) = −E(x,k)∼(X,K) log
(
qk(f(x))

)
.

If f is optimal with respect to calibration, for this cost function, then P (k | f(x)) = qk(f(x)).
2A function between two differential manifolds q : M → N is called a submersion if its differential map at

point z ∈ M, namely Dqz : TzM → Tq(z)N has rank equal to the dimension of N .
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This theorem also holds for least-squares error as indicated in [1] and various other cost functions
generally known as proper loss functions [2, 19].

Proof. Let Z = f(X), and for any x define f(x) = z. Then,

L(q ◦ f,X,K) = −E(x,k)∼(X,K) log
(
qk(f(x))

)
= −E(z,k)∼(Z,K) log

(
qk(z)

)
= L(q, Z,K) .

According to Theorem 3.2, if replacing q by q◦g will not decrease the value of the loss function (which
is the definition that q is optimal with respect to recalibration), we may conclude that P (k | z) = qk(z)
as required. ut

This theorem may be applied in the standard case where m = n and q is the softmax function (which
is a submersion). We give examples of other situations when this theorem applies.

Two-class classification. For two-class classification, we may select DZ = IR. Let h be any
strictly increasing function with range (0, 1). The sigmoid function is one such function, so are
arctan(z)/π + 1/2 and (tanh(z) + 1)/2. Define q1(z) = h(z) and q2(z) = 1− h(z). In this case,
the Jacobian is [h′(z),−h′(z)] which has rank 1, so h is a submersion. The function f is calibrated if
there is no function g : IR→ IR such that g ◦ f decreases the loss.

The main point here is that it is not necessary to find the function f that achieves the minimum
of L(f,X,K) for the function to be calibrated. All that is necessary is to minimize the cost over
functions g : IR → IR, or even to find a local minimum, such that small variations of f do not
decrease the cost.

Multi-class classification. In a multiclass classification problem, we may choose m = n,
and define functions qk : IRm → IR so that q : IRm → ∆m−1 is a submersion. For exam-
ple, let hk be a positive strictly increasing (or decreasing) function for k = 1, . . . ,m, and define
qk(z) = hk(zk)/

∑n
j=1 hj(zj) . The denominator is simply a normalization factor to ensure that∑n

k=1 qk(z) = 1. Together, all the functions qk make up a function q : IRm → ∆m−1, and
it may be verified that it is a submersion. An example of such a function is the softmax (when
hk(zk) = exp(zk)).

Calibrating partially trained networks. According to Theorem 3.4, there is no need for the
classifier network fθ to be optimized in order for it to be calibrated. It is sufficient that the last layer
of the network, (before the softmax layer, represented by q) should be optimal. Thus, it is possible for
the classifier to be calibrated even after early-stopping or incomplete training.

Classwise calibration. Theorem 3.4 gives a condition for the network to be calibrated in the
sense called multi-class-calibration in [11]. Many other calibration methods [13, 17, 21] aim at
classwise-calibration. It can be shown (see the supplementary material) that if a classifier is correctly
multi-class-calibrated, then it is classwise-calibrated, and furthermore it is calibrated correctly for the
top-r prediction, or within-top-r predictions.3 The converse does not hold.

4 Finding a calibrating CNN

A simple rewriting of Theorem 3.4 is

Corollary 4.5. Consider joint random variables (X,K), taking values in DX and K respectively. Let
f : DX → IRm, and Z = f(X). Further, let q : IRm → ∆n−1 be a submersion. If

g = argmin
ĝ:IRm→IRm

−E(z,k)∼(Z,K) log
(
qk(ĝ(z))

)
, (3)

then P (k | g ◦ f(x)) = qk(g ◦ f(x)).

Our strategy, therefore, is to replace function f by g ◦ f , where g minimizes the loss function
L(q ◦ g, Z,K) in (3). Then the function g ◦ f will be calibrated. It is assumed that f is implemented
by a neural net, and so is g. Therefore, the method consists of steps, starting with neural net fθ which
has already been trained to compute function f = fθ:

3The network is said to be calibrated for within-top-r predictions if the probability of the correct answer
being one of the top r predictions is equal to the sum of the top r scores.
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1. Strip any softmax layer (or equivalent) from f , and capture samples (z, k) ∼ (f(X),K)
from a calibration set, which should be different from the set used to train f .

2. Train a neural network gφ on the captured samples to minimize (3), providing g = gφ.

3. The composite function neural network gφ ◦ fθ is the modified network.

According to Corollary 4.5, the output of the composite network g ◦ f will be calibrated, provided
that the minimum is achieved when training gφ and that the calibration dataset accurately represents
the distribution Z = f(X).

It is a far simpler task to train a network gφ to minimize L(q ◦ g, Z,K) than it is to train fθ to
minimize L(q ◦ f,X,K), since the dimension of the data Z ∈ IRm is normally far smaller than
the dimension of DX . In our experiments, we implement g as a small multilayer perceptron (MLP)
consisting of up to 4 dense layers, of dimension no greater than a small multiple of m. Training time
for gφ is usually less than a minute.

Initialization. Assuming that function fθ has already been trained to minimize the loss on the
training set, when gφ is trained we do not wish to undo all the work that has been done by starting
training gφ from an arbitrary point. Therefore, we initialize the parameters of gφ so that initially
it implements the identity function. We refer to these layers as transparent layers in their initial
parametrization. This is similar to the approach in [3].

An alternative is to train gφ ◦ fθ on the training set, followed by a short period of training on the
calibration set, keeping the parameters θ fixed. In this case, it is not necessary to initialize the g-layers
to be transparent.

4.1 Overfitting

We observe that achieving very good calibration on the calibration set used to train the g-layers
is relatively easy. Despite this, calibration as measured on the test set, although far better than the
calibration of the original network fθ, is not always as good.

The main reason for this is that the calibration and test sets are statistically dissimilar. Although
fitting g-layers to minimize cross-entropy loss gives near-perfect calibration on the calibration set,
this does not mean that it will be minimized on the test set. In other words, the g-layers are overfitted
to the calibration set. This is similar to the observation that the original network is well calibrated on
the training set but usually poorly calibrated on the test set.

The phenomenon of overfitting to the calibration set has been observed by many authors as far back as
[17]. The lesson from this is that the set used for calibration of the g-layers should be relatively large.
For the CIFAR-10 dataset, we used 45, 000 training samples and 5000 calibration samples (standard
practice in calibration literature), but a different split of the data may provide better calibration results.
In addition, the number of parameters in the g-layers should be kept low to avoid overfitting. For this
reason, using more than 3 layers for gφ seems counter-productive.

5 Related Work

Calibrating classification functions has been studied for the past few decades, earlier in the context
of support vector machines [17, 21] and recently on neural networks [4]. In this literature, it is
typically preferred to calibrate an already trained classifier, denoted as post-hoc calibration, as it
can be applied to any off-the-shelf classifier. Over the past few years, many post-hoc calibration
methods have been developed such as temperature scaling [4] for multi-class classification), Bayesian
binning [15], beta calibration [12] and its extensions [11] to name a few. These methods are learned
on a hold-out calibration set and the main difference among them is the type of function learned
and the heuristics used to avoid overfitting to the calibration set. Specifically, temperature scaling
learns a scalar parameter while vector or matrix scaling learns a linear transformation of the classifier
outputs [4]. Later, additional regularization constraints such as penalizing off-diagonal terms [11] and
order-preserving constraints [18] are introduced to improve matrix scaling. While several practical
methods are developed in this regime, it was not clear previously whether learning a calibration
function in a post-hoc manner would lead to calibration in the theoretical sense. We precisely answer
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this question and provide a theoretical justification of these methods. Even though, the proof is
provided for negative-log loss, it is applicable to any proper loss function [2, 19].

We would like to clarify that our theoretical result (similar to [1]) is obtained under the assumption
that the calibration set matches the true data distribution (or simply the test set distribution) which
may not hold in practice. In this regard, there are various techniques such as label smoothing [14]
and data augmentation [23] have been introduced to avoid overfitting while training the base network
for calibration and we believe those techniques are applicable in our context as well.

6 Experiments

6.1 Experimental setup

For our experimental validation we use CIFAR-10 [10] and SVHN [16] datasets. For the base network
f we use pre-trained models of different architectures (ResNet [6], ResNet Stochastic Depth [8],
DenseNet [7], and Wide ResNet [22]). We train the proposed g-layers on a validation set (not used
for training base networks) of CIFAR-10 and SVHN datasets, and evaluate the calibration error on
the test set, unless specified otherwise. The g-layers are initialized with transparent layers so that at
initialization they represent an identity mapping similar to the idea in [3]. The training of g-layers is
then performed using SGD with momentum of 0.9, initial learning rate of 0.01 and ran for 20 epochs
for CIFAR-10 and 50 epochs for SVHN. Furthermore, the learning rate is decayed by a factor of
0.1 at epochs 10, 20 and 30. To reduce overfitting of g-layers on the small calibration set, we use a
weight decay of 0.001.

6.2 Calibration metric

Note that, as discussed in section 3, our theory as well as our approach guarantees multi-class-
calibration. However, in the calibration literature [4, 11], the standard practice is to measure the
calibration of top-1 predictions (or generally classwise-calibration). To this end, we measure the ex-
pected calibration error using Kolmogorov-Smirnov calibration error (KS-error) [5]. Note, ECE [15]
is a widely used metric, however, since ECE relies on histograms (see fig 2 (a) and (b)) which
is deemed as a weakness since the final error depends on the chosen histogram binning scheme.
Furthermore, ECE is particularly unsuitable on deep networks trained on small datasets such as
CIFAR-10, since over 90% of scores are over 0.9, and hence lie in a single bin (see fig 2 (c), which
shows the plot of scores versus fractile). Therefore, we choose KS-error over ECE as KS uses a
binning-free approach via cumulative distributions, which we briefly discuss below and refer the
interested reader to [5, 9, 20].

KS-error. Let (xi, ki) be samples, and let ci be a chosen label for each sample i. To test the
calibration of a specific class k, one chooses ci = k for all i. To test calibration on the top-1 class,
ci = argmaxk(hk(xi)), where hk(xi) denotes the classifier output for class k for the input sample xi.
In our case, h = q◦g◦f , where f is the base network, g is the added layers, and q denotes the softmax
function. One can also test calibration for the second-top (or r-th top, or even within-top-r) choice
of the network by defining ci to be the label with the second-top (or r-th top) score. The KS-error
computes the maximum difference between cumulative distributions as follows. For t ∈ [0, 1] define

σ(t) =
1

M

∑
hci

(xi)≤t

hci(xi) , τ(t) =
1

M

∑
hci

(xi)≤t

1(ki = ci) , (4)

where M is the number of samples in the test set and 1(·) is 1 if its argument is true, and 0 otherwise.
Then the metric is KS = maxt |σ(t)− τ(t)|. Note, σ and τ are fast to compute using accumulated
scores and accuracies from the network outputs sorted by hci(xi). If the network is consistently
over- or under-calibrated independent of the score hci(xi), which is usually the case, then the KS-
error measures the (empirical) expected absolute difference between score hci(xi) and probability
P (ci | hci(xi)). This also provides visualizations similar to reliability diagrams.

6.3 Results

We first discuss a controlled experiment to understand the interplay between the number of param-
eters in g-layers and overfitting with respect to calibration for a given dataset. Later, we provide
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(a) UC (KS: 8.3%) (b) D1 (KS: 1.3%) (c) D2 (KS: 3.0%) (d) D3 (KS: 8.2%)

(e) UC (KS: 4.2%) (f) D1 (KS: 1.0%) (g) D2 (KS: 0.8%) (h) D3 (KS: 2.7%)

Figure 1: Visualisation of KS-Error on an unseen test set for uncalibrated model (a/e) and g-layers
with 1–3 dense layers (b)–(d) and (f)–(h), for the top-ranked class (a)–(d) and the second highest-
ranked class (e)–(h). The cumulative score (σ) and probability (τ ) are plotted as functions of the
data percentile. We observe that the g-layer models with 1 or 2 dense layers show (much) better
calibration, the effect is more clear on the second highest class. However adding more layers will
cause overfitting on the (small) calibration set and results in poorer calibration.

experimental comparison with other post-hoc calibration methods. In short, as predicted by our
theory, if overfitting to the calibration set is reduced in practice, learning complete g-layers lead to
superior calibration. Nevertheless, heuristics for mitigating overfitting such as using larger calibration
set and increased regularization (dropout, weight-decay, etc.) are relevant and the best approach to
avoid overfitting with respect to calibration remains an open question.

Interplay between the number of g-layers and calibration. In the first set of experiments we
use a relatively small ResNet-56, trained on CIFAR-10 and evaluate the effect of using 1, 2 or 3
g-layers with dimensionality 100 and ReLu activation functions. These additional layers are trained
on 5,000 samples from a calibration set, and are evaluated on the remaining 5,000 samples of the test
set (only for this experiment). We compare against the uncalibrated model for the top ranked class
and the second-highest ranked class.

In fig 1, we plot σ(t) and τ(t) to visualize the KS-error of the uncalibrated model (UC), and using
1–3 dense layers (D1 – D3). From the results we observe that the uncalibrated network gives poor
calibration results and this is even clearer on the second-highest ranked class. For the top class (a)–(d)
the scores show significant over-confidence in the result and by contrast, major under-confidence is
observed for the second highest ranked class (e)–(g). In fact, the second-top class is far more likely to
be the ground truth than is reflected by the score.

Much better calibration is obtained with 1 or 2 dense layers (D1 and D2). However, for 3 dense layers,
performance on the test set is again relatively poor, whereas when evaluated on the calibration set
used for training the calibration layers, the calibration is good – this is to be expected. Thus, having
3 calibration layers gives decreased performance, this is because of overfitting to the calibration
set. This effect may be decreased if the calibration set is larger. Note adding 1 or 2 dense g-layers
to a CNN, trained on a different set of samples than those used to train the base network, gives a
large improvement in the calibration of the composite network, while having no deleterious effect
on the accuracy. Training these g-layers adds about 1% to the training time of the network. For the
remaining of the experiments we use g-layers with 2 dense layers.
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Dataset Model Uncalibrated Temp. Scaling Vector Scaling MS-ODIR Dir-ODIR g-layer

CIFAR-10

Resnet-110 4.750 0.916 0.996 0.977 1.060 0.305
Resnet-110-SD 4.102 0.362 0.430 0.358 0.389 0.279
DenseNet-40 5.493 0.900 0.890 0.897 1.057 0.688
Wide Resnet-32 4.475 0.296 0.267 0.305 0.291 0.419

SVHN Resnet-152-SD 0.852 0.552 0.570 0.573 0.607 0.265

Table 1: KS calibration error [5] (in %) comparisons against state-of-the-art post-hoc calibration
methods on image classification datasets: CIFAR-10 and SVHN, using various network architectures.
Here, we use two dense g-layers with 32 units each for all our experiments.
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Figure 2: Calibration graphs for an uncalibrated and calibrated ResNet-110 [7] trained on CIFAR-10
for the top class with a KS error of 4.8%, and top-1 accuracy of 93.6% on the unseen test set. Here,
the network is calibrated using two g-layers with 32 dense units each. (a) and (b) show the reliability
diagrams of scores versus probability for uncalibrated and calibrated network respectively. (c)
and (d) show score and probability plotted against fractile for uncalibrated and calibrated network
respectively. If the network is perfectly calibrated, the scores and probability plot will coincide with
each other as can be observed in (d).

Comparisons to other methods. In this set of experiments we compare g-layer calibration to sev-
eral other calibration methods, including temperature scaling [4], vector scaling [4], MS-ODIR [11],
and Dir-ODIR [11]. To provide the calibration results using the baseline methods, we use the imple-
mentation of [11]. On CIFAR-10, we compare different uncalibrated models (ResNet variants and
DenseNet), and whereas on SVHN we evaluate a single ResNet-152-SD. Since, we do not need to
retrain the base models, we train g-layers on top of the pretrained models.4

The performance is measured using KS-Error and the calibration results are presented in Table 1.
Our method with just two g-layers layers with 32 units each consistently achieves comparable or
even better calibration performance on all the tested case with negligible loss in accuracy (< 0.5%)
of the base network. To visually illustrate the efficacy of our method, we also show uncalibrated
and calibrated graph (using standard reliability diagrams and plot of scores versus fractile) for our
experiment on ResNet-110 trained on CIFAR-10 dataset in fig 2. It can be clearly observed that a
simple two g-layers network, improves the calibration on an unseen test set substantially. According
to our theory, the proposed method extends to large-scale datasets with a condition that a large
calibration set needs to be used to train the additional g-layers to reduce overfitting.

We would like to point out that all the compared methods belong to the post-hoc calibration category
and can be thought of as special cases of our method (that is learning a g-function). The main
difference between these methods is the allowed function class while optimizing the g-layers, which
can be thought of as a technique to avoid overfitting on a small calibration set.

7 Conclusion

The analysis in this paper gives broader conditions than previously known for a classifier such as a
neural network to be correctly calibrated, ensuring that the network can be correctly calibrated during
training, after early-stopping or through post-hoc calibration. This provides a theoretical basis for
post-hoc calibration schemes. The method is validated by experiments with a simple extension to
existing networks. We intend to study techniques to improve generalization with respect to calibration
as a future work.

4Pre-trained models are obtained from https://github.com/markus93/NN_calibration.
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Appendices
Here, we first provide the proofs of the results of our main paper and then provide additional results.

A Proofs of post-hoc calibration

A.1 A lemma

The following result will be useful. It is perhaps relatively obvious, but worth stating exactly.

Lemma A.6. Let X be a random variable with values in DX and f : DX → DZ be a measurable
function. Let h : DZ → IR be a measurable function. If Z = f(X), then

Ex∼X h(f(x)) = Ez∼Z h(z) .

The proof follows from the definition of expected value, using a simple change of variables.

Proof. (sketch) The expectations may be written as

Ex∼X h(f(x)) =

∫
h(f(x)) dµX

Ez∼Z h(z) =

∫
h(z) dµZ ,

where µX and µZ are probability measures on DX and DZ . The desired equality then follows from a
change of variables. ut

The lemma can be given a more informal but more intuitive proof as follows. The expected value
Ex∼X h(f(x)) can be computed by sampling x from X and taking the mean of the values h(f(x)).
In the limit as the number of samples increases, this mean converges to the Ex∼X h(f(x)).

Similarly, Ez∼Z h(z) is obtained by sampling from Z and computing the mean of the values h(z).
However, random samples from Z are obtained by sampling x ∼ X for then z = f(x) is a sample
from the distribution Z. Hence, the two expectations give the same result.

A.2 Submersions

We are interested in submersions from IRm to N = ∆n−1, the standard open simplex.

Proposition A.7. Let q : IRm → ∆n−1 be a submersion. If
∑n
k=1 wk ∂qk/∂zj = 0, then wk is a

constant for all k.

Proof. Since ∆n−1 has dimension n − 1, if q is a submersion, the Jacobian ∂qk(z)/∂zj has rank
n− 1. Since

∑n
k−1 qk(z) = 1, taking derivatives gives

∑n
k=1 ∂qk(z)/∂zj = 0 for all j. Written in

terms of matrices, with J = ∂qk(z)/∂zj this says that 1>J = 0. Further, since J has rank n− 1, if
w>J = 0 then w = α1.

A.3 Negative-logarithm loss and calibration

The following theorem is a basic known (in some form) property of the Negative-Logarithm cost
function. The paper [1] gives the essential idea of the proof, but the theorem is not stated formally
there.

Theorem A.8. Consider joint random variables (Z,K), taking values in IRm and K respectively. Let
q : IRm → ∆n−1 be a submersion. Define the loss

L(q, Z,K) = −E(z,k)∼(Z,K) log
(
qk(z)

)
.

If
id = argmin

g:IRm→IRm

L(q ◦ g, Z,K)

then
P (k | z) = qk(z) .
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Proof. The assumption in this theorem is that the value of the loss function cannot be reduced by
applying some function g : IRm → IRm. We investigate what happens to the function L(q,X,K)
when q is replaced by the composition q ◦ g, where g : IRm → IRm is some function. We compute

−L(q ◦ g, Z,K) = E(z,k)∼(Z,K) log(qk(g(z)))

=

∫ n∑
k=1

p(z, k) log(qk(g(z))) dz
(5)

We wish to optimize (5) over g : IRm → IRm. Consider optimization over a single dimension,
j and let g′ represent ∂g/∂zj . The Euler-Lagrange equation concerns a functional of the form∫
F (z, g, g′) dz, and says that the minimum (with respect to g) is attained when the Euler-Lagrange

equation holds:
∂F

∂g
=

d

dz

∂F

∂g′
.

In this case, since g′ does not appear in the functional, this gives ∂F/∂g = 0. Since here F (z, g, g′) =∑n
k=1 p(z, k) log(qk ◦ g), we compute

∂F

∂g
=

n∑
k=1

p(z, k)
q′k ◦ g(z)

qk ◦ g(z)
= 0 .

Now, if this is optimized when g = id, this becomes
n∑
k=1

p(z, k)
q′k(z)

qk(z)
= 0 . (6)

If we define Lk(z) = − log(qk(z)) , then (6) can be written as

n∑
k=1

p(z, k)
∂Lk(z)

∂zj
= 0 for all j . (7)

For the particular form of the negative-logarithm cost function given in the theorem, this becomes,
for all j,

0 =

n∑
k=1

p(z, k)
∂

∂zj

(
log(qk(z)

)
=

n∑
k=1

p(z, k)

qk(z)

∂qk
∂zj

.

However, from Proposition A.7, this imples that p(z, k)/qk(z) = c, a constant, so p(z, k) = c qk(z)
for all k. However, since

∑
k qk(z) = 1 and

∑
k p(z, k) = p(z), this gives p(z, k) = p(z) qk(z), or

p(k | z) = qk(z), as required. This completes the proof of Theorem A.8. ut

A simple rewording of this theorem (changing the names of the variables) gives the following
statement, which is essentially a formal statement of a result stated in [1].

Corollary A.9. Consider joint random variables (X,K), taking values in DX and K respectively,
where DX is some Cartesian space. Let f : DX → ∆n−1 be a function. Define the loss

L(f,X,K) = −E(x,k)∼(X,K) log
(
fk(x)

)
.

If
f = argmin

f̂ :DX→∆n−1

L(q ◦ f̂ , X,K)

then
P (k | x) = fk(x) .
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This corollary follows directly from Theorem A.8 since if f minimizes the cost function over all
functions, then it optimizes the cost over all functions f ◦ g, where g : DX → DX .

However, when DX is a high-dimensional space (such as a space of images), then it may be a very
difficult task to find the optimum function f exactly. Fortunately, a much less stringent condition is
enough to ensure the conclusion of the theorem, and that the network (f ) is calibrated.

Corollary A.10. Consider joint random variables (X,K), taking values in DX and K respectively.
Let f : DX → IRm, and let q : IRm → ∆n−1 be a submersion. Define the loss

L(q ◦ f,X,K) = −E(x,k)∼(X,K) log
(
qk(f(x))

)
.

If f is is optimal with respect to recalibration, for this cost function, then P (k | f(x)) = qk(f(x)).

Proof. Let Z = f(X), and for any x define f(x) = z. Then, from lemma A.6,

L(q ◦ f,X,K) = −E(x,k)∼(X,K) log
(
qk(f(x))

)
= −E(z,k)∼(Z,K) log

(
qk(z)

)
= L(q, Z,K) .

Then, according to Theorem A.8, if replacing q by q ◦g will not decrease the value of the loss function
(which is the definition that f is optimal with respect to recalibration), we may conclude that

P (k | z) = qk(z) .

as required. ut

B Multiclass and classwise calibration

We make the usual assumption of random variables X and K. Suppose that a function
f : DX → ∆n−1 is multiclass calibrated, which means that P (k | z) = zk, where z = f(x).
We wish to show that it is classwise calibrated, meaning P (k | zk) = zk, and also that it is calibrated
for top-r and within-top-r calibration. It was stated in [11] that classwise calibration, and calibration
for the top class are “weaker” concepts of calibration, but no justification was given there. Hence, we
fill that gap in the theorem below.

The proof is not altogether trivial, since certainly P (k | zk) is not equal to P (k | z) in general. Neither
does it follow from the fact that Z = z implies Zk = zk.

First, we change notation just a little. Let ŷ be the so-called 1-hot version of y, namely an indicator
vector such that ŷk = 1 if y = k and 0 otherwise. Then the condition for multi-class calibration is

P (ŷk = 1 | zk = σ) = σ

The top-r prediction. We wish also to talk about calibration of the top-scoring class predictions.
Suppose a classifier f is given with values in ∆n−1 and let ŷ be the ground truth label. Let us use zr
to denote the r-th top score (so z1 would denote the top score). Note that an upper index, such as
in zr here represents the r-th top value, whereas lower indices, such as zk represent the k-th class.
Similarly, define ŷr to be 1 if the r-th top predicted class is the correct (ground-truth) choice, and 0
otherwise. The network is calibrated for the top-r predictor if for all scores σ,

P (ŷr = 1 | zr = σ) = σ . (8)

In words, the conditional probability that the top-r-th choice of the network is the correct choice, is
equal to the r-th top score.

Similarly, one may consider probabilities that a datum belongs to one of the top-r scoring classes.
The classifier is calibrated for being within-the-top-r classes if

P
(∑r

s=1 ŷ
s = 1

∣∣ ∑r
s=1 z

s = σ
)

= σ . (9)

Here, the sum on the left is 1 if the ground-truth label is among the top r choices, 0 otherwise, and
the sum on the right is the sum of the top r scores.
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Theorem B.11. Suppose random variables X and K defined on DX and K respectively, and let
f : DX → ∆n−1 be a measurable function. Suppose that P (k | z) = zk, where z = f(x). Then f is
classwise calibrated, and also calibrated for top-r and within-top-r classes, as defined by (8) and (9).

Proof. We assume that f is multiclass calibrated, so that P (ŷk = 1 | z) = zk. First, we observe that

P (ŷk = 1, z) = P (ŷk = 1 | z)P (z) = zkP (z) . (10)

Then,

P (ŷk = 1 | zk = σ) = P (ŷk = 1, zk = σ) / P (zk = σ)

=

∫
zk=σ

P (ŷk = 1, z) dz / P (zk = σ)

where the integral marginalizes over all values of z with k-th entry equal to σ. Continuing, using (10)
gives

P (ŷk = 1 | zk = σ) =

∫
zk=σ

zkP (z) dz / P (zk = σ)

= zk

∫
zk=σ

P (z) dz / P (zk = σ)

= zkP (zk = σ) / P (zk = σ) = zk

which proves that f is classwise calibrated.

Next, we show that f is top-r calibrated. The proof is much the same, using top indices rather than
lower indices. Analogously to (10), we have

P (ŷr = 1, z) = P (ŷr = 1 | z)P (z) = zrP (z) . (11)

This equation uses the equality P (ŷr = 1 | z) = zr. To see this, fix z, and let k be the index of the
r-th highest entry of z. Then zr = zk and ŷr = ŷk. Then P (ŷr = 1 | z) = P (ŷk = 1 | z) = zk = zr.

Then,

P
(
ŷr = 1 | zr = σ

)
= P

(
ŷr = 1, zr = σ

)
/P (zr = σ)

=

∫
zr=σ

P
(
ŷr = 1, z

)
dz / P (zr = σ)

= zr
∫
zr=σ

P (z) dz / P (zr = σ) from (11)

= zrP (zr = σ) / P (zr = σ)

= zr .

Here, the integral is over all z such that zr = σ. This shows that f is top-r calibrated.

Finally, we prove within-top-r calibration. Refer to (9), let σ be fixed, and let z be some vector such
that

∑r
s=1 z

s = σ. Since for s = 1, . . . , r the events ŷs = 1 are mutually exclusive, it follows that

P
(∑r

s=1 ŷ
s = 1

∣∣ z) =
∑r
s=1 P

(
ŷs = 1

∣∣ z) =
∑r
s=1 z

s = σ .

This equality P
(∑r

s=1 ŷ
s = 1

∣∣ z) = σ will hold for any z such that
∑r
s=1 z

s = σ. It follows that

P
(∑r

s=1 ŷ
s = 1

∣∣ ∑r
s=1 z

s = σ
)

= σ ,

as required.

Note the following justification for this last step. If some random variables A and Z satisfy P (A =
a | Z = z) = σ (a constant) for all z in some class C, then P (A = a | z ∈ C) = σ. For, the
assumption implies that P (A = a, Z = z) = σP (Z = z). Now, integrating for z ∈ C gives
P (A = a, Z ∈ C) = σP (Z ∈ C), and hence P (A = a | Z ∈ C) = σ. ut

What this theorem is saying, for instance, is that the probability that the correct classification lies
within the top 2 (or r) scoring classes, given that the sum of these two scores is σ, is equal to the sum
of the two top scores.
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The theorem can easily be extended to any set of classes, to show that if the classifier f is multiclass
calibrated and S is any set of labels, that

P
(∑

s∈S ŷ
s = 1

∣∣ ∑
s∈S z

s = σ
)

= σ , (12)

and
P
(∑

k∈S ŷk = 1
∣∣ ∑

k∈S zk = σ
)

= σ . (13)

C Additional Results

Here, we provide additional visualizations of calibration results using 1, 2 or 3 dense g-layers.
For these experiments, similar to fig 1 in the main paper, we use ResNet-56 trained on CIFAR-10
dataset where the g-layers are trained on 5000 samples from the calibration set and evaluated on the
remaining 5000 samples of the test set. The calibration results on the unseen test set for top-1, top-2,
class-1, and class-2 predictions are shown in figures 3 – 6, respectively. Similar visualizations for the
calibration set are given in figures 7 – 10. Note that, on calibration set, the results are unrealistically
good and this is included to show how well the network minimizes the logarithmic loss, and hence
achieves correct calibration on the dataset used to train the calibration. Evaluation on the “test” set
shows how well the calibration generalizes to other images.

The titles of the graphs can be interpreted as follows. For instance, the graph
resnet56_cifar10_T182_Strain_Etest|class[-1] means network ResNet-56, dataset
CIFAR-10, trained for 182 epochs, on set “train”, evaluated on set “test”, results for class [−1]
(the top class). Additionally, ..._D1_T50_Scalib_Etest... means the network has (in addition
to the base network) 1 dense layer, trained for 50 epochs on set “calibration”, evaluated on set “test”.

In the title are also given the KS-error (measure of calibration) and Probability (the probability, or
frequency that the selected class corresponds to ground truth). Thus for the top-class, “probability”
means the accuracy of the network, how often it predicts ground truth. This is equal to 0.860 for the
base network (top-left of fig 3). For the second-top class, “probability” represents the frequency with
which the second-top class is the ground truth (0.085, as shown at the top-left of fig 4). For classes 1
and 2 “probability” shows the frequency with which the given class is the ground-truth. This is about
10%, because the test set contains 10 classes. In these visualizations, plots of cumulative scores and
probabilities are shown in the top row of each graph, and scores and probabilities in the bottom row.
They are plotted against percentile of the test set (left) and against the score (right).

Observations. Various observations about the results follow.

1. The uncalibrated (base) network gives poor calibration results, when tested on data (the
“test” or “calibration” sets) not used for training. This is shown in the top-left graph in each
set.

2. Much better calibration is obtained with 1 or 2 dense layers. However, for 3 dense lay-
ers, performance on the test set is again relatively poor, whereas when evaluated on the
“calibration” set used for training the calibration layers, the calibration is good – this is to
be expected. Thus, having 3 calibration layers gives decreased performance, because of
over-fitting to the “calibration” set. This effect may be decreased if the “calibration” set is
larger.

3. It is notable that for the top class (fig 3) the scores show significant over-confidence in
the result. For the second-top class (fig 4) they show major under-confidence. In fact, the
second-top class is far more likely to be the ground truth than is reflected by the score.

4. The method gives a major improvement in calibration, as evaluated visually, or by the
KS-score. In addition, this occurs without any significant decrease in the accuracy of the
network. For instance for the top class, the uncalibrated network gives accuracy (probability)
of 0.860 on the test set, whereas with one dense layer the accuracy is also 0.860, for two
layers it is 0.851, only < 1% drop is observed.

5. The time to train the dense calibration layers is about 1 second per epoch (5000 images per
epoch) for 50 epochs. Training of the base network takes about 30 seconds per epoch of
50, 000 images, for 182 epochs, about 100 times as long.
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In summary, the conclusions of the main paper hold. Specifically, addition of 1 or 2 dense layers to a
CNN, trained on a different set of samples than those used to train the base network, gives a large
improvement in the calibration of the network, while having no deleterious effect on the accuracy.
Training of the additional calibration layers adds about 1% to the training time of the network.
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Figure 3: Top class, uncalibrated and calibrated with 0, . . . , 3 dense calibration layers, evaluated on the test
set.
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Figure 4: Second top class, uncalibrated and calibrated with 0, . . . , 3 dense calibration layers, evaluated on
the test set.
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Figure 5: Class 1, uncalibrated and calibrated with 0, . . . , 3 dense calibration layers, evaluated on the test set.
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Figure 6: Class 2, uncalibrated and calibrated with 0, . . . , 3 dense calibration layers, evaluated on the test set.
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Figure 7: Top class, uncalibrated and calibrated with 0, . . . , 3 dense calibration layers, evaluated on the
calibration set.
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Figure 8: Second top class, uncalibrated and calibrated with 0, . . . , 3 dense calibration layers, evaluated on
the calibration set.
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Figure 9: Class 1, uncalibrated and calibrated with 0, . . . , 3 dense calibration layers, evaluated on the
calibration set.
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Figure 10: Class 2, uncalibrated and calibrated with 0, . . . , 3 dense calibration layers, evaluated on the
calibration set.
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