Optimization of Markov Random Field in Computer Vision

Thalaiyasingam Ajanthan

The Australian National University

Data61, CSIRO

Data61, April 2017

Australian National University

3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Collaborators

Hongdong Li (panel chair)

Mathieu Salzmann (co-supervisor)

Philip Torr

Pawan Kumar A

Alban Desmaison

Rudy Bunel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Outline

Introduction

Memory Efficient Max Flow

Iteratively Reweighted Graph Cut

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Efficient Linear Programming

Conclusion

Outline

Introduction

Memory Efficient Max Flow

Iteratively Reweighted Graph Cut

Efficient Linear Programming

Conclusion

A Pairwise Markov Random Field

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) ,$$

where $x_i \in \mathcal{L}$ for all $i \in \mathcal{V}$.

- θ_i Unary potentials (data)
- θ_{ij} Pairwise potentials (regularizer)
 - \mathcal{V} Set of vertices (n)
 - \mathcal{E} Set of edges (m)
 - \mathcal{L} Set of labels (ℓ)

Optimization

 $\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{L}^n} E(\mathbf{x}) \; .$

4-connected

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

A Pairwise Markov Random Field

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) ,$$

where $x_i \in \mathcal{L}$ for all $i \in \mathcal{V}$.

- θ_i Unary potentials (data)
- θ_{ij} Pairwise potentials (regularizer)
 - \mathcal{V} Set of vertices (n)
 - \mathcal{E} Set of edges (m)
 - \mathcal{L} Set of labels (ℓ)

Optimization

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{L}^n} E(\mathbf{x}) \; .$$

4-connected

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

A Pairwise Markov Random Field

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) ,$$

where $x_i \in \mathcal{L}$ for all $i \in \mathcal{V}$.

- θ_i Unary potentials (data)
- θ_{ij} Pairwise potentials (regularizer)
 - \mathcal{V} Set of vertices (n)
 - \mathcal{E} Set of edges (m)
 - \mathcal{L} Set of labels (ℓ)

Optimization

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathcal{L}^n} E(\mathbf{x}) \; .$$

4-connected

Intractable

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Computer Vision Applications

Stereo

イロト 不得下 イヨト イヨト

- 3

- ${\mathcal V}\,$ Set of pixels
- \mathcal{E} 4-connected neighbourhood
- \mathcal{L} Set of disparities, $\{0, \ldots, \kappa\}$

Computer Vision Applications

Inpainting

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

- ${\mathcal V}\,$ Set of pixels
- ${\mathcal E}\,$ 4-connected neighbourhood
- \mathcal{L} Set of intensities, $\{0, \ldots, 255\}$

Computer Vision Applications

Segmentation

イロト 不得下 イヨト イヨト

- 3

- \mathcal{V} Set of pixels
- ${\mathcal E}\,$ Fully connected neighbourhood
- \mathcal{L} Set of object classes

Three new algorithms.

Memory Efficient Max Flow (MEMF)

► A max-flow algorithm with O(l) memory reduction for multi-label submodular MRFs.

Iteratively Reweighted Graph Cut (IRGC)

► A move-making algorithm that can handle robust non-convex priors.

Efficient Linear Programming (PROX-LP)

▶ An LP minimization algorithm for dense CRFs that has linear time iterations.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Three new algorithms.

Memory Efficient Max Flow (MEMF)

► A max-flow algorithm with O(ℓ) memory reduction for multi-label submodular MRFs.

Iteratively Reweighted Graph Cut (IRGC)

A move-making algorithm that can handle robust non-convex priors.

Efficient Linear Programming (PROX-LP)

▶ An LP minimization algorithm for dense CRFs that has linear time iterations.

Three new algorithms.

Memory Efficient Max Flow (MEMF)

► A max-flow algorithm with O(ℓ) memory reduction for multi-label submodular MRFs.

Iteratively Reweighted Graph Cut (IRGC)

 A move-making algorithm that can handle robust non-convex priors.

Efficient Linear Programming (PROX-LP)

▶ An LP minimization algorithm for dense CRFs that has linear time iterations.

Three new algorithms.

Memory Efficient Max Flow (MEMF)

► A max-flow algorithm with O(ℓ) memory reduction for multi-label submodular MRFs.

Iteratively Reweighted Graph Cut (IRGC)

► A move-making algorithm that can handle robust non-convex priors.

Efficient Linear Programming (PROX-LP)

► An LP minimization algorithm for dense CRFs that has linear time iterations.

Outline

Introduction

Memory Efficient Max Flow

Iteratively Reweighted Graph Cut

Efficient Linear Programming

Conclusion

Introduction

Minimize

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) ,$$

where $x_i \in \mathcal{L} = \{0, 1, \cdots, \ell - 1\}.$

Multi-label submodular

 $\theta_{ij}(\lambda',\mu) + \theta_{ij}(\lambda,\mu') - \theta_{ij}(\lambda,\mu) - \theta_{ij}(\lambda',\mu') \ge 0 ,$ or all $\lambda, \lambda', \mu, \mu'$ where $\lambda < \lambda'$ and $\mu < \mu'$ [Schlesinger-2006]

E.g. θ_{ij} is convex.

Current method

▶ Ishikawa algorithm [Ishikawa-2003, Schlesinger-2006].

Introduction

Minimize

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j)$$
,

where $x_i \in \mathcal{L} = \{0, 1, \cdots, \ell - 1\}.$

Multi-label submodular

$$\theta_{ij}(\lambda',\mu) + \theta_{ij}(\lambda,\mu') - \theta_{ij}(\lambda,\mu) - \theta_{ij}(\lambda',\mu') \ge 0 ,$$

for all $\lambda, \lambda', \mu, \mu'$ where $\lambda < \lambda'$ and $\mu < \mu'$ [Schlesinger-2006]. *E.g.* θ_{ij} is convex.

Current method

▶ Ishikawa algorithm [Ishikawa-2003, Schlesinger-2006].

Introduction

Minimize

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) ,$$

where $x_i \in \mathcal{L} = \{0, 1, \cdots, \ell - 1\}.$

Multi-label submodular

$$\theta_{ij}(\lambda',\mu) + \theta_{ij}(\lambda,\mu') - \theta_{ij}(\lambda,\mu) - \theta_{ij}(\lambda',\mu') \ge 0 ,$$

for all $\lambda, \lambda', \mu, \mu'$ where $\lambda < \lambda'$ and $\mu < \mu'$ [Schlesinger-2006]. *E.g.* θ_{ij} is convex.

Current method

▶ Ishikawa algorithm [Ishikawa-2003, Schlesinger-2006].

The Ishikawa graph

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直

The Ishikawa graph

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二直

Drawback

• Huge memory complexity: $\mathcal{O}(m\ell^2)$.

Contribution

• An algorithm with memory complexity $\mathcal{O}(m\ell)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Drawback

• Huge memory complexity: $\mathcal{O}(m\ell^2)$.

Contribution

• An algorithm with memory complexity $\mathcal{O}(m\ell)$.

 $\begin{array}{l} E.g. \ n=10^6, \ \ell=256\\ m\approx 2\times 10^6\\ \mathrm{Edges}\approx 2\times 10^6\times 2\times 256^2\\ \mathrm{Memory}\approx 1000 \ \mathrm{GB} \end{array}$

 \downarrow

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Memory $\approx 4 \text{ GB}$

Drawback

• Huge memory complexity: $\mathcal{O}(m\ell^2)$.

Contribution

• An algorithm with memory complexity $\mathcal{O}(m\ell)$.

 $\begin{array}{l} E.g. \ n=10^6, \ \ell=256\\ m\approx 2\times 10^6\\ \mathrm{Edges}\approx 2\times 10^6\times 2\times 256^2\\ \mathrm{Memory}\approx 1000 \ \mathrm{GB} \end{array}$

∜

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Memory $\approx 4 \text{ GB}$

Drawback

• Huge memory complexity: $\mathcal{O}(m\ell^2)$.

 $\begin{array}{l} E.g. \ n=10^6, \ \ell=256\\ m\approx 2\times 10^6\\ \mathrm{Edges}\approx 2\times 10^6\times 2\times 256^2\\ \mathrm{Memory}\approx 1000 \ \mathrm{GB} \end{array}$

\Downarrow

Contribution

• An algorithm with memory complexity $\mathcal{O}(m\ell)$.

Memory $\approx 4 \text{ GB}$

Memory reduction: $\mathcal{O}(\ell)$.

Flow = 0

<ロト < 四ト < 三ト < 三ト = 三 三

Initial Ishikawa graph

Flow = 0

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Max-flow in progress

Flow = 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Max-flow in progress

Flow = 2

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Max-flow in progress

Flow = 4

<ロト < 四ト < 三ト < 三ト = 三 三

Max-flow in progress

<ロト < 四ト < 三ト < 三ト = 三 三

Memory Efficient Flow Encoding

Idea: Don't store the residual graph but exit-flows between each pair of neighbouring columns.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Memory Efficient Flow Encoding

Idea: Don't store the residual graph but **exit-flows** between each pair of neighbouring columns.

Exit-flow: Given flow ψ , an exit-flow is defined as

$$\Sigma_{ij:\lambda} = \sum_{\mu} \psi_{ij:\lambda\mu} \; .$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Memory Efficient Flow Encoding

Idea: Don't store the residual graph but **exit-flows** between each pair of neighbouring columns.

Exit-flow: Given flow ψ , an exit-flow is defined as

$$\Sigma_{ij:\lambda} = \sum_{\mu} \psi_{ij:\lambda\mu} \; .$$

The residual graph can be rapidly computed from the exit-flows.

Flow Equivalence - An Example

Exit-flows

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Flow Equivalence - An Example

 $A \ reconstructed \ flow$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Flow Equivalence - An Example

Another reconstructed flow

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで
Flow Equivalence - An Example

Both reconstructions are equivalent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Flow Equivalence - An Example

Both reconstructions are equivalent

Flow-loop \equiv reparametrization.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Flow Reconstruction / Computing Residual Edges

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Flow Reconstruction / Computing Residual Edges

Flow reconstruction as a small max-flow problem

イロト 不得下 イヨト イヨト

- 3

Memory Efficient Max Flow (MEMF)

Algorithm

Require: $\phi^0 \triangleright$ Initial Ishikawa capacities $\Sigma \leftarrow 0$ \triangleright Initialize exit-flowsrepeat

$$P \leftarrow \text{augmenting-path}(\phi^0, \Sigma)$$

$$\Sigma \leftarrow \operatorname{augment}(P, \phi^0, \Sigma)$$

until no augmenting paths possible

Assumption:

 ϕ^0 can be stored in an efficient manner.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Memory Efficient Max Flow (MEMF)

Algorithm

Require: $\phi^0 \triangleright$ Initial Ishikawa capacities $\Sigma \leftarrow 0 \qquad \triangleright$ Initialize exit-flows **repeat**

$$P \leftarrow \text{augmenting-path}(\phi^0, \Sigma)$$

$$\Sigma \leftarrow \operatorname{augment}(P, \phi^0, \Sigma)$$

until no augmenting paths possible

Assumption:

 ϕ^0 can be stored in an efficient manner.

うして ふゆ く 山 マ ふ し マ う く し マ

Memory complexity: $\mathcal{O}(m\ell)$.

Memory Efficient Max Flow (MEMF)

Algorithm

Require: $\phi^0 \triangleright$ Initial Ishikawa capacities $\Sigma \leftarrow 0$ \triangleright Initialize exit-flowsrepeat

 $P \leftarrow \text{augmenting-path}(\phi^0, \Sigma)$ $\Sigma \leftarrow \text{augment}(P, \phi^0, \Sigma)$

until no augmenting paths possible

Assumption:

 ϕ^0 can be stored in an efficient manner.

うして ふゆ く 山 マ ふ し マ う く し マ

Memory complexity: $\mathcal{O}(m\ell)$.

Efficiently Finding an Augmenting Path

Simplified graph

- ▶ Unweighted sparse graph.
- Fewer augmenting paths.

Search-tree-recycling

• Good empirical performance.

 $Simplified \ graph \ representation$

Efficiently Finding an Augmenting Path

Simplified graph

- ▶ Unweighted sparse graph.
- Fewer augmenting paths.

Search-tree-recycling

• Good empirical performance.

 $Simplified \ graph \ representation$

Efficiently Finding an Augmenting Path

Simplified graph

- ▶ Unweighted sparse graph.
- ▶ Fewer augmenting paths.

Search-tree-recycling

• Good empirical performance.

Image from [Boykov-2004]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Augmentation

Augmenting path

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Augmentation

Augmenting path

Directed acyclic graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Augmentation

Maximum flow can be pushed using dynamic programming.

Results

Problem	N	lemory [M]	B]	Time [s]		$[\mathbf{s}]$
Name ℓ	BK	EIBFS	MEMF	BK	EIBFS	MEMF
Tsukuba 16	3195	2495	211	14	4	30
Venus 20	7626	5907	396	35	9	60
Sawtooth 20	7566	5860	393	31	8	35
Map 30	6454	4946	219	57	9	36
Cones 60	*72303	*55063	1200	-	-	371
Teddy 60	*72303	*55063	1200	-	-	2118
KITTI 40	*88413	*67316	2215	-	-	19008
Penguin 256	*173893	*130728	663	-	-	6835
House 256	*521853	*392315	1986	-	-	9290

Comparison with other max-flow implementations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

BK [Boykov-2004] EIBFS [Goldberg-2015]

Empirical Time Complexity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Empirical Time Complexity

nan

▶ We have introduced a memory efficient alternative to the Ishikawa algorithm.

Publication: CVPR, 2016 and submitted to PAMI, 2017 Code: https://github.com/tajanthan/memf

Outline

Introduction

Memory Efficient Max Flow

Iteratively Reweighted Graph Cut

Efficient Linear Programming

Conclusion

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction

Minimize

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij} \left(|x_i - x_j| \right) ,$$

うして ふゆ く 山 マ ふ し マ う く し マ

where $x_i \in \mathcal{L} = \{0, 1, \cdots, \ell - 1\}.$

Graph cut algorithms

- ▶ θ_{ij} convex \Rightarrow Ishikawa algorithm [Ishikawa-2003].
- θ_{ij} concave $\Rightarrow \alpha$ -expansion [Boykov-2001].
- θ_{ij} non-convex \Rightarrow IRGC [Ajanthan-2015].

Introduction

Minimize

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} heta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} egin{array}{c} heta_{ij} \left(|x_i - x_j| + \sum_{i \in \mathcal{V}} eta_{ij} \left($$

|)

,

うして ふゆ く 山 マ ふ し マ う く し マ

where $x_i \in \mathcal{L} = \{0, 1, \cdots, \ell - 1\}.$

Graph cut algorithms

- ► θ_{ij} convex \Rightarrow Ishikawa algorithm [Ishikawa-2003].
- θ_{ij} concave $\Rightarrow \alpha$ -expansion [Boykov-2001].
- θ_{ij} non-convex \Rightarrow IRGC [Ajanthan-2015].

Introduction

Minimize

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij} \left(|x_i - x_j| \right)$$

,

where $x_i \in \mathcal{L} = \{0, 1, \cdots, \ell - 1\}.$

Graph cut algorithms

- ► θ_{ij} convex \Rightarrow Ishikawa algorithm [Ishikawa-2003].
- θ_{ij} concave $\Rightarrow \alpha$ -expansion [Boykov-2001].
- θ_{ij} non-convex \Rightarrow IRGC [Ajanthan-2015].

Pairwise potential

Initialization

・ロト ・個ト ・モト ・モト 三日

 $Pairwise\ potential$

Expand green

イロト イヨト イヨト イヨト 二日

 $Pairwise\ potential$

Expand dark-brown

イロト イヨト イヨト イヨト 二日

Pairwise potential

Expand light-green

イロト イヨト イヨト イヨト 三臣

 $Pairwise\ potential$

 $No\ expansion\ possible$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

A move-making algorithm

- Minimizes the original MRF energy, by iteratively minimizing a multi-label submodular surrogate energy.
- ▶ Monotonic decrease of the original energy.

Special case: Iteratively Reweighted Least Squares (IRLS).

うして ふゆ く 山 マ ふ し マ う く し マ

Assumption

$$heta_{ij}\left(|x_i - x_j|\right) = \frac{h}{h} \circ \frac{g\left(|x_i - x_j|\right)}{Convex}.$$

Minimize

$$\tilde{E}(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \boldsymbol{w}_{ij}^t g\left(|x_i - x_j|\right) \ .$$

Depends on the function h and the current labelling \mathbf{x}^t .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Assumption

Minimize

$$\tilde{E}(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \boldsymbol{w}_{ij}^t g\left(|x_i - x_j|\right) \ .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Depends on the function h and the current labelling \mathbf{x}^t .

Assumption

Minimize

$$ilde{E}(\mathbf{x}) = \sum_{i \in \mathcal{V}} heta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} oldsymbol{w}_{ij}^t g\left(|x_i - x_j|\right) \;.$$

Depends on the function h and the current labelling \mathbf{x}^t .

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Assumption

Minimize

$$\tilde{E}(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \boldsymbol{w}_{ij}^t g\left(|x_i - x_j|\right) \ .$$

Depends on the function h and the current labelling \mathbf{x}^t .

 $\tilde{E}(\mathbf{x})$ is multi-label submodular.

Choice of Functions g and h

$$\theta(z) = h \circ g(z) \; .$$

Choose q such that the number of edges in the Ishikawa graph is minimized.

 θ - Cauchy function

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Hybrid Strategy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

• Updates
$$\mathbf{x}^t \to \mathbf{x}^{t+1}$$
 in two steps:

1. $\mathbf{x}^t \to \mathbf{x}' \Rightarrow$ Ishikawa algorithm.

2.
$$\mathbf{x}' \to \mathbf{x}^{t+1} \Rightarrow$$
 One pass of α -expansion.

▶ Effective to overcome local minima.

Results

• We evaluated on stereo and inpainting problems.

Results

α -exp.	$\alpha\beta$	TDWC	Ours		
(QPBO)	swap	INVO	IRGC	IRGC+exp.	
1.05%	4.59%	0.05%	0.74%	0.17%	
0.75%	2.40%	0.30%	1.63%	0.21%	
4.26%	4.85%	0.91%	0.35%	0.26%	
3.42%	4.58%	0.65%	0.96%	0.26%	
7.80%	95.11%	0.16%	0.01%	0.01%	
1.99%	3.45%	0.09%	0.47%	0.17%	
6.71%	8.53%	1.56%	11.72%	0.83%	
4.59%	3.71%	0.02%	0.01%	0.01%	
3.82%	15.90%	0.47%	1.99%	0.24%	
	$\begin{array}{c} \alpha \text{-exp.} \\ (\text{QPBO}) \\ 1.05\% \\ 0.75\% \\ 4.26\% \\ 3.42\% \\ 7.80\% \\ 1.99\% \\ 6.71\% \\ 4.59\% \\ 3.82\% \end{array}$	$\begin{array}{lll} \alpha - \exp & & & \alpha \beta \\ (\mathrm{QPBO}) & \mathrm{swap} \\ 1.05\% & 4.59\% \\ 0.75\% & 2.40\% \\ 4.26\% & 4.85\% \\ 3.42\% & 4.58\% \\ 7.80\% & 95.11\% \\ 1.99\% & 3.45\% \\ 6.71\% & 8.53\% \\ 4.59\% & 3.71\% \\ 3.82\% & 15.90\% \end{array}$	$\begin{array}{c c} \alpha - \exp & \alpha \beta \\ (\text{QPBO}) & \text{swap} \\ \hline 1.05\% & 4.59\% & 0.05\% \\ 0.75\% & 2.40\% & 0.30\% \\ 4.26\% & 4.85\% & 0.91\% \\ 3.42\% & 4.58\% & 0.65\% \\ 7.80\% & 95.11\% & 0.16\% \\ 1.99\% & 3.45\% & 0.09\% \\ 6.71\% & 8.53\% & 1.56\% \\ 4.59\% & 3.71\% & 0.02\% \\ 3.82\% & 15.90\% & 0.47\% \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Quality of the minimum energies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

TRWS [Kolmogorov-2006]

▶ We have introduced a move-making algorithm that is effective on multi-label MRFs with non-convex priors.

Publication: CVPR, 2015

Code: https://github.com/tajanthan/irgc

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ
Outline

Introduction

Memory Efficient Max Flow

Iteratively Reweighted Graph Cut

Efficient Linear Programming

Conclusion

Introduction

Minimize

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) ,$$

where $x_i \in \mathcal{L}$, $\mathcal{V} = \{1, \ldots, n\}$ and $\mathcal{E} = \{(i, j) \mid i, j \in \mathcal{V}, i \neq j\}$.

Gaussian pairwise potentials

$$\theta_{ij}(x_i, x_j) = \underbrace{\mathbb{1}[x_i \neq x_j]}_{\text{Label compatibility}} \underbrace{\exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)}_{\text{Pixel compatibility}},$$

where $\mathbf{f}_i \in \mathbb{R}^d$.

Why?

 Captures long-range interactions and provides fine grained segmentations [Krähenbühl-2011].

・ロト・日本・モン・モン・ ヨー うへぐ

Introduction

Minimize

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) ,$$

where $x_i \in \mathcal{L}, \mathcal{V} = \{1, \ldots, n\}$ and $\mathcal{E} = \{(i, j) \mid i, j \in \mathcal{V}, i \neq j\}.$

Gaussian pairwise potentials

$$\theta_{ij}(x_i, x_j) = \underbrace{\mathbb{1}[x_i \neq x_j]}_{\text{Label compatibility}} \underbrace{\exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)}_{\text{Pixel compatibility}},$$

where $\mathbf{f}_i \in \mathbb{R}^d$.

Why?

 Captures long-range interactions and provides fine grained segmentations [Krähenbühl-2011].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

Minimize

$$E(\mathbf{x}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) ,$$

where $x_i \in \mathcal{L}, \mathcal{V} = \{1, \ldots, n\}$ and $\mathcal{E} = \{(i, j) \mid i, j \in \mathcal{V}, i \neq j\}.$

Gaussian pairwise potentials

$$\theta_{ij}(x_i, x_j) = \underbrace{\mathbb{1}[x_i \neq x_j]}_{\text{Label compatibility}} \underbrace{\exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)}_{\text{Pixel compatibility}},$$

where $\mathbf{f}_i \in \mathbb{R}^d$.

Why?

 Captures long-range interactions and provides fine grained segmentations [Krähenbühl-2011].

うして ふゆ く は く は く む く し く

Dense CRF

$$E(\mathbf{x}) = \sum_{i=1}^{n} \theta_i(x_i) + \sum_{i=1}^{n} \sum_{\substack{j=1\\j \neq i}}^{n} \mathbb{1}[x_i \neq x_j] \exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)$$

Difficulty

• Requires $\mathcal{O}(n^2)$ computations \Rightarrow Infeasible.

Idea

• Approximate using the filtering method [Adams-2010] $\Rightarrow \mathcal{O}(n)$ computations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dense CRF

$$E(\mathbf{x}) = \sum_{i=1}^{n} \theta_i(x_i) + \sum_{i=1}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} \mathbb{1}[x_i \neq x_j] \qquad \exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)$$

•

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Difficulty

• Requires $\mathcal{O}(n^2)$ computations \Rightarrow Infeasible.

Idea

• Approximate using the filtering method [Adams-2010] $\Rightarrow \mathcal{O}(n)$ computations.

Dense CRF

$$E(\mathbf{x}) = \sum_{i=1}^{n} \theta_i(x_i) + \sum_{i=1}^{n} \sum_{\substack{j=1\\ j \neq i}}^{n} \mathbb{1}[x_i \neq x_j] \exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)$$

•

Difficulty

• Requires $\mathcal{O}(n^2)$ computations \Rightarrow Infeasible.

Idea

► Approximate using the filtering method [Adams-2010] $\Rightarrow O(n)$ computations. Current Algorithms for MAP Inference in Dense CRFs

▶ Rely on the efficient filtering method [Adams-2010].

Algorithm	Time complexity	Theoretical	
	per iteration	bound	
Mean Field (MF) [1]	$\mathcal{O}(n)$	No	
Quadratic Programming (QP) [2]	$\mathcal{O}(n)$	Yes	
Difference of Convex (DC) [2]	$\mathcal{O}(n)$	Yes	
Linear Programming (LP) [2]	$\mathcal{O}(n \log(n))$	Yes (best)	

Contribution

▶ LP in $\mathcal{O}(n)$ time per iteration ⇒ An order of magnitude speedup [1] [Krähenbühl-2011]
 [2] [Desmaison-2016]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Current Algorithms for MAP Inference in Dense CRFs

▶ Rely on the efficient filtering method [Adams-2010].

Algorithm	Time complexity	Theoretical	
	per iteration	bound	
Mean Field (MF) [1]	$\mathcal{O}(n)$	No	
Quadratic Programming (QP) [2]	$\mathcal{O}(n)$	Yes	
Difference of Convex (DC) [2]	$\mathcal{O}(n)$	Yes	
Linear Programming (LP) [2]	$\mathcal{O}(n \log(n))$	Yes (best)	

Contribution

▶ LP in $\mathcal{O}(n)$ time per iteration ⇒ An order of magnitude speedup. [1] [Krähenbühl-2011]
 [2] [Desmaison-2016]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Current Algorithms for MAP Inference in Dense CRFs

▶ Rely on the efficient filtering method [Adams-2010].

Algorithm	Time complexity	Theoretical	
	per iteration	bound	
Mean Field (MF) [1]	$\mathcal{O}(n)$	No	
Quadratic Programming (QP) [2]	$\mathcal{O}(n)$	Yes	
Difference of Convex (DC) [2]	$\mathcal{O}(n)$	Yes	
Linear Programming (LP) [2]	$\mathcal{O}(n \log(n))$	Yes (best)	

Contribution

▶ LP in $\mathcal{O}(n)$ time per iteration ⇒ An order of magnitude speedup. [1] [Krähenbühl-2011]
 [2] [Desmaison-2016]

E.g. $n = 10^6 \Rightarrow 20$ times speedup.

LP Relaxation of a Dense CRF

$$y_{i:\lambda} = 1 \quad \Rightarrow \quad x_i = \lambda.$$

$$\begin{split} \min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) &= \sum_{i} \sum_{\lambda} \theta_{i:\lambda} \, y_{i:\lambda} + \sum_{i,j \neq i} \sum_{\lambda} K_{ij} \frac{|y_{i:\lambda} - y_{j:\mu}|}{2} \, ,\\ \text{s.t.} \quad \mathbf{y} \in \mathcal{S} = \left\{ \begin{array}{c} \mathbf{y} \ \left| \begin{array}{c} \sum_{\lambda} y_{i:\lambda} = 1, \ i \in \mathcal{V} \\ y_{i:\lambda} \in [0,1], \ i \in \mathcal{V}, \ \lambda \in \mathcal{L} \end{array} \right\} \, ,\\ \text{where } K_{ij} &= \exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right). \end{split} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ Provides integrality gap of 2 [Kleinberg-2002].

LP Relaxation of a Dense CRF

$$y_{i:\lambda} = 1 \quad \Rightarrow \quad x_i = \lambda.$$

$$\begin{split} \min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) &= \sum_{i} \sum_{\lambda} \theta_{i:\lambda} \, y_{i:\lambda} + \sum_{i,j \neq i} \sum_{\lambda} K_{ij} \frac{|y_{i:\lambda} - y_{j:\mu}|}{2} \, ,\\ \text{s.t.} \quad \mathbf{y} \in \mathcal{S} &= \left\{ \begin{array}{c} \mathbf{y} \mid \sum_{\lambda} y_{i:\lambda} = 1, \, i \in \mathcal{V} \\ y_{i:\lambda} \in [0,1], \, i \in \mathcal{V}, \, \lambda \in \mathcal{L} \end{array} \right\} \, , \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where
$$K_{ij} = \exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)$$
.

▶ Provides integrality gap of 2 [Kleinberg-2002].

LP Relaxation of a Dense CRF

$$y_{i:\lambda} = 1 \quad \Rightarrow \quad x_i = \lambda.$$

$$\min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) = \sum_{i} \sum_{\lambda} \theta_{i:\lambda} \, y_{i:\lambda} + \sum_{i,j \neq i} \sum_{\lambda} K_{ij} \frac{|y_{i:\lambda} - y_{j:\mu}|}{2} ,$$
s.t. $\mathbf{y} \in \mathcal{S} = \left\{ \mathbf{y} \mid \sum_{\lambda} y_{i:\lambda} = 1, \ i \in \mathcal{V} \\ y_{i:\lambda} \in [0,1], \ i \in \mathcal{V}, \ \lambda \in \mathcal{L} \right\} ,$
here $K_{ij} = \left\{ \mathbf{y} \mid \sum_{\lambda} y_{i:\lambda} = 1, \ i \in \mathcal{V} \\ y_{i:\lambda} \in [0,1], \ i \in \mathcal{V}, \ \lambda \in \mathcal{L} \right\} ,$

where
$$K_{ij} = \exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)$$
.

▶ Provides integrality gap of 2 [Kleinberg-2002].

Standard solvers would require $\mathcal{O}(n^2)$ variables.

LP Minimization

Current method

- Projected subgradient descent \Rightarrow Too slow.
 - Linearithmic time per iteration.
 - Expensive line search.
 - ▶ Requires large number of iterations.

Our algorithm

- ▶ Proximal minimization using block-coordinate descent.
 - One block: Significantly smaller subproblems.
 - ▶ The other block: Efficient *conditional gradient descent*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Linear time per iteration.
- Optimal step size.
- Guarantees optimality and converges faster.

LP Minimization

Current method

- Projected subgradient descent \Rightarrow Too slow.
 - Linearithmic time per iteration.
 - Expensive line search.
 - ▶ Requires large number of iterations.

Our algorithm

- ▶ Proximal minimization using block-coordinate descent.
 - One block: Significantly smaller subproblems.
 - ▶ The other block: Efficient conditional gradient descent.

うして ふゆ く は く は く む く し く

- Linear time per iteration.
- Optimal step size.
- ▶ Guarantees optimality and converges faster.

Proximal Minimization of LP (PROX-LP)

$$\min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) + \frac{1}{2\eta} \|\mathbf{y} - \mathbf{y}^r\|^2 ,$$

s.t. $\mathbf{y} \in \mathcal{S} ,$

where $\eta > 0$ and \mathbf{y}^r is the current estimate. Why?

- ▶ Initialization using MF or DC.
- Smooth dual \Rightarrow Sophisticated optimization.

Approach

▶ Block-coordinate descent tailored to this problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proximal Minimization of LP (PROX-LP)

$$\min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) + \frac{1}{2\eta} \|\mathbf{y} - \mathbf{y}^r\|^2 ,$$

s.t. $\mathbf{y} \in \mathcal{S} ,$

where $\eta > 0$ and \mathbf{y}^r is the current estimate. Why?

- Initialization using MF or DC.
- Smooth dual \Rightarrow Sophisticated optimization.

Approach

▶ Block-coordinate descent tailored to this problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proximal Minimization of LP (PROX-LP)

$$\min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) + \frac{1}{2\eta} \|\mathbf{y} - \mathbf{y}^r\|^2 ,$$

s.t. $\mathbf{y} \in \mathcal{S} ,$

where $\eta > 0$ and \mathbf{y}^r is the current estimate. Why?

- ▶ Initialization using MF or DC.
- Smooth dual \Rightarrow Sophisticated optimization.

Approach

▶ Block-coordinate descent tailored to this problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\begin{split} \min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}} g(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) &= \frac{\eta}{2} \|A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u\|^2 \\ &+ \langle A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u, \mathbf{y}^r \rangle - \langle \mathbf{1}, \boldsymbol{\beta} \rangle , \\ \text{s.t.} \quad \boldsymbol{\gamma}_{i:\lambda} &\geq 0 \quad \forall \, i \in \mathcal{V} \quad \forall \, \lambda \in \mathcal{L} , \\ \boldsymbol{\alpha} &\in \mathcal{C} = \left\{ \begin{array}{c} \boldsymbol{\alpha} \mid \alpha_{ij:\lambda}^1 + \alpha_{ij:\lambda}^2 = \frac{K_{ij}}{2}, \, \forall \, i, j \neq i, \, \lambda \in \mathcal{L} \\ \alpha_{ij:\lambda}^1, \alpha_{ij:\lambda}^2 \geq 0, \, \forall \, i, j \neq i, \, \lambda \in \mathcal{L} \end{array} \right\} \end{split}$$

Block-coordinate descent

- β : Unconstrained \Rightarrow Set derivative to zero.
- ▶ γ : Unbounded and separable \Rightarrow Small QP for each pixel.
- $\alpha \in \mathcal{C}$: Compact domain \Rightarrow Conditional gradient descent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

$$\begin{split} \min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}} g(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) &= \frac{\eta}{2} \|A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u\|^2 \\ &+ \langle A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u, \mathbf{y}^r \rangle - \langle \mathbf{1}, \boldsymbol{\beta} \rangle , \\ \text{s.t.} \quad \boldsymbol{\gamma}_{i:\lambda} &\geq \mathbf{0} \quad \forall i \in \mathcal{V} \quad \forall \lambda \in \mathcal{L} , \\ \mathbf{\alpha} \in \mathcal{C} &= \left\{ \begin{array}{c} \boldsymbol{\alpha} \mid \alpha_{ij:\lambda}^1 + \alpha_{ij:\lambda}^2 = \frac{K_{ij}}{2}, \, \forall i, j \neq i, \, \lambda \in \mathcal{L} \\ \alpha_{ij:\lambda}^1, \alpha_{ij:\lambda}^2 \geq \mathbf{0}, \, \forall i, j \neq i, \, \lambda \in \mathcal{L} \end{array} \right\} \end{split}$$

٠

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Block-coordinate descent

- β : Unconstrained \Rightarrow Set derivative to zero.
- γ : Unbounded and separable \Rightarrow Small QP for each pixel.
- $\alpha \in \mathcal{C}$: Compact domain \Rightarrow Conditional gradient descent.

$$\begin{split} \min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}} g(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) &= \frac{\eta}{2} \|A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u\|^2 \\ &+ \langle A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u, \mathbf{y}^r \rangle - \langle \mathbf{1}, \boldsymbol{\beta} \rangle , \\ \text{s.t.} \quad \boldsymbol{\gamma}_{i:\lambda} &\geq \mathbf{0} \quad \forall i \in \mathcal{V} \quad \forall \lambda \in \mathcal{L} , \\ \mathbf{\alpha} \in \mathcal{C} &= \left\{ \begin{array}{c} \boldsymbol{\alpha} \mid \alpha_{ij:\lambda}^1 + \alpha_{ij:\lambda}^2 = \frac{K_{ij}}{2}, \, \forall i, j \neq i, \, \lambda \in \mathcal{L} \\ \alpha_{ij:\lambda}^1, \alpha_{ij:\lambda}^2 \geq \mathbf{0}, \, \forall i, j \neq i, \, \lambda \in \mathcal{L} \end{array} \right\} \end{split}$$

٠

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Block-coordinate descent

- β : Unconstrained \Rightarrow Set derivative to zero.
- ▶ γ : Unbounded and separable \Rightarrow Small QP for each pixel.
- $\alpha \in \mathcal{C}$: Compact domain \Rightarrow Conditional gradient descent.

$$\begin{split} \min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}} g(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) &= \frac{\eta}{2} \|A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u\|^2 \\ &+ \langle A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u, \mathbf{y}^r \rangle - \langle \mathbf{1}, \boldsymbol{\beta} \rangle , \\ \text{s.t.} \quad \boldsymbol{\gamma}_{i:\lambda} &\geq \mathbf{0} \quad \forall \, i \in \mathcal{V} \quad \forall \, \lambda \in \mathcal{L} , \\ \mathbf{\alpha} \in \mathcal{C} &= \left\{ \begin{array}{c} \boldsymbol{\alpha} \mid \alpha_{ij:\lambda}^1 + \alpha_{ij:\lambda}^2 = \frac{K_{ij}}{2}, \, \forall \, i, j \neq i, \, \lambda \in \mathcal{L} \\ \alpha_{ij:\lambda}^1, \alpha_{ij:\lambda}^2 \geq \mathbf{0}, \, \forall \, i, j \neq i, \, \lambda \in \mathcal{L} \end{array} \right\} \end{split}$$

Block-coordinate descent

- β : Unconstrained \Rightarrow Set derivative to zero.
- ▶ γ : Unbounded and separable \Rightarrow Small QP for each pixel.
- $\alpha \in \mathcal{C}$: Compact domain \Rightarrow Conditional gradient descent.

٠

$$\begin{split} \min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}} g(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) &= \frac{\eta}{2} \|A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u\|^2 \\ &+ \langle A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u, \mathbf{y}^r \rangle - \langle \mathbf{1}, \boldsymbol{\beta} \rangle , \\ \text{s.t.} \quad \boldsymbol{\gamma}_{i:\lambda} &\geq \mathbf{0} \quad \forall \, i \in \mathcal{V} \quad \forall \, \lambda \in \mathcal{L} , \\ \mathbf{\alpha} \in \mathcal{C} &= \left\{ \begin{array}{c} \boldsymbol{\alpha} \mid \alpha_{ij:\lambda}^1 + \alpha_{ij:\lambda}^2 = \frac{K_{ij}}{2}, \, \forall \, i, j \neq i, \, \lambda \in \mathcal{L} \\ \alpha_{ij:\lambda}^1, \alpha_{ij:\lambda}^2 \geq \mathbf{0}, \, \forall \, i, j \neq i, \, \lambda \in \mathcal{L} \end{array} \right\} \end{split}$$

Block-coordinate descent

- β : Unconstrained \Rightarrow Set derivative to zero.
- ▶ γ : Unbounded and separable \Rightarrow Small QP for each pixel.
- $\alpha \in \mathcal{C}$: Compact domain \Rightarrow Conditional gradient descent.

Guarantees optimality since g is strictly convex and smooth.

$$\begin{split} \min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}} g(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) &= \frac{\eta}{2} \|A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u\|^2 \\ &+ \langle A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\theta}_u, \mathbf{y}^r \rangle - \langle \mathbf{1}, \boldsymbol{\beta} \rangle , \\ \text{s.t.} \quad \boldsymbol{\gamma}_{i:\lambda} &\geq \mathbf{0} \quad \forall \, i \in \mathcal{V} \quad \forall \, \lambda \in \mathcal{L} , \\ \mathbf{\alpha} \in \mathcal{C} &= \left\{ \begin{array}{c} \boldsymbol{\alpha} \mid \alpha_{ij:\lambda}^1 + \alpha_{ij:\lambda}^2 = \frac{K_{ij}}{2}, \, \forall \, i, j \neq i, \, \lambda \in \mathcal{L} \\ \alpha_{ij:\lambda}^1, \alpha_{ij:\lambda}^2 \geq \mathbf{0}, \, \forall \, i, j \neq i, \, \lambda \in \mathcal{L} \end{array} \right\} \end{split}$$

Block-coordinate descent

- β : Unconstrained \Rightarrow Set derivative to zero.
- ▶ γ : Unbounded and separable \Rightarrow Small QP for each pixel.
- $\alpha \in \mathcal{C}$: Compact domain \Rightarrow Conditional gradient descent.

Guarantees optimality since g is strictly convex and smooth.

Conditional Gradient Descent

 $\min_{\pmb{\alpha}\in\mathcal{C}}g(\pmb{\alpha})\;.$

Requirements

- $g: \mathcal{C} \to \mathbb{R}$ is differentiable.
- $\mathcal{C} \subset \mathbb{R}^N$ is convex and compact.

Conditional gradient (s)

• Minimize the first order Taylor approximation.

In our case

- Linear time conditional gradient computation.
- Optimal step size.

Image from [Lacoste-2012]

イロト イポト イモト イモト 二日

Conditional Gradient Descent

 $\min_{\pmb{\alpha}\in\mathcal{C}}g(\pmb{\alpha})\;.$

Requirements

- $g: \mathcal{C} \to \mathbb{R}$ is differentiable.
- $\mathcal{C} \subset \mathbb{R}^N$ is convex and compact.

Conditional gradient (\mathbf{s})

 Minimize the first order Taylor approximation.

In our case

- Linear time conditional gradient computation.
- Optimal step size.

Image from [Lacoste-2012]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conditional Gradient Descent

 $\min_{\pmb{\alpha}\in\mathcal{C}}g(\pmb{\alpha})\;.$

Requirements

- $g: \mathcal{C} \to \mathbb{R}$ is differentiable.
- $\mathcal{C} \subset \mathbb{R}^N$ is convex and compact.

Conditional gradient (\mathbf{s})

 Minimize the first order Taylor approximation.

In our case

- Linear time conditional gradient computation.
- Optimal step size.

Image from [Lacoste-2012]

うして ふゆ く は く は く む く し く

$$\forall i \in \mathcal{V}, \quad \tilde{s}_i = \sum_j K_{ij} \mathbb{1}[y_i \ge y_j] \;,$$

where
$$K_{ij} = \exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right), y_i \in [0, 1] \text{ and } \mathbf{f}_i \in \mathbb{R}^d.$$

Difficulty

 The permutohedral lattice based filtering method of [Adams-2010] cannot handle the ordering constraint.

Current method [Desmaison-2016]

▶ Repeated application of the original filtering method using a divide-and-conquer strategy $\Rightarrow O(d^2 n \log(n))$ computations.

Our idea

▶ Discretize the interval [0, 1] to H levels and instantiate H permutohedral lattices $\Rightarrow O(Hdn)$ computations (H = 10).

・ロト ・四ト ・ヨト ・ヨト ・ヨ

$$\forall i \in \mathcal{V}, \quad \tilde{s}_i = \sum_j K_{ij} \quad \mathbb{1}[y_i \ge y_j] \quad ,$$

where $K_{ij} = \exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)$, $y_i \in [0, 1]$ and $\mathbf{f}_i \in \mathbb{R}^d$.

Difficulty

▶ The permutohedral lattice based filtering method of [Adams-2010] cannot handle the ordering constraint.

Current method [Desmaison-2016]

▶ Repeated application of the original filtering method using a divide-and-conquer strategy $\Rightarrow O(d^2 n \log(n))$ computations.

Our idea

▶ Discretize the interval [0, 1] to H levels and instantiate H permutohedral lattices $\Rightarrow \mathcal{O}(Hdn)$ computations (H = 10).

$$\forall i \in \mathcal{V}, \quad \tilde{s}_i = \sum_j K_{ij} \quad \mathbb{1}[y_i \ge y_j] \quad ,$$

where $K_{ij} = \exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)$, $y_i \in [0, 1]$ and $\mathbf{f}_i \in \mathbb{R}^d$.

Difficulty

▶ The permutohedral lattice based filtering method of [Adams-2010] cannot handle the ordering constraint.

Current method [Desmaison-2016]

▶ Repeated application of the original filtering method using a divide-and-conquer strategy $\Rightarrow O(d^2 n \log(n))$ computations.

Our idea

▶ Discretize the interval [0, 1] to H levels and instantiate H permutohedral lattices $\Rightarrow \mathcal{O}(Hdn)$ computations (H = 10).

$$\forall i \in \mathcal{V}, \quad \tilde{s}_i = \sum_j K_{ij} \quad \mathbb{1}[y_i \ge y_j] \quad ,$$

where $K_{ij} = \exp\left(\frac{-\|\mathbf{f}_i - \mathbf{f}_j\|^2}{2}\right)$, $y_i \in [0, 1]$ and $\mathbf{f}_i \in \mathbb{R}^d$.

Difficulty

▶ The permutohedral lattice based filtering method of [Adams-2010] cannot handle the ordering constraint.

Current method [Desmaison-2016]

▶ Repeated application of the original filtering method using a divide-and-conquer strategy $\Rightarrow O(d^2 n \log(n))$ computations.

Our idea

▶ Discretize the interval [0, 1] to H levels and instantiate H permutohedral lattices $\Rightarrow \mathcal{O}(Hdn)$ computations (H = 10).

Segmentation Results

Energy vs time plot for an image in (left) MSRC and (right) Pascal

(日)

▶ Both LP minimization algorithms are initialized with DC_{neg}.

Segmentation Results

		Avg. E $(\times 10^3)$	Avg. T (s)	Acc.
MSRC	MF5	8078.0	0.2	79.33
	MF	8062.4	0.5	79.35
	$\mathrm{DC}_{\mathrm{neg}}$	3539.6	1.3	83.01
	$\mathrm{SG}\text{-}\mathrm{LP}_\ell$	3335.6	13.6	83.15
	$PROX-LP_{acc}$	1340.0	3.7	84.16
Pascal	MF5	1220.8	0.8	79.13
	MF	1220.8	0.7	79.13
	$\mathrm{DC}_{\mathrm{neg}}$	629.5	3.7	80.43
	$\mathrm{SG}\text{-}\mathrm{LP}_\ell$	617.1	84.4	80.49
	$PROX-LP_{acc}$	507.7	14.7	80.58

Results on the MSRC and Pascal datasets

Segmentation Results

イロト イポト イモト イモト 一日

Modified Filtering Method

Speedup of our modified filtering algorithm on a Pascal image

イロト 不得 とくき とくきとうき

Modified Filtering Method

Speedup of our modified filtering algorithm on a Pascal image

Speedup is around 45 - 65 on the standard image.
Summary

▶ We have introduced the first LP minimization algorithm for dense CRFs whose iterations are linear in the number of pixels and labels.

Publication: CVPR, 2017

Code: https://github.com/oval-group/DenseCRF

Outline

Introduction

Memory Efficient Max Flow

Iteratively Reweighted Graph Cut

Efficient Linear Programming

Conclusion

Conclusion

- ► We have introduced three new algorithms for MRF optimization, targeting computer vision applications.
 - **MEMF:** A max-flow algorithm with $\mathcal{O}(\ell)$ memory reduction for Ishikawa type graphs.
 - **IRGC:** A move-making algorithm that can handle robust non-convex priors.

A D F A 目 F A E F A E F A Q Q

PROX-LP: An LP minimization algorithm for dense CRFs that has linear time iterations.

Thank you!

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Flow vs Reparametrization

Flow vs reparametrization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Finding an Augmenting Path

Find augmenting paths on a subgraph

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Finding an Augmenting Path

Find augmenting paths on a subgraph

Utilize upward infinite capacity edges in each column.

Finding an Augmenting Path

Find augmenting paths on a subgraph

Overall time complexity: $\mathcal{O}(nm\ell^6)$

Iteratively Reweighted Minimization

• Minimize the original energy $E(\mathbf{x}) = \sum_k h_k \circ f_k(\mathbf{x})$, by iteratively minimizing a surrogate energy $\tilde{E}(\mathbf{x}) = \sum_k w_k f_k(\mathbf{x})$.

Lemma (Monotonic decrease)

Given a set \mathcal{X} , functions $f_k : \mathcal{X} \to \mathcal{D}$ and concave functions $h_k : \mathcal{D} \to \mathbb{R}$, with $\mathcal{D} \subseteq \mathbb{R}$, such that,

$$\sum_k w_k^t f_k(\mathbf{x}^{t+1}) \le \sum_k w_k^t f_k(\mathbf{x}^t) ,$$

where $w_k^t = h_k^s(f_k(\mathbf{x}^t))$ and \mathbf{x}^t is the estimate of \mathbf{x} at iteration t, then

$$\sum_{k} h_k \circ f_k(\mathbf{x}^{t+1}) \le \sum_{k} h_k \circ f_k(\mathbf{x}^t) \; .$$

Permutohedral Lattice

A 2-dimensional hyperplane tessellated by the permutohedral lattice.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Modified Filtering Algorithm

Top row: Original filtering method. Bottom row: Our modified filtering method. H = 3.

Segmentation Results

Assignment energy as a function of time for an image in (left) MSRC and (right) Pascal

(日) (四) (日) (日)

ъ