
Memory Efficient Max Flow for Multi-label Submodular MRFs
- Supplementary Material

Thalaiyasingam Ajanthan, Richard Hartley
Australian National University & NICTA

Canberra, Australia

Mathieu Salzmann
CVLAB, EPFL

Lausanne, Switzerland

1. Proof of Theorem 3.2

Theorem. Given the set of Ishikawa capacities φ, there is
an augmenting path in the simplified graph if and only if
there exists an augmenting path in the Ishikawa graph.

Proof. First, we will prove that, if there is an augmenting
path in the simplified graph, then there exists an augment-
ing path in the Ishikawa graph. It is clear that an augmenting
path in the simplified graph contains an edge from node 0
to a block and then a sequence of edges Bi:γ → Bj:δ and
finally an edge from a block to node 1. Note that an edge
from node 0 to a block Bi:γ corresponds to a positive edge
ei:`−1 in the Ishikawa graph; similarly an edge from a block
Bj:δ to node 1 corresponds to a positive edge ej:0. Now,
consider an edgeBi:γ → Bj:δ in the augmenting path. Cor-
responding to this, there exists a positive edge eij:λµ such
that Ui:λ ∈ Bi:γ′ for some γ′ ≥ γ and Uj:µ ∈ Bj:δ in the
Ishikawa graph. Also along the column i, there are upward
infinite capacity edges, and nodes corresponding to a block
are also connected with positive bidirectional edges. Hence,
there exists an augmenting path in the Ishikawa graph, cor-
responding to the augmenting path in the simplified graph.

Now, we will prove the converse. Consider an augment-
ing path in the Ishikawa graph. The path may contain a
sequence of positive edges ei:λ, eij:λµ and infinite capacity
edges eii:λλ+1. Note that, by construction, the ei:λ edges ei-
ther will be in the same block Bi:γ in the simplified graph,
or will be between a block and node 0 or node 1. Further-
more, the infinite capacity edges either will be in the same
block, or there will be an edgeBi:γ → Bj:δ in the simplified
graph to represent them. Finally, if eij:λµ is a positive edge,
then, by construction of the simplified graph, there exists an
edge Bi:γ → Bj:δ′ where Ui:λ ∈ Bi:γ and Uj:µ ∈ Bj:δ
with δ′ ≤ δ. Hence, if there is an augmenting path in the
Ishikawa graph, then there exists an augmenting path in the
simplified graph.
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Figure 1: Percentage of time taken by each subroutine.
Note that, in Penguin, due to the large number of labels,
the percentages of time spent on compute edges and sim-
plify graph are high.

2. Additional experiments

2.1. Runtime analysis for each subroutine

In Fig. 1, we report the percentage of time taken by each
subroutine of our algorithm for the Tsukuba and Penguin
instances. Note that the individual time complexities of the
subroutines compute edges and simplify graph are O(`3)
and O(`2), respectively. Therefore, they become dominant
when the number of labels is large, and hence the corre-
sponding percentages of time are high, particularly for Pen-
guin.

2.2. Robust regularizer

Since robust regularizers are highly effective in computer
vision, we tested our algorithm with the Huber loss func-
tion [1] as regularizer. The results are summarized in Ta-
ble 1. In this experiment, the Huber value was set to 4 for
Tsukuba, Venus and Sawtooth, 6 for Map, 20 for Cones and
Teddy, 10 for KITTI, and 25 for Penguin and House. Note
that, even in this case, our algorithm lets us solve much
larger problems than the BK algorithm and EIBFS, and is
an order of magnitude faster than state-of-the-art message-
passing algorithms.

2.3. Parallelization

We parallelized our algorithm based on the dual-
decomposition technique of [4] and evaluated it on the same
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Problem Memory [MB] Time [s]
BK EIBFS TRWS MEMF BK EIBFS TRWS MEMF

Tsukuba 1715 1385 287 211 8 3 198 28
Venus 3375 2719 638 396 17 5 211 57
Sawtooth 3348 2698 633 393 15 4 467 34
Map 2680 2116 494 219 22 5 >2953 36
Cones *42155 *32167 5025 1200 - - 1118 363
Teddy *42155 *32167 5025 1200 - - 6879 2064
KITTI *42161 *32627 6416 2215 - - >30165 18923
Penguin *33487 *25423 215 663 - - >50000 6277
House *100494 *76295 643 1986 - - >50000 8568

Table 1: Memory consumption and runtime comparison with state-of-the-art baselines. A “*” indicates a memory estimate,
and “>” indicates that the algorithm did not converge to the optimum within the specified time. Note that our algorithm
has a much lower memory consumption than the max-flow-based methods and is an order of magnitude faster than message-
passing algorithms. Compared to EIBFS, our algorithm is 7 – 11 times slower, but requires 7 – 10 times less memory, which
makes it applicable to more realistic problems. In all stereo problems, TRWS cached the pairwise potentials in an array for
faster retrieval, but in the case of inpainting, it was not possible due to excessive memory requirement.
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Figure 2: Our algorithm can be accelerated using the paral-
lel max-flow technique. The relative times ranged from 0.56
to 0.99 with 2-threads and from 0.39 to 0.83 with 4-threads.
In Teddy, in the case of 2-threads, the multi-threaded al-
gorithm performs almost the same as the single-threaded
algorithm, which, we expect, is due to a bad image splitting
strategy.

six stereo instances from the Middlebury dataset [2, 3] as
before. The relative times tm/ts, where tm stands for
the multi-thread time and ts for the single-thread one, are
shown in Fig. 2 for two and four threads. In this experiment,
for all problems, the image grid was split vertically into two
and four equally-sized blocks, respectively. Note that this
spliting strategy is fairly arbitrary, and may affect the per-
formance of the multi-threaded algorithm. In fact finding
better splits may itself be a possible future direction.
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