Efficient Linear Programming for Dense CRFs

Thalaiyasingam Ajanthan Alban Desmaison Rudy Bunel Mathieu Salzmann Philip H. S. Torr M. Pawan Kumar

Oxford, December 2016

▶ Fully connected CRF with Gaussian pairwise potentials.

$$E(\mathbf{x}) = \sum_{a=1}^{n} \phi_a(x_a) + \sum_{a=1}^{n} \sum_{\substack{b=1\\b \neq a}}^{n} \psi_{ab}(x_a, x_b) ,$$
$$\psi_{ab}(x_a, x_b) = \underbrace{\mu(x_a, x_b)}_{\text{Label compatibility}} \underbrace{\exp\left(\frac{-\|\mathbf{f}_a - \mathbf{f}_b\|^2}{2}\right)}_{\text{Pixel compatibility}} ,$$

where $x_a \in \mathcal{L}$ and $\mathbf{f}_a \in \mathbb{R}^d$.

Why?

 Captures long-range interactions and provides fine grained segmentations [Krähenbühl-2011].

▶ Fully connected CRF with Gaussian pairwise potentials.

$$E(\mathbf{x}) = \sum_{a=1}^{n} \phi_a(x_a) + \sum_{a=1}^{n} \sum_{\substack{b=1\\b \neq a}}^{n} \psi_{ab}(x_a, x_b) ,$$

$$\psi_{ab}(x_a, x_b) = \underbrace{\mu(x_a, x_b)}_{\text{Label compatibility}} \underbrace{\exp\left(\frac{-\|\mathbf{f}_a - \mathbf{f}_b\|^2}{2}\right)}_{\text{Pixel compatibility}} ,$$

where $x_a \in \mathcal{L}$ and $\mathbf{f}_a \in \mathbb{R}^d$. Why?

 Captures long-range interactions and provides fine grained segmentations [Krähenbühl-2011].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

$$E(\mathbf{x}) = \sum_{a=1}^{n} \phi_a(x_a) + \sum_{a=1}^{n} \sum_{\substack{b=1\\b \neq a}}^{n} \psi_{ab}(x_a, x_b) ,$$
$$\psi_{ab}(x_a, x_b) = \mu(x_a, x_b) \exp\left(\frac{-\|\mathbf{f}_a - \mathbf{f}_b\|^2}{2}\right) .$$

Difficulty

• Requires $\mathcal{O}(n^2)$ computations \Rightarrow Infeasible.

Idea

• Approximate using the filtering method [Adams-2010] $\Rightarrow \mathcal{O}(n)$ computations.

$$E(\mathbf{x}) = \sum_{a=1}^{n} \phi_a(x_a) + \sum_{a=1}^{n} \sum_{\substack{b=1\\b \neq a}}^{n} \psi_{ab}(x_a, x_b) ,$$
$$\psi_{ab}(x_a, x_b) = \mu(x_a, x_b) \exp\left(\frac{-\|\mathbf{f}_a - \mathbf{f}_b\|^2}{2}\right) .$$

Difficulty

• Requires $\mathcal{O}(n^2)$ computations \Rightarrow Infeasible.

Idea

► Approximate using the filtering method [Adams-2010] $\Rightarrow O(n)$ computations.

Current algorithms for MAP inference in dense CRFs

▶ Rely on the efficient filtering method [Adams-2010].

Algorithm	Time complexity per iteration	Theoretical bound
Mean Field (MF) [1]	$\mathcal{O}(n)$	No
Quadratic Programming (QP) [2]	$\mathcal{O}(n)$	Yes
Difference of Convex (DC) [2]	$\mathcal{O}(n)$	Yes
Linear Programming (LP) [2]	$\mathcal{O}(n \log(n))$	Yes (best)

Contribution

▶ LP in $\mathcal{O}(n)$ time per iteration ⇒ An order of magnitude speedup [1] [Krähenbühl-2011]
 [2] [Desmaison-2016]

A D F A 目 F A E F A E F A Q Q

Current algorithms for MAP inference in dense CRFs

▶ Rely on the efficient filtering method [Adams-2010].

Algorithm	Time complexity per iteration	Theoretical bound
Mean Field (MF) [1]	$\mathcal{O}(n)$	No
Quadratic Programming (QP) [2]	$\mathcal{O}(n)$	Yes
Difference of Convex (DC) [2]	$\mathcal{O}(n)$	Yes
Linear Programming (LP) [2]	$\mathcal{O}(n \log(n))$	Yes $(best)$

Contribution

▶ LP in $\mathcal{O}(n)$ time per iteration ⇒ An order of magnitude speedup. [1] [Krähenbühl-2011]
 [2] [Desmaison-2016]

A D F A 目 F A E F A E F A Q Q

LP minimization

Current method

- Projected subgradient descent \Rightarrow Too slow.
 - Linearithmic time per iteration.
 - Expensive line search.
 - ▶ Require large number of iterations.

Our algorithm

- ▶ Proximal minimization using block coordinate descent.
 - One block: Significantly smaller subproblems.
 - ▶ The other block: Efficient conditional gradient descent.

うして ふゆ く 山 マ ふ し マ う く し マ

- Linear time conditional gradient computation.
- Optimal step size.
- ▶ Guarantees optimality and converges faster.

LP minimization

Current method

- Projected subgradient descent \Rightarrow Too slow.
 - Linearithmic time per iteration.
 - Expensive line search.
 - ▶ Require large number of iterations.

Our algorithm

- ▶ Proximal minimization using block coordinate descent.
 - One block: Significantly smaller subproblems.
 - ▶ The other block: Efficient conditional gradient descent.

うして ふゆ く 山 マ ふ し マ う く し マ

- ▶ Linear time conditional gradient computation.
- Optimal step size.
- ▶ Guarantees optimality and converges faster.

LP relaxation of a dense CRF

$$\begin{split} \min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) &= \sum_{a} \sum_{i} \phi_{a:i} \, y_{a:i} + \sum_{a,b \neq a} \sum_{i} K_{ab} \frac{|y_{a:i} - y_{b:i}|}{2} ,\\ \text{s.t.} \quad \mathbf{y} \in \mathcal{M} = \left\{ \begin{array}{c} \mathbf{y} \mid \sum_{i} y_{a:i} = 1, \ a \in \{1 \dots n\} \\ y_{a:i} \in [0,1], \ a \in \{1 \dots n\}, \ i \in \mathcal{L} \end{array} \right\} ,\\ \text{where } K_{ab} = \exp\left(\frac{-\|\mathbf{f}_a - \mathbf{f}_b\|^2}{2}\right). \end{split}$$

Assumption: Label compatibility is the Potts model.

LP relaxation of a dense CRF

$$\begin{split} \min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) &= \sum_{a} \sum_{i} \phi_{a:i} \, y_{a:i} + \sum_{a,b \neq a} \sum_{i} K_{ab} \frac{|y_{a:i} - y_{b:i}|}{2} \,, \\ \text{s.t.} \quad \mathbf{y} \in \mathcal{M} = \left\{ \begin{array}{c} \mathbf{y} \mid \sum_{i} y_{a:i} = 1, \; a \in \{1 \dots n\} \\ y_{a:i} \in [0,1], \; a \in \{1 \dots n\}, \; i \in \mathcal{L} \end{array} \right\} \,, \end{split}$$
where $K_{ab} = \exp\left(\frac{-\|\mathbf{f}_a - \mathbf{f}_b\|^2}{2}\right).$

Assumption: Label compatibility is the Potts model.

Standard solvers would require $\mathcal{O}(n^2)$ variables.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Proximal minimization of LP

$$\min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) + \frac{1}{2\lambda} \left\| \mathbf{y} - \mathbf{y}^k \right\|^2 ,$$

s.t. $\mathbf{y} \in \mathcal{M} ,$

where \mathbf{y}^k is the current estimate. Why?

- ▶ Initialization using MF or DC.
- Smooth dual \Rightarrow Sophisticated optimization.

Approach

▶ Block coordinate descent tailored to this problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proximal minimization of LP

$$\min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) + \frac{1}{2\lambda} \left\| \mathbf{y} - \mathbf{y}^k \right\|^2 ,$$

s.t. $\mathbf{y} \in \mathcal{M} ,$

where \mathbf{y}^k is the current estimate. Why?

- Initialization using MF or DC.
- Smooth dual \Rightarrow Sophisticated optimization.

Approach

▶ Block coordinate descent tailored to this problem.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Proximal minimization of LP

$$\min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) + \frac{1}{2\lambda} \left\| \mathbf{y} - \mathbf{y}^k \right\|^2 ,$$

s.t. $\mathbf{y} \in \mathcal{M} ,$

where \mathbf{y}^k is the current estimate. Why?

- Initialization using MF or DC.
- Smooth dual \Rightarrow Sophisticated optimization.

Approach

▶ Block coordinate descent tailored to this problem.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Dual of the proximal problem

$$\begin{split} \min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}} g(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) &= \frac{\lambda}{2} \|A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\phi}\|^2 \\ &+ \left\langle A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\phi}, \mathbf{y}^k \right\rangle - \left\langle \mathbf{1}, \boldsymbol{\beta} \right\rangle ,\\ \text{s.t.} \quad \gamma_{a:i} &\geq 0 \quad \forall \, a \in \{1 \dots n\} \quad \forall \, i \in \mathcal{L} \ ,\\ \boldsymbol{\alpha} \in \mathcal{C} &= \left\{ \begin{array}{c} \boldsymbol{\alpha} \mid \alpha_{ab:i}^1 + \alpha_{ab:i}^2 = \frac{K_{ab}}{2}, \, a \neq b, \, i \in \mathcal{L} \\ \alpha_{ab:i}^1, \alpha_{ab:i}^2 \geq 0, \, a \neq b, \, i \in \mathcal{L} \end{array} \right\} \ . \end{split}$$

Block coordinate descent

- $\alpha \in \mathcal{C}$: Compact domain \Rightarrow Conditional gradient descent.
- ▶ β : Unconstrained \Rightarrow Set derivative to zero.
- γ : Unbounded and separable \Rightarrow Small QP for each pixel.

うして ふゆ く 山 マ ふ し マ う く し マ

Dual of the proximal problem

$$\begin{split} \min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}} g(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) &= \frac{\lambda}{2} \|A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\phi}\|^2 \\ &+ \left\langle A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\phi}, \mathbf{y}^k \right\rangle - \left\langle \mathbf{1}, \boldsymbol{\beta} \right\rangle ,\\ \text{s.t.} \quad \gamma_{a:i} &\geq 0 \quad \forall \, a \in \{1 \dots n\} \quad \forall \, i \in \mathcal{L} \ ,\\ \boldsymbol{\alpha} &\in \mathcal{C} = \left\{ \begin{array}{c} \boldsymbol{\alpha} \mid \alpha_{ab:i}^1 + \alpha_{ab:i}^2 = \frac{K_{ab}}{2}, \, a \neq b, \, i \in \mathcal{L} \\ \alpha_{ab:i}^1, \alpha_{ab:i}^2 \geq 0, \, a \neq b, \, i \in \mathcal{L} \end{array} \right\} \ . \end{split}$$

Block coordinate descent

- $\alpha \in \mathcal{C}$: Compact domain \Rightarrow Conditional gradient descent.
- β : Unconstrained \Rightarrow Set derivative to zero.
- ▶ γ : Unbounded and separable \Rightarrow Small QP for each pixel.

Dual of the proximal problem

$$\begin{split} \min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}} g(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) &= \frac{\lambda}{2} \|A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\phi}\|^2 \\ &+ \left\langle A\boldsymbol{\alpha} + B\boldsymbol{\beta} + \boldsymbol{\gamma} - \boldsymbol{\phi}, \mathbf{y}^k \right\rangle - \left\langle \mathbf{1}, \boldsymbol{\beta} \right\rangle ,\\ \text{s.t.} \quad \gamma_{a:i} &\geq 0 \quad \forall \, a \in \{1 \dots n\} \quad \forall \, i \in \mathcal{L} \ ,\\ \boldsymbol{\alpha} \in \mathcal{C} &= \left\{ \begin{array}{c} \boldsymbol{\alpha} \mid \alpha_{ab:i}^1 + \alpha_{ab:i}^2 = \frac{K_{ab}}{2}, \, a \neq b, \, i \in \mathcal{L} \\ \alpha_{ab:i}^1, \alpha_{ab:i}^2 \geq 0, \, a \neq b, \, i \in \mathcal{L} \end{array} \right\} \end{split}$$

Block coordinate descent

- $\alpha \in \mathcal{C}$: Compact domain \Rightarrow Conditional gradient descent.
- β : Unconstrained \Rightarrow Set derivative to zero.
- ▶ γ : Unbounded and separable \Rightarrow Small QP for each pixel.

Guarantees optimality since g is strictly convex and smooth.

$$\forall a \in \{1 \dots n\}, \quad v'_a = \sum_b K_{ab} v_b \mathbb{1}[y_a \ge y_b],$$

where $y_a, y_b \in [0, 1]$.

Difficulty

• The permutohedral lattice based filtering method of [Adams-2010] cannot handle the ordering constraint.

Current method [Desmaison-2016]

▶ Repeated application of the original filtering method using a divide and conquer strategy $\Rightarrow O(d^2n \log(n))$ computations¹.

Our idea

▶ Discretize the interval [0,1] to *H* levels and instantiate *H* permutohedral lattices $\Rightarrow \mathcal{O}(Hdn)$ computations².

- 日本 - 4 日本 - 4 日本 - 日本

 $^{{}^{1}}d$ - filter dimension, usually 2 or 5. ${}^{2}H = 10$ in our case.

$$\forall a \in \{1 \dots n\}, \quad v'_a = \sum_b K_{ab} v_b \mathbb{1}[y_a \ge y_b],$$

where $y_a, y_b \in [0, 1]$.

Difficulty

▶ The permutohedral lattice based filtering method of [Adams-2010] cannot handle the ordering constraint.

Current method [Desmaison-2016]

▶ Repeated application of the original filtering method using a divide and conquer strategy $\Rightarrow O(d^2 n \log(n))$ computations¹.

Our idea

▶ Discretize the interval [0,1] to *H* levels and instantiate *H* permutohedral lattices $\Rightarrow \mathcal{O}(Hdn)$ computations².

 $^{{}^{1}}d$ - filter dimension, usually 2 or 5. ${}^{2}H = 10$ in our case.

$$\forall a \in \{1 \dots n\}, \quad v'_a = \sum_b K_{ab} v_b \mathbb{1}[y_a \ge y_b],$$

where $y_a, y_b \in [0, 1]$.

Difficulty

▶ The permutohedral lattice based filtering method of [Adams-2010] cannot handle the ordering constraint.

Current method [Desmaison-2016]

▶ Repeated application of the original filtering method using a divide and conquer strategy $\Rightarrow O(d^2n \log(n))$ computations¹.

Our idea

▶ Discretize the interval [0,1] to *H* levels and instantiate *H* permutohedral lattices $\Rightarrow \mathcal{O}(Hdn)$ computations².

${}^{1}d$ - filter dimension, usually 2 or 5. ${}^{2}H = 10$ in our case.

$$\forall a \in \{1 \dots n\}, \quad v'_a = \sum_b K_{ab} v_b \mathbb{1}[y_a \ge y_b],$$

where $y_a, y_b \in [0, 1]$.

Difficulty

▶ The permutohedral lattice based filtering method of [Adams-2010] cannot handle the ordering constraint.

Current method [Desmaison-2016]

▶ Repeated application of the original filtering method using a divide and conquer strategy $\Rightarrow O(d^2n \log(n))$ computations¹.

Our idea

▶ Discretize the interval [0,1] to *H* levels and instantiate *H* permutohedral lattices $\Rightarrow \mathcal{O}(Hdn)$ computations².

 $^{{}^{1}}d$ - filter dimension, usually 2 or 5. ${}^{2}H = 10$ in our case.

Segmentation results

Assignment energy as a function of time for an image in (left) MSRC and (right) Pascal.

▶ Both the LP minimization algorithms are initialized with DC_{neg}.

イロト 不得下 イヨト イヨト

æ

Segmentation results

		Ave. E $(\times 10^3)$	Ave. T (s)	Acc.
MSRC	MF5	8078.0	0.2	79.33
	MF	8062.4	0.5	79.35
	$\mathrm{DC}_{\mathrm{neg}}$	3539.6	1.3	83.01
	$\operatorname{SG-LP}_{\ell}$	3335.6	13.6	83.15
	$PROX-LP_{acc}$	1340.0	3.7	84.16
Pascal	MF5	1220.8	0.8	79.13
	MF	1220.8	0.7	79.13
	DC_{neg}	629.5	3.7	80.43
	$\operatorname{SG-LP}_{\ell}$	617.1	84.4	80.49
	$PROX-LP_{acc}$	507.7	14.7	80.58

Results on the MSRC and Pascal datasets.

Segmentation results

Qualitative results on MSRC.

イロト イポト イヨト イヨト

Modified filtering algorithm

Speedup of our modified filtering algorithm over the divide and conquer strategy on a Pascal image.

(日)

Modified filtering algorithm

Speedup of our modified filtering algorithm over the divide and conquer strategy on a Pascal image.

Speedup is around 45 - 65 on the standard image.

Conclusion

▶ We have introduced the first LP minimization algorithm for dense CRFs whose iterations are linear in the number of pixels and labels.

Arxiv: https://arxiv.org/abs/1611.09718

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Thank you!

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Permutohedral lattice

A 2-dimensional hyperplane tessellated by the permutohedral lattice.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Modified filtering algorithm

Top row: Original filtering method. Bottom row: Our modified filtering method. H = 3.