

Introduction

AIM: Efficient and accurate energy minimization in fully connected CRFs.

Dense CRF energy: Defined on a set of *n* random variables $X = \{X_1, \ldots, X_n\}$, where each random variable X_a takes a label $x_a \in \mathcal{L}$.

$$E(\mathbf{x}) = \sum_{a=1}^{n} \underbrace{\phi_a(x_a)}_{\text{unary potentials}} + \sum_{a=1}^{n} \sum_{b=1, b \neq a}^{n} \underbrace{\psi_{ab}(x_a, x_b)}_{\text{pairwise potentials}}$$

Captures long-range interactions and provides fine grained segmentations [5].

Difficulty: There are $O(n^2)$ number of variables $(n \approx 10^6) \Rightarrow$ Even the energy computation is Intractable.

Gaussian pairwise potentials:

$$\psi_{ab}(x_a, x_b) = \mathbb{I}[x_a \neq x_b] \underbrace{\exp\left(\frac{-\|\mathbf{f}_a - \mathbf{f}_b\|^2}{2}\right)}_{K_{ab}} \quad \text{where } \mathbf{f}_a \in \mathbb{R}^d . \qquad \left[v'_a \right]_{n \times 1}$$

• Approximate the above computation using the filtering method [1] $\Rightarrow O(n)$ computations.

Existing efficient algorithms:

► Mean Field (MF) [5], Quadratic Programming (QP) [3] and Difference of Convex (DC) Programming [3].

• All these algorithms rely on the efficient filtering method and have linear time complexity per iteration.

Drawback: No multiplicative bound \Rightarrow The solution obtained by these algorithms can be far away from the optimum.

Linear Programming (LP) relaxation provides the best multiplicative bound but the existing algorithm is too slow.

Linear Programming (LP) Relaxation

Introduce indicator variables: $y_{a:i} = 1 \Rightarrow x_a = i$.

$$\min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) = \sum_{a} \sum_{i} \phi_{a:i} y_{a:i} + \sum_{a,b \neq a} \sum_{i} K_{ab} \frac{|y_{a:i} - y_{b:i}|}{2}, \qquad \begin{bmatrix} E.g., \\ x_a = 2 \\ x_b = 3 \\ x_b = 3 \\ \mathbb{1}[x_a]$$
s.t. $\mathbf{y} \in \mathcal{M} = \left\{ \mathbf{y} \middle| \begin{array}{l} \sum_{i} y_{a:i} = 1, \ a \in \{1 \dots n\}, \\ y_{a:i} \ge 0, \ a \in \{1 \dots n\}, \ i \in \mathcal{L} \end{array} \right\}.$

LP provides an integrality gap of 2 [4], and no better relaxation can be designed due to the UGC hardness result [7].

Difficulty: Standard LP solvers would require $O(n^2)$ variables \Rightarrow Intractable.

Require auxiliary variables: $|y_{a:i} - y_{b:i}| = \max\{y_{a:i} - y_{b:i}, y_{b:i} - y_{a:i}\} \Rightarrow z_{ab:i} \ge y_{a:i} - y_{b:i} \text{ and } z_{ab:i} \ge y_{b:i} - y_{a:i}$ Therefore the non-smooth LP objective has to be tackled directly.

Existing algorithm [3]: Projected subgradient descent \Rightarrow Too slow.

Linearithmic time per iteration (due to a divide-and-conquer strategy).

• Expensive line search to obtain the step size.

Requires large number of iterations.

Contribution: LP in linear time per iteration \Rightarrow An order of magnitude speedup ($n = 10^6 \Rightarrow 20$ times speedup).

• The first LP minimization algorithm for dense CRFs that maintains linear scaling in both time and space complexity.

$$\begin{bmatrix} v_1' \\ v_2' \\ v_3' \\ v_3' \\ v_4' \end{bmatrix} = I \cdot \mathbf{P} \text{ subo}$$

Efficient Linear Programming for Dense CRFs

Alban Desmaison² Rudy Bunel² Mathieu Salzmann³ Philip H. S. Torr² M. Pawan Kumar^{2,4} Thalaiyasingam Ajanthan¹ ¹Australian National University & Data61, CSIRO ²Department of Engineering Science, University of Oxford ³CVLab, EPFL ⁴Alan Turing Institute

Our Approach: Proximal Minimization of LP

Dense CRF

Sparse CRF

- For integer labellings $\tilde{E}(\mathbf{y}) = E(\mathbf{x})$. $\mathcal{L} = \{0, 1, 2, 3, 4\}$ $z \Rightarrow y_a = [0, 0, 1, 0, 0]$ $\Rightarrow y_b = [0, 0, 0, 1, 0]$ $(x \neq x_b] = \sum_i \frac{|y_{a:i} - y_{b:i}|}{2}$

E.g., n = 4 $\begin{bmatrix} 0 & K_{12} & K_{13} & K_{14} \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \end{bmatrix} K_{23} K_{24} \begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & K_{34} \end{bmatrix}$ 0 0 0 0 1 LP subgradient computation.

Algorithm overview:

Proximal minimization using block-coordinate descent.

- One block: Significantly smaller subproblems.
- **The other block:** Efficient *conditional gradient descent*.
- Linear time complexity per iteration.
- Optimal step size.
- Gurantees optimality and converges faster.

Dual variables:

$$\boldsymbol{\alpha} = \left\{ \alpha_{ab:i}^{1}, \alpha_{ab:i}^{2} \mid a, b \neq a, i \in \mathcal{L} \right\}, \qquad \begin{array}{l} \alpha_{ab:i}^{1} \colon z_{ab:i} \geq y_{a:i} - \alpha_{ab:i}^{2} \colon z_{ab:i} \geq y_{b:i} - \alpha_{ab:i}^{2} \colon z_{ab:i} \geq y_{b:i} - \beta_{a} \colon \sum_{i} y_{a:i} = 1 \end{array}$$

$$\boldsymbol{\gamma} = \{ \boldsymbol{\gamma}_{a:i} \mid a \in \{1 \dots n\}, i \in \mathcal{L} \}$$

$$\beta_a: \sum_i y_{a:i} = 1 .$$

$$\gamma_{a:i}: y_{a:i} \ge 0 .$$

$$\gamma_{a:i} \mid a \in \{1 \dots n\}, i \in \mathcal{L}\}, \qquad \gamma_{a:i} \colon \mathcal{Y}_{a:i}$$

- ► The matrices A and B are used to compactly write the dual function.
- $\mathbf{A} \alpha$ always appear in the product $A\alpha \Rightarrow$ Space complexity is linear.

 $y_{a:i}$.

- ► β : Unconstrained \Rightarrow Set derivative to zero.
- γ : Unbounded and separable \Rightarrow A *m* dimensional QP for each pixel, where *m* is the number of labels.
- Efficiently optimized using the multiplicative iteration algorithm of [8] (≈ 2 milliseconds).

Conditional gradient descent:

 $\min_{\alpha\in C} g(\alpha) ,$ g is differentiable and C is convex and compact.

Conditional gradient computation: Minimize the first order Taylor approximation.

Step size computation: $\delta = 2/(t+2)$ or by line search.

Linear time conditional gradient computation:

Difficulty: The original permutohedral lattice based filtering method of [1] cannot handle the ordering constraint.

Modified filtering method:

- Creates single permutohedral lattice and reuses it H times \Rightarrow Cache efficient.
- Substantial speedup (> 40) compared to the state-of-the-art method of [3].

Proximal problem: Let $\lambda > 0$ and y^k be the current estimate

$$\min_{\mathbf{y}} \quad \tilde{E}(\mathbf{y}) + \frac{1}{2\lambda} \|\mathbf{y} - \mathbf{y}^k\|^2 ,$$

s.t. $\mathbf{y} \in \mathcal{M}$.

The quadratic regularization makes the dual problem smooth \Rightarrow Efficient optimization of the dual.

Dual of the Proximal Problem

$$\min_{\alpha,\beta,\gamma} g(\alpha,\beta,\gamma) = \frac{\lambda}{2} ||A\alpha + B\beta + \gamma - \phi||^2 + \langle A\alpha + B\beta + \gamma - \phi, \mathbf{y}^k \rangle - \langle \mathbf{1},\beta \rangle,$$

s.t. $\gamma_{a:i} \ge 0 \quad \forall a \in \{1 \dots n\} \quad \forall i \in \mathcal{L},$
 $\boldsymbol{\alpha} \in \boldsymbol{C} = \left\{ \boldsymbol{\alpha} \begin{vmatrix} \alpha_{ab:i}^1 + \alpha_{ab:i}^2 = \frac{K_{ab}}{2}, a, b \neq a, i \in \mathcal{L} \\ \alpha_{ab:i}^1, \alpha_{ab:i}^2 \ge 0, a, b \neq a, i \in \mathcal{L} \end{vmatrix} \right\}.$

Optimizing over β and γ

F	or each pixel a, the QP has the form	
$\min_{\mathbf{y} > 0}$	$\frac{1}{2}\boldsymbol{\gamma}_{a}^{T}\boldsymbol{Q}\boldsymbol{\gamma}_{a} + \left\langle \boldsymbol{\gamma}_{a}, \boldsymbol{Q}\left((\boldsymbol{A}\boldsymbol{\alpha}^{t})_{a} - \boldsymbol{\phi}_{a}\right) + \mathbf{y}_{a}^{k} \right\rangle$,
	where $Q \in \mathbb{R}^{m \times m}$.	

Optimizing over α

In our case:

- The conditional gradient has the same form as the subgradient of LP [2]. ► The optimal step size can be computed analytically.
- These benefits are due to our choice of quadratic regularization.

<i>E.g.</i> , $n = 3$								
$\begin{bmatrix} v'_1 \end{bmatrix}$		K ₁₁	<i>K</i> ₁₂	K_{13}	v_1			
v'_2	=	0	<i>K</i> ₂₂	<i>K</i> ₂₃	v_2			
v'_3		0	0	<i>K</i> ₃₃	v_3			

- Existing method [3]: Repeated application of the filtering method using a divide-and-conquer strategy $\Rightarrow O(d^2n \log(n))$ computations (d = 2 or 5).
- **Our idea:** Discretize the interval [0, 1] to H levels and instantiate H permutohedral lattices $\Rightarrow O(Hdn)$ computations (H = 10).

Our modified filtering method has wide applicability beyond what is shown in this work.

Segmentation Results

Energy vs time plots for an image in MSRC and Pascal.

Energy, time, segmentation accuracy and IoU score of different algorithms on (top) MSRC and Pascal (bottom) datasets.

► Both LP minimization algorithms are initialized with DC_{neg}.

Modified filtering method:

Speedup of our modified filtering method over that of [3].

Discussion

- We have introduced an efficient and accurate algorithm for energy minimization in dense CRFs.
- Our algorithm can be incorporated in an end-to-end learning framework to further improve the accuracy of deep semantic segmentation architectures.

Code: https://github.com/oval-group/DenseCRF

- [1] Adams et al., Computer Graphics Forum, 2010.
- [2] Bach F, *SIAM*, 2015.
- [3] Desmaison *et al.*, *ECCV*, 2016.
- [4] Kleinberg and Tardos, *ACM*, 2002.
- **[5]** Krähenbühl and Koltun, *NIPS*, 2011.
- [6] Lacoste-Julien *et al.*, *ICML*, 2012.
- [7] Manokaran *et al.*, *STOC*, 2008.
- [8] Xiao et al., Numerical Linear Algebra, 2014.