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Introduction

Thalaiyasingam Ajanthan’

AIM: Efficient and accurate energy minimization in fully connected CRFs.

Dense CRF energy: Defined on a set of n random variables X = {X, ..., X},}, where each random variable X, takes
a label x, € L.
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» Captures long-range interactions and provides fine grained segmentations [J].
Difficulty: There are O(n?) number of variables (n ~ 10°) = Even the energy computation is Intractable.

Gaussian pairwise potentials: [
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» Approximate the above computation using the filtering method [1] = O(n) computations.

Existing eflicient algorithms:

» Mean Field (MF) [5], Quadratic Programming (QP) [3] and Difference of Convex (DC) Programming [3].
» All these algorithms rely on the efficient filtering method and have linear time complexity per iteration.

Drawback: No multiplicative bound = The solution obtained by these algorithms can be far away from the optimum.

Linear Programming (LLP) relaxation provides the best multiplicative bound but the existing algorithm 1s too slow.

Linear Programming (LP) Relaxation

» Introduce 1ndicator variables: y,.;, = 1 = x, = 1.
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- For integer labellings E(y) = E(X).

Eg., L =1{0,1,2,3,4}
x,=2=y,=10,0,1,0,0]
Xp = 3= Vp = [0,0,0, 1,0]
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» LP provides an integrality gap of 2 [4], and no better relaxation can be designed due to the UGC hardness result [7].

S.t. yeMz{y

Difficulty: Standard LP solvers would require O(n?) variables = Intractable.

Require auxiliary variables: b}a:i — )’b:il — maX{)’a:i — Yb:is Ybii — Ya:i} = Zabii = Ya:i — Ybii and Zab:i = Yb:i — Ya:i-

» Therefore the non-smooth LP objective has to be tackled directly. Eg.n=4
Existing algorithm [3]: Projected subgradient descent = Too slow. V:1 8 KOlz 11?3 ?4 i
: : L : : - Vol _ 23 K824
» Linearithmic time per iteration (due to a divide-and-conquer strategy). Vil 10 0 0 K]l
- Expensive line search to obtain the step size. vl 10 0 0 0]l

» Requires large number of iterations. LP subgradlent computatlon

Contribution: LP in linear time per iteration = An order of magnitude speedup (n = 10° = 20 times speedup).

» The first LP minimization algorithm for dense CRFs that maintains linear scaling in both time and space complexity.
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Our Approach: Proximal Minimization of LP

Algorithm overview:
Proximal minimization using block-coordinate descent.

» One block: Significantly smaller subproblems.

» The other block: Eflicient conditional gradient descent.

» Linear time complexity per iteration.
» Optimal step size.

» Gurantees optimality and converges faster.

' Proximal problem: Let 1 > 0 and y* be the current estimate

min E(y) A 2/1”y_ka2 ,
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» The quadratic regularization makes the dual problem smooth
= Eflicient optimization of the dual.

Dual of the Proximal Problem

Dual variables:
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» The matrices A and B are used to compactly write the dual function.
» & always appear 1n the product Ao = Space complexity 1s linear.
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Optimizing over S and y

» B: Unconstrained = Set derivative to zero.

»v:. Unbounded and separable = A m dimensional QP tfor each pixel, where m 1s the number of labels.
» Efficiently optimized using the multiplicative iteration algorithm of [8] (= 2 milliseconds).

Optimizing over «

Conditional gradient descent:

%23 g(a),

g 1s differentiable and C 1s convex and compact.

Conditional gradient computation:

L. : : Eg.,.n=3
» Minimize the first order Tavlor approximation. - e o
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»0 = 2/(t + 2) or by line search. mage from (0] where yq, y» € [0, 1]. vil [0 0 Kssf[vs

Linear time conditional gradient computation:
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For each pixel a, the QP has the form
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where O € R™™,

+ (Y0 O (AQ)o - 8,) +¥)

In our case:

» The conditional gradient has the same form as the subgradient of LP [2].
» The optimal step size can be computed analytically.
» These benefits are due to our choice of quadratic regularization.

Difliculty: The original permutohedral lattice based filtering method of [1] cannot handle the ordering constraint.

Existing method [3]: Repeated application of the filtering method using a divide-and-conquer strategy = O(d’n log(n)) computations (d = 2 or 5).

Our idea: Discretize the interval [0, 1] to H levels and instantiate H permutohedral lattices = O(Hdn) computations (H = 10).

Modified filtering method:

» Creates single permutohedral lattice and reuses 1t H times = Cache eflicient.
» Substantial speedup (> 40) compared to the state-of-the-art method of [3].

» Our modified filtering method has wide applicability
beyond what 1s shown 1n this work.
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Segmentation Results

Datasets: Pascal VOC 2010 and MSRC
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Energy vs time plots for an
image in MSRC and Pascal.

Energy, time, segmentation accuracy and IoU score of different
algorithms on (top) MSRC and Pascal (bottom) datasets.

- Both LP minimization algorithms are initialized with DCp,.
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Modified filtering method:
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Speedup of our modified filtering method over that of [3].

Discussion

» We have introduced an eflicient and accurate algorithm for energy minimization in
dense CRFs.

» Our algorithm can be incorporated 1n an end-to-end learning framework to further
improve the accuracy of deep semantic segmentaion architectures.

Code: https://github.com/oval-group/DenseCRF
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