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IRGC
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INTRODUCTION

Problem: Minimize a multi-label MRF with pairwise interactions
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» Multi-label swap [5] (only for truncated convex priors) Tsukuba 1.99%  345% @ 0.09% @ 047% @ 0.17%
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» Effective to overcome local minima.

introduce an 1teratively reweighted graph-cut-based algorithm to
minimize MRF energies.

Quality of the minimum energies.

ITERATIVELY REWEIGHTED MINIMIZATION CONCLUSION

» Our 1teratively reweighted technique provides an effective approach
to minimize multi-label MRF energies with non-convex priors.

» IRGC+expansion consistently outperforms or pertorms virtually as
well as state-of-the-art MRF energy minimization techniques.

» Minimize the original energy E(X) by iteratively minimizing a

surrogate energy E(X).
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0 - Cauchy function
Special case: Iteratively Reweighted Least Squares.



