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Abstract. Despite the availability of many Markov Random Field (MRF) opti-
mization algorithms, their widespread usage is currently limited due to imperfect
MRF modelling arising from hand-crafted model parameters and the selection
of inferior inference algorithm. In addition to differentiability, the two main as-
pects that enable learning these model parameters are the forward and backward
propagation time of the MRF optimization algorithm and its inference capabili-
ties. In this work, we introduce two fast and differentiable message passing algo-
rithms, namely, Iterative Semi-Global Matching Revised (ISGMR) and Parallel
Tree-Reweighted Message Passing (TRWP) which are greatly sped up on a GPU
by exploiting massive parallelism. Specifically, ISGMR is an iterative and re-
vised version of the standard SGM for general pairwise MRFs with improved
optimization effectiveness, and TRWP is a highly parallel version of Sequential
TRW (TRWS) for faster optimization. Our experiments on the standard stereo
and denoising benchmarks demonstrated that ISGMR and TRWP achieve much
lower energies than SGM and Mean-Field (MF), and TRWP is two orders of mag-
nitude faster than TRWS without losing effectiveness in optimization. We further
demonstrated the effectiveness of our algorithms on end-to-end learning for se-
mantic segmentation. Notably, our CUDA implementations are at least 7 and 700
times faster than PyTorch GPU implementations for forward and backward prop-
agation respectively, enabling efficient end-to-end learning with message passing.

1 Introduction

Optimization of Markov Random Fields (MRFs) has been a well-studied problem for
decades with a significant impact on many computer vision applications such as stereo
vision [1], image segmentation [2], texture modeling [3]. The widespread use of these
MRF optimization algorithms is currently limited due to imperfect MRF modelling
[4] because of hand-crafted model parameters, the usage of inferior inference meth-
ods, and non-differentiability for parameter learning. Thus, better inference capability
and computing efficiency are essential to improve its performance on optimization and
modelling, such as energy optimization and end-to-end learning.

Even though parameter and structural learning with MRFs has been employed suc-
cessfully in certain cases, well-known algorithms such as Mean-Field (MF) [5,6] and
Semi-Glocal Matching (SGM) [7], are suboptimal in terms of optimization capability.
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Specifically, the choice of an MRF algorithm for optimization is driven by its inference
ability, and for learning capability through efficient forward and backward propagation
and parallelization capabilities.

In this work, we consider message passing algorithms due to their generality, high
inference ability, and differentiability, and provide efficient CUDA implementations
of their forward and backward propagation by exploiting massive parallelism. In par-
ticular, we revise the popular SGM method [1] and derive an iterative version noting
its relation to traditional message passing algorithms [8]. In addition, we introduce a
highly parallelizable version of the state-of-the-art Sequential Tree-Reweighted Mes-
sage Passing (TRWS) algorithm [9], which is more efficient than TRWS and has sim-
ilar minimum energies. For both these methods, we derive efficient backpropagation
by unrolling their message updates and cost aggregation and discuss massively parallel
CUDA implementations which enable their feasibility in end-to-end learning.

Our experiments on the standard stereo and denoising benchmarks demonstrate that
our Iterative and Revised SGM method (ISGMR) obtains much lower energies com-
pared to the standard SGM and our Parallel TRW method (TRWP) is two orders of
magnitude faster than TRWS with virtually the same minimum energies and that both
outperform the popular MF and SGM inferences. Their performance is further evalu-
ated by end-to-end learning for semantic segmentation on PASCAL VOC 2012 dataset.

Furthermore, we empirically evaluate various implementations of the forward and
backward propagation of these algorithms and demonstrate that our CUDA implemen-
tation is the fastest, with at least 700 times speed-up in backpropagation compared to a
PyTorch GPU version. Code is available at https://github.com/zwxu064/MPLayers.git.

Contributions of this paper can be summarised as:

• We introduce two message passing algorithms, ISGMR and TRWP, where ISGMR
has higher optimization effectiveness than SGM and TRWP is much faster than
TRWS. Both of them outperform the popular SGM and MF inferences.
• Our ISGMR and TRWP are massively parallelized on GPU and can support any

pairwise potentials. The CUDA implementation of the backpropagation is at least
700 times faster than the PyTorch auto-gradient version on GPU.
• The differentiability of ISGMR and TRWP is presented with gradient derivations,

with effectiveness validated by end-to-end learning for semantic segmentation.

2 Related Work

In MRF optimization, estimating the optimal latent variables can be regarded as mini-
mizing a particular energy function with given model parameters. Even if the minimum
energy is obtained, high accuracy cannot be guaranteed since the model parameters of
these MRFs are usually handcrafted and imperfect. To tackle this problem, learning-
based methods were proposed. However, most of these methods rely greatly on finetun-
ing the network architecture or adding learnable parameters to increase the fitting ability
with ground truth. This may not be effective and usually requires high GPU memory.

Nevertheless, considering the highly effective MRF optimization algorithms, the
field of exploiting their optimization capability with parameter learning to alleviate

https://github.com/zwxu064/MPLayers.git
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each other’s drawbacks is rarely explored. A few works provide this capability in cer-
tain cases, such as CRFasRNN in semantic segmentation [5] and SGMNet in stereo
vision [7], with less effective MRF algorithms, that is MF and SGM respectively. Thus,
it is important to adopt highly effective and efficient MRF inference algorithms for
optimization and end-to-end learning.

MRF Optimization. Determining an effective MRF optimization algorithm needs
a thorough study of the possibility of their optimization capability, differentiability, and
time efficiency. In the two main categories of MRF optimization algorithms, namely
move-making algorithms (known as graph cuts) [10,11,12,13,14,15] and message pass-
ing algorithms [1,16,17,9,18,19,20,21], the state-of-the-art methods are α-expansion
[12] and Sequential Tree-Reweighted Message Passing (TRWS) [9] respectively. The
move-making algorithms, however, cannot easily be used for parameter learning as they
are not differentiable and are usually limited to certain types of energy functions.

In contrast, message passing algorithms adapt better to any energy functions and can
be made differentiable and fast if well designed. Some works in probabilistic graphical
models indeed demonstrate the learning ability of TRW algorithms with sum-product
and max-product [16,20] message passing. A comprehensive study and comparison of
these methods can be found in Middlebury [4] and OpenGM [22]. Although SGM [1]
is not in the benchmark, it was proved to have a high running efficiency due to the fast
one-dimensional Dynamic Programming (DP) that is independent in each scanline and
scanning direction [1].

End-to-End Learning. Sum-product TRW [23,24,25] and mean-field [5,26,27]
have been used for end-to-end learning for semantic segmentation, which presents their
highly effective learning ability. Meanwhile, for stereo vision, several MRF/CRF based
methods [7,28,29], such as SGM-related, have been proposed. These further indicate
the high efficiency of selected MRF optimization algorithms in end-to-end learning.

In our work, we improve optimization effectiveness and time efficiency based on
classical SGM and TRWS. In particular, we revise the standard SGM and make it iter-
ative in order to improve its optimization capability. We denote the resulting algorithm
as ISGMR. Our other algorithm, TRWP, is a massively parallelizable version of TRWS,
which greatly increases running speed without losing the optimization effectiveness.

3 Message Passing Algorithms

We first briefly review the typical form of a pairwise MRF energy function and discuss
two highly parallelizable message passing approaches, ISGMR and TRWP. Such a par-
allelization capability is essential for fast implementation on GPU and enables relatively
straightforward integration to existing deep learning models.

3.1 Pairwise MRF Energy Function

Let Xi be a random variable taking label xi ∈ L. A pairwise MRF energy function
defined over a set of such variables, parametrized by Θ = {θi, θi,j}, is written as

E(x |Θ) =
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θi,j(xi, xj) , (1)
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where θi and θi,j denote unary potentials and pairwise potentials respectively, V is the
set of vertices (corresponding, for instance, to image pixels or superpixels), and E is the
set of edges in the MRF (usually encoding a 4-connected or 8-connected grid).

3.2 Iterative Semi-Global Matching Revised

We first introduce the standard SGM for stereo vision supporting only a single iteration.
With its connection to message passing, we then revise its message update equation and
introduce an iterative version. Figure 1 shows a 4-connected SGM on a grid MRF.

3.2.1 Revised Semi-Global Matching. We cast the popular SGM algorithm [1] as an
optimization method for a particular MRF and discuss its relation to message passing
as noted in [8]. In SGM, pairwise potentials are simplified for all edges (i, j) ∈ E as

θi,j(λ, µ) = θi,j(|λ− µ|) =

0 if λ = µ ,
P1 if |λ− µ| = 1 ,
P2 if |λ− µ| ≥ 2 ,

(2)

where 0 < P1 ≤ P2. The idea of SGM relies on cost aggregation in multiple directions
(each direction having multiple one-dimensional scanlines) using Dynamic Program-
ming (DP). The main observation made by [8] is that, in SGM the unary potentials are
over-counted |R| − 1 times (where R denotes the set of directions) compared to the
standard message passing and this over-counting corrected SGM is shown to perform
slightly better in [30]. Noting this, we use symbol mr

i (λ) to denote the message-vector
passed to node i, along a scan-line in the direction r, from the previous node, denoted
i− r. This is a vector indexed by λ ∈ L. Now, the SGM update is revised from

mr
i (λ) = min

µ∈L

(
θi(λ) +mr

i−r(µ) + θi−r,i(µ, λ)
)
, (3)

which is the form given in [1], to

mr
i (λ) = min

µ∈L

(
θi−r(µ) +mr

i−r(µ) + θi−r,i(µ, λ)
)
. (4)

The mr
i (λ) represents the minimum cost due to possible assignments to all nodes pre-

vious to node i along the scanline in direction r, and assigning label λ to node i. It does
not include the cost θi(λ) associated with node i itself.

Since subtracting a fixed value for all λ from messages preserves minima, the mes-
sage mr

i (λ) can be reparametrized as

mr
i (λ) = mr

i (λ)−min
µ∈L

mr
i (µ) , (5)

which does not alter the minimum energy. Since the values of θi(λ) are not included in
the messages, the final cost at a particular node i at label λ is revised from

ci(λ) =
∑
r∈R

mr
i (λ) (6)



Fast and Differentiable Message Passing on Pairwise Markov Random Fields 5

Fig. 1: An example of 4-connected SGM on a grid MRF: left-right, right-left, up-down,
down-up. Message passing along all these scanlines can be accomplished in parllel.

to

ci(λ) = θi(λ) +
∑
r∈R

mr
i (λ) , (7)

which is the sum of messages over all the directions plus the unary term. The final
labelling is then obtained by

x∗i = argmin
λ∈L

ci(λ) , ∀ i ∈ V . (8)

Here, the message update in the revised SGM, i.e., Eq. (4), is performed in parallel
for all scanlines for all directions. This massive parallelization makes it suitable for
real-time applications [31] and end-to-end learning for stereo vision [7].

3.2.2 Iteration of Revised Semi-Global Matching. In spite of the revision for the
over-counting problem, the 3-penalty pairwise potential in Eq. (2) is insufficient to ob-
tain dominant penalties under a large range of disparities in different camera settings.
To this end, we consider more general pairwise potentials θi,j(λ, µ) and introduce an
iterative version of the revised SGM. The message update for the iterative version is

mr,k+1
i (λ) = min

µ∈L

(
θi−r(µ)+ θi−r,i(µ, λ)+mr,k+1

i−r (µ)+
∑

d∈R\{r,r−}

md,k
i−r(µ)

)
, (9)

where r− denotes the opposite direction of r and mr,k+1
i−r (µ) denotes the updated mes-

sage in kth iteration while mr,k
i−r(µ) is updated in (k − 1)th iteration. The exclusion of

the messages from direction r− is important to ensure that the update is analogous to the
standard message passing and the same energy function is minimized at each iteration.
A simple combination of several standard SGMs does not satisfy this rule and performs
worse than our iterative version, as reported in Tables 1-2. Usually, mr for all r ∈ R
are initialized to 0, the exclusion of r− from R is thus redundant for a single iteration
but not multiple iterations. Even so, messages can be reparametrized by Eq. (5).

After multiple iterations, the final cost for node i ∈ V is calculated by Eq. (7), and
the final labelling is calculated in the same manner as Eq. (8). We denote this iterative
and revised SGM as ISGMR, summarized in Algorithm 1.

In sum, the improvement of ISGMR from SGM lies in the exclusion of over-counted
unary terms by Eq. (4) to increase the effects of pairwise terms as well as the iterative
energy minimization by Eq. (9) to further decrease the energy with updated messages.
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Algorithm 1: Forward Propagation of ISGMR
Input: Energy parameters Θ = {θi, θi,j(·, ·)}, set of nodes V , edges E , directionsR,

iteration number K. We replace mr,k by mr and mr,k+1 by m̂r for simplicity.
Output: Labelling x∗ for optimization, costs {ci(λ)} for learning, indices {prk,i(λ)}

and {qrk,i} for backpropagation.
1 m̂ ← 0 and m ← 0 .initialize all messages
2 for iteration k ∈ {1, . . . ,K} do
3 forall directions r ∈ R do .parallel
4 forall scanlines t in direction r do .parallel
5 for node i in scanline t do .sequential
6 for label λ ∈ L do

7
∆(λ, µ)←θi−r(µ) + θi−r,i(µ, λ) + m̂r

i−r(µ) +
∑

d∈R\{r,r−}

md
i−r(µ)

8 prk,i(λ)← µ∗ ← argminµ∈L∆(λ, µ) .store index
9 m̂r

i (λ)← ∆(λ, µ∗) .message update (9)
10 qrk,i ← λ∗ ← argminλ∈L m̂

r
i (λ) .store index

11 m̂r
i (λ)← m̂r

i (λ)− m̂r
i (λ
∗) .reparametrization (5)

12 m ← m̂ .update messages after iteration
13 ci(λ)← θi(λ) +

∑
r∈Rm

r
i (λ), ∀i ∈ V, λ ∈ L .Eq. (7)

14 x∗i ← argminλ∈L ci(λ), ∀i ∈ V .Eq. (8)

3.3 Parallel Tree-Reweighted Message Passing

TRWS [9] is another state-of-the-art message passing algorithm that optimizes the Lin-
ear Programming (LP) relaxation of a general pairwise MRF energy given in Eq. (1).
The main idea of the family of TRW algorithms [32] is to decompose the underlying
graph G = (V, E) of the MRF with parameters Θ into a combination of trees where the
sum of parameters of all the trees is equal to that of the MRF, i.e.,

∑
T∈T ΘT = Θ.

Then, at each iteration message passing is performed in each of these trees indepen-
dently, followed by an averaging operation. Even though any combinations of trees
would theoretically result in the same final labelling, the best performance is achieved
by choosing a monotonic chain decomposition and a sequential message passing update
rule, which is TRWS. Interested readers please refer to [9] for more details.

Since we intend to enable fast message passing by exploiting parallelism, our idea is
to choose a tree decomposition that can be massively parallelized, denoted as TRWP. In
the literature, edge-based or tree-based parallel TRW algorithms have been considered,
namely, TRWE and TRWT in the probability space (specifically sum-product message
passing) rather than for minimizing the energy [32]. Optimizing in the probability do-
main involves exponential calculations which are prone to numerical instability, and the
sum-product version requiresO(|R||L|) times more memory compared to the min-sum
message passing in backpropagation. More details are in Appendix E.

Correspondingly, our TRWP directly minimizes the energy in the min-sum message
passing fashion similar to TRWS, and thus, its update can be written as

mr
i (λ) = min

µ∈L

(
ρi−r,i(θi−r(µ) +

∑
d∈R

md
i−r(µ))−mr−

i−r(µ) + θi−r,i(µ, λ)
)
. (10)
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Algorithm 2: Forward Propagation of TRWP
Input: Energy parameters Θ = {θi, θi,j(·, ·)}, set of nodes V , edges E , directionsR,

tree decomposition coefficients {ρi,j}, iteration number K.
Output: Labelling x∗ for optimization, costs {ci(λ)} for learning, indices {prk,i(λ)}

and {qrk,i} for backpropagation.
1 m ← 0 .initialize all messages
2 for iteration k ∈ {1, . . . ,K} do
3 for direction r ∈ R do .sequential
4 forall scanlines t in direction r do .parallel
5 for node i in scanline t do .sequential
6 for label λ ∈ L do

7 ∆(λ, µ)←ρi−r,i
(
θi−r(µ) +

∑
d∈R

md
i−r(µ)

)
−mr−

i−r(µ) + θi−r,i(µ, λ)

8 prk,i(λ)← µ∗ ← argminµ∈L∆(λ, µ) .store index
9 mr

i (λ)← ∆(λ, µ∗) .message update (10)
10 qrk,i ← λ∗ ← argminλ∈Lm

r
i (λ) .store index

11 mr
i (λ)← mr

i (λ)−mr
i (λ
∗) .reparametrization (5)

12 ci(λ)← θi(λ) +
∑
r∈Rm

r
i (λ), ∀i ∈ V, λ ∈ L .Eq. (7)

13 x∗i ← argminλ∈L ci(λ), ∀i ∈ V .Eq. (8)

Here, the coefficient ρi−r,i = γi−r,i/γi−r, where γi−r,i and γi−r are the number of
trees containing the edge (i − r, i) and the node i − r respectively in the considered
tree decomposition. For loopy belief propagation, since there is no tree decomposition,
ρi−r,i = 1. For a 4-connected graph decomposed into all horizontal and vertical one-
dimensional trees, we have ρi−r,i = 0.5 for all edges.

Note that, similar to ISGMR, we use the scanline to denote a tree. The above update
can be performed in parallel for all scanlines in a single direction; however, the message
updates over a scanline are sequential. The same reparametrization Eq. (5) is applied.
While TRWP cannot guarantee the non-decreasing monotonicity of the lower bound
of energy, it dramatically improves the forward propagation speed and yields virtually
similar minimum energies to those of TRWS. The procedure is in Algorithm 2.

In sum, our TRWP benefits from a high speed-up without losing optimization capa-
bility by the massive GPU parallelism over individual trees that are decomposed from
the single-chain tree in TRWS. All trees in each direction r are paralleled by Eq. (10).

3.4 Relation between ISGMR and TRWP

Both ISGMR and TRWP use messages from neighbouring nodes to perform recur-
sive and iterative message updates via dynamic programming. Comparison of Eq. (9)
and Eq. (10) indicates the introduction of the coefficients {ρi−r,i}. This is due to the
tree decomposition, which is analogous to the difference between loopy belief propaga-
tion and TRW algorithms. The most important difference, however, is the way message
updates are defined. Specifically, within an iteration, ISGMR can be parallelized over
all directions since the most updated messages m̂r are used only for the current scan-
ning direction r and previous messages are used for the other directions (refer Eq. (9)).
In contrast, aggregated messages in TRWP are up-to-date direction-by-direction, which
largely contributes to the improved effectiveness of TRWP over ISGMR.
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3.5 Fast Implementation by Tree Parallelization

Independent trees make the parallelization possible. We implemented on CPU and
GPU, where for the C++ multi-thread versions (CPU), 8 threads on Open Multi-Processing
(OpenMP) [33] are used while for the CUDA versions (GPU), 512 threads per block
are used. Each tree is headed by its first node by interpolation. The node indexing de-
tails for efficient parallelism are provided in Appendix C. In the next section, we derive
efficient backpropagation through each of these algorithms for parameter learning.

4 Differentiability of Message Passing

Effective and differentiable MRF optimization algorithms can greatly improve the per-
formance of end-to-end learning. Typical methods such as CRFasRNN for semantic
segmentation [5] by MF and SGMNet for stereo vision [7] by SGM use inferior infer-
ences in the optimization capability compared to ISGMR and TRWP.

In order to embed ISGMR and TRWP into end-to-end learning, differentiability of
them is required and essential. Below, we describe the gradient updates for the learn-
able MRF model parameters, and detailed derivations are given in Appendix D. The
backpropagation pseudocodes are in Algorithms 3-4 in Appendix A.

Since ISGMR and TRWP use min-sum message passing, no exponent and logarithm
are required. Only indices in message minimization and reparametrization are stored in
two unsigned 8-bit integer tensors, denoted as {prk,i(λ)} and {qrk,i} with indices of di-
rection r, iteration k, node i, and label λ. This makes the backpropagation time less
than 50% of the forward propagation time. In Figure 2a, the gradient updates in back-
propagation are performed along edges that have the minimum messages in the forward
direction. In Figure 2b, a message gradient at node i is accumulated from all following
nodes after i from all backpropagation directions. Below, we denote the gradient of a
variable ∗ from loss L as ∇∗ = dL/d∗.

For ISGMR at kth iteration, the gradients of the model parameters in Eq. (9) are

∇θi(λ) =∇ci(λ) +
∑
v∈L

∑
r∈R

∑
µ∈L

(
∇mr,k+1

i+2r (µ)
∣∣∣
v=prk,i+2r(µ)

+
∑

d∈R\{r,r−}

∇md,k
i+r+d(µ)

∣∣∣
v=pdk,i+r+d(µ)

)∣∣∣∣∣∣
λ=prk,i+r(v)

,

(11)

∇θi−r,i(µ, λ) = ∇mr,k+1
i (λ)

∣∣∣
µ=prk,i(λ)

. (12)

Importantly, within an iteration in ISGMR,∇mr,k are updated but do not affect∇mr,k+1

until the backpropagation along all directions r is executed (line 18 in Algorithm 3 in
Appendix A). This is because within kth iteration, independently updated mr,k+1 in r
will not affect md,k,∀d ∈ R\ {r, r−}, until the next iteration (line 12 in Algorithm 1).

In contrast, message gradients in TRWP from a direction will affect messages from
other directions since, within an iteration in the forward propagation, message updates
are direction-by-direction. For TRWP at kth iteration,∇θi(λ) related to Eq. (10) is
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(a) message passing (b) gradient accumulation

Fig. 2: Forward and backward propagation, a target node is in dark gray, r: forward
direction, r−: backpropagation direction. (a) blue ellipse: min operation as MAP, blue
line: an edge having the minimum message. (b) a message gradient at node i accumu-
lated from nodes in r−.

∇θi(λ) = ∇ci(λ) +
∑
v∈L

∑
r∈R

∑
µ∈L

(
−∇mr−

i (µ)
∣∣∣
v=pr

−
k,i (µ)

+
∑
d∈R

ρi+r,i+r+d∇md
i+r+d(µ)

∣∣
v=pdk,i+r+d(µ)

)∣∣∣∣∣
λ=prk,i+r(v)

,
(13)

where coefficient ρi+r,i+r+d is for the edge connecting node i + r and its next one in
direction d which is denoted as node i+ r + d, and the calculation of ∇θi−r,i(λ, µ) is
in the same manner as Eq. (12) by replacing mr,k+1 with mr.

The backpropagation of TRWP can be derived similarly to ISGMR. We must know
that gradients of the unary potentials and the pairwise potentials are accumulated along
the opposite direction of the forward scanning direction. Therefore, an updated message
is, in fact, a new variable, and its gradient should not be accumulated by its previous
value but set to 0. This is extremely important, especially in ISGMR. It requires the
message gradients to be accumulated and assigned in every iteration (lines 17-18 in
Algorithm 3 in Appendix A) and be zero-out (lines 4 and 16 in Algorithm 3 and line
14 in Algorithm 4 in Appendix A). Meanwhile, gradient derivations of ISGMR and
characteristics are provided in Appendix D.

5 Experiments

Below, we evaluated the optimization capability of message passing algorithms on
stereo vision and image denoising with fixed yet qualified data terms from benchmark
settings. In addition, differentiability was evaluated by end-to-end learning for 21-class
semantic segmentation. The experiments include effectiveness and efficiency studies of
the message passing algorithms. Additional experiments are in Appendix F.

We implemented SGM, ISGMR, TRWP in C++ with single and multiple threads,
PyTorch, and CUDA from scratch. PyTorch versions are for time comparison and gra-
dient checking. For a fair comparison, we adopted benchmark code of TRWS from [34]
with general pairwise functions; MF followed Eq. (4) in [6]. For iterative SGM, unary
potentials were reparametrized by Eq. (6). OpenGM [22] can be used for more compar-
isons in optimization noting TRWS as one of the most effective inference methods.
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Our experiments were on 3.6GHz i7-7700 Intel(R) Core(TM) and Tesla P100 SXM2.

5.1 Optimization for Stereo Vision and Image Denoising

The capability of minimizing an energy function determines the significance of selected
algorithms. We compared our ISGMR and TRWP with MF, SGM with single and mul-
tiple iterations, and TRWS. The evaluated energies are calculated with 4 connections.

Datasets. For stereo vision, we used Tsukuba, Teddy, Venus, Map, and Cones from
Middlebury [35,36], 000041 10 and 000119 10 from KITTI2015 [37,38], and deliv-
ery area 1l and facade 1 from ETH3D two-view [39] for different types of stereo views.
For image denoising, Penguin and House from Middlebury dataset 3 were used.

MRF model parameters. Model parameters include unary and pairwise potentials.
In practice, the pairwise potentials consist of a pairwise function and edge weights, as
θi,j(λ, µ) = θi,jV (λ, µ). For the pairwise function V (·, ·), one can adopt (truncated)
linear, (truncated) quadratic, Cauchy, Huber, etc., [40]. For the edge weights θi,j , some
methods apply a higher penalty on edge gradients under a given threshold. We set it as a
constant for the comparison with SGM. Moreover, we adopted edge weights in [34] and
pairwise functions for Tsukuba, Teddy, and Venus, and [11] for Cones and Map; for the
others, the pairwise function was linear and edges weights were 10. More evaluations
with constant edge weights are given in Appendix F.

Number of directions matters. In Figure 3, ISGMR-8 and TRWP-4 outperform the
others in ISGMR-related and TRWP-related methods in most cases. From the experi-
ments, 4 directions are sufficient for TRWP, but for ISGMR energies with 8 directions
are lower than those with 4 directions. This is because messages from 4 directions in
ISGMR are insufficient to gather local information due to independent message updates
in each direction. In contrast, messages from 4 directions in TRWP are highly updated
in each direction and affected by those from the other directions. Note that in Eq. (7)
messages from all directions are summed equally, this makes the labels by TRWP over-
smooth within the connection area, for example, the camera is oversmooth in Figure 4n.
Overall, TRWP-4 and ISGMR-8 are the best.

ISGMR vs SGM. [30] demonstrates the decrease in energy of the over-count cor-
rected SGM compared with the standard SGM. The result shows the improved opti-
mization results achieved by subtracting unary potentials (|R| − 1) times. For experi-
mental completion, we show both the decreased energies and improved disparity maps
produced by ISGMR. From Tables 1-2, SGM-related energies are much higher than
ISGMR’s because of the over-counted unary potentials. Moreover, ISGMR at the 50th
iteration has much a lower energy value than the 1st iteration, indicating the importance
of iterations, and is also much lower than those for MF and SGM at the 50th iteration.

TRWP vs TRWS. TRWP and TRWS have the same manner of updating messages
and could have similar minimum energies. Generally, TRWS has the lowest energy;
at the 50th iteration, however, TRWP-4 has lower energies, for instance, Tsukuba and
Teddy in Table 1 and Penguin and House in Table 2. For TRWP, 50 iterations are suffi-
cient to show its high optimization capability, as shown in Figure 3. More visualizations
of Penguin and House denoising are in Appendix F.

3 http://vision.middlebury.edu/MRF/results

http://vision.middlebury.edu/MRF/results
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Fig. 3: Convergence with the connections having the minimum energy in Table 1.

Table 1: Energy minimization for stereo vision. ISGMR is better than SGM and TRWP
obtains similar energies as TRWS. ISGMR and TRWP outperform MF and SGM.

Method Tsukuba Teddy 000002 11 delivery area 1l
1 iter 50 iter 1 iter 50 iter 1 iter 50 iter 1 iter 50 iter

MF-4 3121704 1620524 3206347 2583784 82523536 44410056 19945352 9013862
SGM-4 873777 644840 2825535 2559016 24343250 18060026 5851489 4267990
TRWS-4 352178 314393 1855625 1807423 9109976 8322635 1628879 1534961
ISGMR-4 (ours) 824694 637996 2626648 1898641 22259606 12659612 5282024 2212106
TRWP-4 (ours) 869363 314037 2234163 1806990 40473776 8385450 9899787 1546795
MF-8 2322139 504815 3244710 2545226 61157072 18416536 16581587 4510834
SGM-8 776706 574758 2868131 2728682 20324684 16406781 5396353 4428411
ISGMR-8 (ours) 684185 340347 2532071 1847833 17489158 8753990 4474404 1571528
TRWP-8 (ours) 496727 348447 1981582 1849287 18424062 8860552 4443931 1587917
MF-16 1979155 404404 3315900 2622047 46614232 14192750 13223338 3229021
SGM-16 710727 587376 2907051 2846133 18893122 16791762 5092094 4611821
ISGMR-16 (ours) 591554 377427 2453592 1956343 15455787 9556611 3689863 1594877
TRWP-16 (ours) 402033 396036 1935791 1976839 11239113 9736704 2261402 1630973

5.2 End-to-End Learning for Semantic Segmentation

Although deep network and multi-scale strategy on CNN make semantic segmentation
smooth and continuous on object regions, effective message passing inference on pair-
wise MRFs is beneficial for fine results with auxiliary edge information. The popular
denseCRF [6] demonstrated the effectiveness of using MF inference and the so-called
dense connections; our experiments, however, illustrated that with local connections,
superior inferences, such as TRWS, ISGMR, and TRWP, have a better convergence
ability than MF and SGM to improve the performance.

Below, we adopted TRWP-4 and ISGMR-8 as our inference methods and negative
logits from DeepLabV3+ [41] as unary terms. Edge weights from Canny edges are in
the form of θij = 1− |ei − ej |, where ei is a binary Canny edge value at node i. Potts
model was used for pairwise function V (λ, µ). Since MF required much larger GPU
memory than others due to its dense gradients, for practical purposes we used MF-4 for
learning with the same batch size 12 within our GPU memory capacity.

Datasets. We used PASCAL VOC 2012 [42] and Berkeley benchmark [43], with
1449 samples of the PASCAL VOC 2012 val set for validation and the other 10582 for
training. These datasets identify 21 classes with 20 objects and 1 background.

CNN learning parameters. We trained the state-of-the-art DeepLabV3+ (ResNet101
as the backbone) with initial learning rate 0.007, “poly” learning rate decay scheduler,
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(a) left image (b) GT (c) unary (d) 1 SGM-8 (e) 1 ISGMR-8

(f) MF-4 (g) MF-8 (h) MF-16 (i) TRWS-4 (j) ISGMR-4

(k) ISGMR-8 (l) ISGMR-16 (m) TRWP-4 (n) TRWP-8 (o) TRWP-16

Fig. 4: Disparities of Tsukuba. (d)-(e) are at 1st iteration. (f)-(o) are at 50th iteration. (j)
and (l) have the lowest energies in ISGMR-related and TRWP-related methods respec-
tively. TRWP-4 and TRWS-4 have similar disparities for the most parts.

Table 2: Energy minimization for image de-
noising at 50th iteration with 4, 8, 16 con-
nections (all numbers divided by 103). Our
ISGMR or TRWP performs best.

Method Penguin House
MF-4 46808 50503
SGM-4 31204 66324
TRWS-4 15361 37572
ISGMR-4 (ours) 16514 37603
TRWP-4 (ours) 15358 37552
MF-8 21956 47831
SGM-8 37520 76079
ISGMR-8 (ours) 15899 39975
TRWP-8 (ours) 16130 40209
MF-16 20742 55513
SGM-16 47028 87457
ISGMR-16 (ours) 17035 46997
TRWP-16 (ours) 17516 47825

(a) noisy (b) GT (c) MF-16 (d) 1 SGM-4

(e) SGM-4 (f) TRWS-4 (g) ISGMR-8 (h) TRWP-4

Fig. 5: Penguin denoising corresponding to the
minimum energies marked with gray color in Ta-
ble 2. ISGMR-8 and TRWP-4 are our proposals.

and image size 512×512. Negative logits from DeepLabV3+ served as unary terms, the
learning rate was decreased for learning message passing inference with 5 iterations,
i.e., 1e-4 for TRWP and SGM and 1e-6 for ISGMR and MF. Note that we experimented
with all of these learning rates for involved inferences and selected the best for demon-
stration, for instance, for MF the accuracy by 1e-6 is much higher than the one by 1e-4.

In Table 3, ISGMR-8 and TRWP-4 outperform the baseline DeepLabV3+ [41],
SGM-8 [1], and MF-4 [6]. Semantic segmentation by ISGMR-8 and TRWP-4 are more
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Table 3: Learning for semantic segmentation with mIoU on PASCAL VOC2012 val set.

(a) term weight for TRWP-4

Method λ mIoU (%)
+TRWP-4 1 79.27
+TRWP-4 10 79.53
+TRWP-4 20 79.65
+TRWP-4 30 79.44
+TRWP-4 40 79.60

(b) full comparison

Method λ mIoU (%)
DeepLabV3+ [41] - 78.52
+SGM-8 [1] 5 78.94
+MF-4 [6] 5 77.89

+ISGMR-8 (ours) 5 78.95
+TRWP-4 (ours) 20 79.65

(a) RGB (b) Canny (c) baseline (d) SGM-8 (e) MF-4 (f) ISGMR-8 (g) TRWP-4 (h) GT

Fig. 6: Semantic segmentation on PASCAL VOC2012 val set. Last two rows are failure
cases due to poor unary terms and missing edges. ISGMR-8 and TRWP-4 are ours.

sharp, accurate, and aligned with the Canny edges and ground-truth (GT) edges, shown
in white, than the other inference methods, such as SGM-8 and MF-4 (see Figure 6).

5.3 Speed Improvement

Speed-up by parallelized message passing on a GPU enables a fast inference and end-
to-end learning. To be clear, we compared forward and backward propagation times for
different implementations using 256×512 size images with 32 and 96 labels.
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Table 4: Forward propagation time with 32 and 96 labels. Our CUDA version is aver-
aged over 1000 trials; others over 100 trials. Our CUDA version is 7–32 times faster
than PyTorch GPU version. C++ versions are with a single and 8 threads. Unit: second.

Method PyTorch CPU PyTorch GPU C++ single C++ multiple CUDA (ours) Speed-up PyT/CUDA
32 96 32 96 32 96 32 96 32 96 32 96

TRWS-4 - - - - 1.95 13.30 - - - - - -
ISGMR-4 1.43 11.70 0.96 1.13 3.23 25.19 0.88 5.28 0.03 0.15 32× 8×
ISGMR-8 3.18 24.78 1.59 1.98 8.25 71.35 2.12 15.90 0.07 0.27 23× 7×
ISGMR-16 7.89 52.76 2.34 4.96 30.76 273.68 7.70 62.72 0.13 0.53 18× 9×
TRWP-4 1.40 11.74 0.87 1.08 1.84 15.41 0.76 4.46 0.03 0.15 29× 7×
TRWP-8 3.19 24.28 1.57 1.98 6.34 57.25 1.88 14.22 0.07 0.27 22× 7×
TRWP-16 7.86 51.85 2.82 5.08 28.93 262.28 7.41 60.45 0.13 0.52 22× 10×

Method PyTorch GPU CUDA (ours) Speed-up PyT/CUDA
32 96 32 96 32 96

ISGMR-4 7.38 21.48 0.01 0.03 738× 716×
ISGMR-8 18.88 55.92 0.02 0.07 944× 799×
ISGMR-16 58.23 173.02 0.06 0.18 971× 961×
TRWP-4 7.35 21.45 0.01 0.02 735× 1073×
TRWP-8 18.86 55.94 0.02 0.06 943× 932×
TRWP-16 58.26 172.95 0.06 0.16 971× 1081×

Table 5: Backpropagation
time. PyTorch GPU is aver-
aged on 10 trials and CUDA
on 1000 trials. Ours is 716–
1081 times faster than Py-
Torch GPU. Unit: second.

Forward propagation time. In Table 4, the forward propagation by CUDA imple-
mentation is the fastest. Our CUDA versions of ISGMR-8 and TRWP-4 are at least 24
and 7 times faster than PyTorch GPU versions at 32 and 96 labels respectively. In Py-
Torch GPU versions, we used tensor-wise tree parallelization to highly speed it up for
a fair comparison. Obviously, GPU versions are much faster than CPU versions.

Backpropagation time. In Table 5, the backpropagation time clearly distinguishes
the higher efficiency of CUDA versions than PyTorch GPU versions. On average, the
CUDA versions are at least 700 times faster than PyTorch GPU versions, and only a low
memory is used to store indices for backpropagation. This makes the backpropagation
much faster than the forward propagation and enables its feasibility in deep learning.
Analysis of PyTorch GPU version and our CUDA implementation are in Appendix D.4.

6 Conclusion

In this paper, we introduce two fast and differentiable message passing algorithms,
namely, ISGMR and TRWP. While ISGMR improved the effectiveness of SGM, TRWP
sped up TRWS by two orders of magnitude without loss of solution quality. Besides,
our CUDA implementations achieved at least 7 times and 700 times speed-up compared
to PyTorch GPU versions in the forward and backward propagation respectively. These
enable end-to-end learning with effective and efficient MRF optimization algorithms.
Experiments of stereo vision and image denoising as well as end-to-end learning for
semantic segmentation validated the effectiveness and efficiency of our proposals.

Acknowledgement: We would like to thank our colleagues Dylan Campbell and Yao
Lu for the discussion of CUDA programming. This work is supported by the Australian
Centre for Robotic Vision (CE140100016) and Data61, CSIRO, Canberra, Australia.
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Appendix

A Pseudocode of Backpropagation of ISGMR and TRWP

Due to the limited space of the main paper, we provide the pseudocode of backpropa-
gation of ISGMR and TRWP in this appendix, in Algorithms 3-4 respectively.

Algorithm 3: Backpropagation of ISGMR
Input: Partial energy parameters {θi,j}, gradients of final costs∇c = {∇ci(λ)}, set of

nodes V , edges E , directionsR, indices {prk,i(λ)}, {qrk,i}, iteration number K.
We replace∇mr,k+1 by∇m̂r and∇mr,k by∇mr for simplicity.

Output: Gradients {∇θi,∇θi,j(·, ·)}.
1 ∇mr ← ∇Θi ← ∇c,∇Θi,j ← 0 .back Eq. (7)
2 ∇m̂r ← ∇mr .back message updates
3 for iteration k ∈ {K, ..., 1} do
4 ∇mr ← 0 .zero-out
5 forall directions r ∈ R do .parallel
6 forall scanlines t in direction r do .parallel
7 for node i in scanline t do .sequential
8 λ∗ ← qrk,i ∈ L .extract index
9 ∇m̂r

i (λ
∗) −=

∑
λ∈L∇m̂

r
i (λ) .back Eq. (5)

10 for label λ ∈ L do
11 µ∗ ← prk,i(λ) ∈ L .extract index
12 ∇θi−r(µ∗) += ∇m̂r

i (λ) .back Eq. (9)
13 ∇m̂r

i−r(µ
∗) += ∇m̂r

i (λ)

14 ∇md
i−r(µ

∗) += ∇m̂r
i (λ), ∀d ∈ R \ {r, r−}

15 ∇θi−r,i(µ∗, λ) += ∇m̂r
i (λ)

16 ∇m̂r ← 0 .zero-out
17 ∇mr += ∇m̂r .gather history gradients
18 ∇m̂r ← ∇mr .back message updates after iteration

B Maintaining Energy Function in Iterations

With the same notations in Eq.(1) and Eq.(9) in the main paper, let a general energy
function in a MRF defined as

E(x|Θ) =
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θi,j(xi, xj) . (14)

In the standard SGM and ISGMR, given a node i and an edge from nodes j to i, the
message will be updated at kth iteration as follows,
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Algorithm 4: Backpropagation of TRWP
Input: Partial energy parameters {θi,j}, gradients of final costs∇c = {∇ci(λ)}, tree

decomposition coefficients {ρi,j}, set of nodes V , edges E , directionsR, indices
{prk,i(λ)}, {qrk,i}, iteration number K.

Output: Gradients {∇θi,∇θi,j(·, ·)}.
1 ∇mr ← ∇Θi ← dc, dΘi,j ← 0 .back Eq. (7)
2 for iteration k ∈ {K, ..., 1} do
3 for direction r ∈ R do .sequential
4 forall scanlines t in direction r do .parallel
5 for node i in scanline t do .sequential
6 λ∗ ← qrk,i ∈ L .extract index
7 ∇mr

i (λ
∗) −=

∑
λ∈L∇m

r
i (λ) .back Eq. (5)

8 for label λ ∈ L do
9 µ∗ ← prk,i(λ) ∈ L .extract index

10 ∇θi−r(µ∗) += ρi−r,i∇mr
i (λ) .back Eq. (11)

11 ∇md
i−r(µ

∗) += ρi−r,i∇mr
i (λ), ∀d ∈ R

12 ∇mr−
i−r(µ

∗) −= ∇mr
i (λ)

13 ∇θi−r,i(µ∗, λ) += ∇mr
i (λ)

14 ∇mr ← 0 .zero-out

Fig. 7: Energy function maintained in iterative message passing. When adding a term
mji(λ) to node i at label λ, the same value should be subtracted on all edges connecting
node i at label λ.

mr,k+1
i (λ) = min

µ∈L

(
θi−r(µ) + θi−r,i(µ, λ) +mr,k+1

i−r (µ) +
∑

d∈R\{r,r−}

md,k
i−r(µ)

)
.

(15)
In Figure 7, however, if we add a term mi(λ) to node i at label λ via mji(λ) from node
j to node i at label λ, the same value should be subtracted along all edges connecting
this node i, that is ∀(i, j) ∈ E , in order to maintain the same Eq. (14) in optimization.
This supports the exclusion of r− from R in Eq. (15). This is important for multiple
iterations because the non-zero messages after the 1st iteration, as additional terms, will
change the energy function via Eq. (15). Hence, a simple combination of many standard
SGMs will change the energy function due to the lack of the subtraction above.
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C Indexing First Nodes by Interpolation

Tree graphs contain horizontal, vertical, and diagonal (including symmetric, asymmet-
ric wide, and asymmetric narrow) trees, shown in Figure 8. Generally, the horizontal and
vertical trees are for 4-connected graphs, symmetric trees are for 8-connected graphs,
and asymmetric trees are for more than 8-connected graphs, resulting in different ways
of indexing the first nodes for parallelization. In the following, we denote an image
size with height H and width W , coordinates of the first node in vertical and horizon-
tal directions as ph and pw respectively, and scanning steps in vertical and horizontal
directions as Sh and Sw respectively.

(a) (b) (c) (d) (e) (f)

Fig. 8: Multi-direction message passing(forward passing in 6 directions). (a) horizontal
trees. (b) vertical trees. (c) symmetric trees from up-left to down-right. (d) symmetric
trees from up-right to down-left. (e) asymmetric narrow trees with height and width
steps S = (Sh, Sw) = (2, 1). (f) asymmetric wide trees with S = (1, 2).

Horizontal and vertical graph trees. Coordinate of the first node of a horizontal and
vertical tree, p = (ph, pw), can be presented by (ph, 0) and (0, pw) respectively in the
forward pass, and (ph,W − 1) and (H − 1, pw) respectively in the backward pass.

Symmetric and asymmetric wide graph trees. Coordinate of the first node p =
(ph, pw) is calculated by

N =W + (H − 1) ∗ abs(Sw) ,
pw = [0 : N − 1]− (H − 1) ∗max (Sw, 0) ,

ph =

{
0 if Sh > 0 ,

H − 1 otherwise ,

(16)

where N is tree number, abs(∗) is absolution, and Ts is shifted indices of trees.

Asymmetric narrow graph trees. Coordinate of the first node p by interpolation is
calculated by
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c1 = mod(Ts, abs(Sh)) ,

c2 =
float(Ts)

float(abs(Sh))
,

ph =

{
mod(abs(Sh)− c1, abs(Sh)) if Sw > 0 ,

c1 otherwise ,

ph = H − 1− ph if Sh < 0 ,

pw =

{
ceil(c2) if Sw > 0 ,

floor(c2) otherwise ,

(17)

where mod(∗) is modulo, floor(∗) and ceil(∗) are two integer approximations, float(∗)
is data conversion for single-precision floating-point values, and the rest share the same
notations in Eq. (16).

Although ISGMR and TRWP are parallelized over individual trees, message up-
dates on a tree are sequential. The interpolation for asymmetric diagonals avoids as
many redundant scanning as possible, shown in Figure 9. This is more practical for
realistic stereo image pairs that the width is much larger than the height.

(a) (b) (c)

Fig. 9: Interpolation in asymmetric graph trees in forward passing. (a) asymmetric wide
trees with steps S = (1, 2). (b) asymmetric narrow trees with S = (2, 1). (c) asym-
metric narrow trees with S = (3, 1). Red circles are first nodes of trees; large circles
are within image size; small circles are interpolated; o is axes center. Coordinates of
interpolations in (a) are integral; in (b)-(c) round to the nearest integers by Eq. (17).

D Differentiability of ISGMR

Below, we replace mr,k by mr and mr,k+1 by m̂r for simplicity. This is because from
the practical implementation, messages in direction r should be updated instead of al-
locating new memories in each iteration to avoid GPU memory increase. Thus, we only
use two variables mr and m̂r for messages before and after an iteration.

D.1 Explicit Representation of Forward Propagation

Since message update in ISGMR relies on recursively updated messages m̂r in each
scanning direction r and messages mr from all the other directions updated in the
previous iteration, an explicit ISGMR message update is
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m̂r
i (λ) = min

µ∈L

(
θi−r(µ) + θi−r,i(µ, λ) + m̂r

i−r(µ) +
∑

d∈R\{r,r−}

md
i−r(µ)

)
,

∀i ∈ V,∀λ ∈ L,∀r ∈ R .

(18)

Applying message reparametrization by

m̂r
i (λ) = m̂r

i (λ)−min
k∈L

m̂r
i (k), ∀i ∈ V,∀λ ∈ L,∀r ∈ R . (19)

After updating messages in all directions within an iteration, we assign the updated
message m̂ to m by

mi(λ) = m̂i(λ), ∀i ∈ V,∀λ ∈ L . (20)

Eventually, after all iterations, unary potentials and updated messages from all direc-
tions will be aggregated by

ci(λ) = θi(λ) +
∑
d∈R

md
i (λ), ∀i ∈ V,∀λ ∈ L . (21)

Different from optimization with winner-takes-all for labelling in learning by xi =
argminλ∈Lci(λ),∀i ∈ V , a regression with disparity confidences calculated by the final
costs is used to fit with the real-valued ground truth disparities g = {gi},∀i ∈ V .
Generally, the disparity confidence fi(λ) with a normalization such as SoftMin() is
represented by

fi(λ) = SoftMin(ci(λ)), ∀i ∈ V,∀λ ∈ L , (22)

and the regression for real-valued disparity d = {di},∀i ∈ V is

di =
∑
λ∈L

λfi(λ),∀i ∈ V . (23)

The loss functionL(d,g) in learning can be standard L1 or smooth L1 loss function.

D.2 Derivations of Differentiability

Now we do backpropagation at kth iteration for learnable parameters {θi, θi,j}. With
the same notations in Section 4 in the main paper, {prk,i(λ)} and {qrk,i} are indices
stored in the forward propagation from message minimization and reparameterization
respectively, and∇∗ = dL/d∗.

D.2.1 Gradients of unary potentials
Proposition: Gradients of unary potentials {θi(λ)} are represented by
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∇θi(λ) = ∇ci(λ) +
∑
v∈L

∑
r∈R
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

= ∇ci(λ) +
∑
v∈L

∑
r∈R

∑
µ∈L

(
∇m̂r

i+2r(µ)
∣∣
v=prk,i+2r(µ)

+
∑

d∈R\{r,r−}

∇md
i+r+d(µ)

∣∣
v=pdk,i+r+d(µ)

)∣∣∣
λ=prk,i+r(v)

.

(24)

Derivation:

The backpropagation from Eq. (23)-Eq. (18) is

∇θi(λ) =
dL

dθi(λ)

=
∑
j∈V

∑
v∈L

∂L

∂dj(v)

∂dj(v)

∂fj(v)

∂fj(v)

∂cj(v)

∂cj(v)

∂θi(λ)
.back Eq. (23)-Eq. (22)

=
∑
j∈V

∑
v∈L
∇cj(v)

(∂cj(v)
∂θj(v)

∂θj(v)

∂θi(λ)
+
∑
r∈R

∂cj(v)

∂mr
j(v)

∂mr
j(v)

∂θi(λ)

)
.back Eq. (21)

= ∇ci(λ) +
∑
j∈V

∑
v∈L

∑
r∈R
∇mr

j(v)
∂mr

j(v)

∂θi(λ)

= ∇ci(λ) +
∑
j∈V

∑
v∈L

∑
r∈R
∇mr

j(v)
∂mr

j(v)

∂m̂r
j(v)

∂m̂r
j(v)

∂θi(λ)
.back Eq. (20)

= ∇ci(λ) +
∑
j∈V

∑
v∈L

∑
r∈R
∇m̂r

j(v)
∂m̂r

j(v)

∂θi(λ)
.

(25)

With backpropagation of Eq. (19) using an implicit message reparametrization with
index v∗ = qrk,j at kth iteration,∇m̂r

j(v) in the second term above is updated by

∇m̂r
j(v)←

{
∇m̂r

j(v) if v 6= v∗ ,

−
∑
v′∈L\v∗ ∇m̂r

j(v
′
) otherwise .

(26)

Derivation of Eq. (26):

Explicit representation of Eq. (19) is m̃r
i (λ) = m̂r

i (λ)− m̂r
i (λ
∗), where λ∗ = qrk,i,

then we have
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∇m̂r
i (λ) =

∂L

∂m̂r
i (λ)

=
∑
i′∈V

∑
λ′∈L

∂L

∂m̃r
i′
(λ′)

∂m̃r
i′
(λ
′
)

∂m̂r
i (λ)

=
∑
i′∈V

∑
λ′∈L

∂L

∂m̃r
i′
(λ′)

(∂m̃r
i′
(λ
′
)

∂m̂r
i′
(λ′)

∂m̂r
i′
(λ
′
)

∂m̂r
i (λ)

+
∂m̃r

i′
(λ
′
)

∂m̂r
i′
(λ∗)

∂m̂r
i′
(λ∗)

∂m̂r
i (λ)

)
=

∂L

∂m̃r
i (λ)

−
∑
λ′∈L

∂L

∂m̃i(λ
′)

∣∣∣∣
λ=λ∗

=

{
∇m̃r

i (λ) if λ 6= λ∗ ,

−
∑
λ′∈L\λ∗ ∇m̃r

i (λ
′
) otherwise .

(27)

Back to the implicit message reparametrization with∇m̃r replaced by∇m̂r, we have

∇m̂r
i (λ) =

{
∇m̂r

i (λ) if λ 6= λ∗ ,

−
∑
λ′∈L\λ∗ ∇m̂r

i (λ
′
) otherwise .

(28)

End of the derivation of Eq. (26).
Next, we continue the backpropagation through Eq. (18) for unary potentials as

∇θi(λ) = ∇ci(λ) +
∑
j∈V

∑
v∈L

∑
r∈R
∇m̂r

j(v)
∂m̂r

j(v)

∂θi(λ)
.from Eq. (25)

= ∇ci(λ) +
∑
v∈L

∑
r∈R
∇m̂r

i+r(v)
∂m̂r

i+r(v)

∂θi(λ)
.back Eq. (18) without recursion

= ∇ci(λ) +
∑
v∈L

∑
r∈R
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

. .satisfy argmin() rule in Eq. (18)

(29)
Derivation of ∇ci(λ) by backpropagation from the loss function, disparity regres-

sion, and SoftMin(), can be obtained by PyTorch autograd directly. For the readability of
derivations by avoiding using {mr

i+r(m
r
i (θi−r(λ))),m

r
i+2r(m

r
i+r(m

r
i (θi−r(λ)))), ...},

we do not write the recursion of gradients in the derivations. Below, we derive∇m̂r
i+r(v)

in the backpropagation.

D.2.2 Gradients of Messages
For notation readability, we first derive message gradient∇m̂r

i (λ) instead of∇m̂r
i+r(v).

Proposition: Gradients of messages {m̂r
i (λ)} are represented by

∇m̂r
i (λ) =

∑
v∈L

(
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

+
∑

d∈R\{r,r−}

∇md
i+d(v)

∣∣
λ=pdk,i+d(v)

)
.

(30)
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Derivation:

∇m̂r
i (λ) =

dL

dm̂r
i (λ)

=
∑
j∈V

∑
v∈L
∇cj(v)

∂cj(v)

∂m̂r
i (λ)

.back Eq. (23)-Eq. (22)

=
∑
j∈V

∑
v∈L
∇cj(v)

∑
d∈R

∂cj(v)

∂md
j (v)

∂md
j (v)

∂m̂r
i (λ)

.back Eq. (21)

=
∑
j∈V

∑
v∈L
∇cj(v)

∑
d∈R

∂cj(v)

∂md
j (v)

∂md
j (v)

∂m̂d
j (v)

∂m̂d
j (v)

∂m̂r
i (λ)

.back Eq. (20)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂m̂r
i (λ)

,

(31)
then we update∇m̂d

j (v) by Eq. (26) and continue as follows,

∇m̂r
i (λ) =

∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂m̂r
i (λ)

.from Eq. (31)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

( ∑
λ′∈L

∂m̂d
j (v)

∂m̂d
j−d(λ

′)

∂m̂d
j−d(λ

′
)

∂m̂r
i (λ)

+
∑

d′∈R\{d,d−}

∑
λ′∈L

∂m̂d
j (v)

∂md′

j−d(λ
′)

∂md
′

j−d(λ
′
)

∂m̂r
i (λ)

)
.back Eq. (18)

=
∑
v∈L

(
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

+
∑
d∈R

∑
d′∈R\{d,d−}

∑
λ′∈L

∇m̂d
j (v)

∂m̂d
j (v)

∂md′

j−d(λ
′)

∂md
′

j−d(λ
′
)

∂m̂r
i (λ)

)
.

(32)
Since md

′

j−d(λ
′
) is differentiable by m̂r

i (λ) due to Eq. (20) and, for ISGMR, message
gradients in directions except the current direction r come from the next iteration (since
in the forward propagation these messages come from the previous iteration), we have
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∇m̂r
i (λ) =

∑
v∈L

(
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

+
∑
d∈R

∑
d′∈R\{d,d−}

∑
λ′∈L

∇m̂d
j (v)

∂m̂d
j (v)

∂md′

j−d(λ
′)

∂md
′

j−d(λ
′
)

∂m̂r
i (λ)

)
.from Eq. (32)

=
∑
v∈L

(
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

+
∑
d∈R

∇m̂d
i+d(v)

∂m̂d
i+d(v)

∂mr
i (λ)

∂mr
i (λ)

∂m̂r
i (λ)

∣∣∣∣∣
r 6∈{d,d−}

)
.due to Eq. (20)

=
∑
v∈L

(
∇m̂r

i+r(v)
∣∣
λ=prk,i+r(v)

+
∑

d∈R\{r,r−}

∇md
i+d(v)

∣∣
λ=pdk,i+d(v)

)
.

(33)
Here, updating the message gradient at node i depends on its next node i + r along
the scanning direction r; this scanning direction is opposite to the forward scanning
direction, and thus, it depends on node i + r instead of i − r. Gradient of message
mr
i (λ) can be derived in the same way.

Now one can derive ∇m̂r
i+r(v) in the same manner of ∇m̂r

i (λ) and apply it to
Eq. (29) to obtain Eq. (24).

D.2.3 Gradient of Pairwise Potentials
Proposition: Gradients of pairwise potentials {θi−r,i(µ, λ)} are represented by

∇θi−r,i(µ, λ) = ∇m̂r
i (λ)|µ=prk,i(λ)

, ∀i ∈ V,∀r ∈ R,∀λ, µ ∈ L . (34)

Derivation:

∇θi−r,i(µ, λ) =
dL

dθi−r,i(µ, λ)

=
∑
j∈V

∑
v∈L
∇cj(v)

∂cj(v)

∂θi−r,i(µ, λ)
.back Eq. (23)-Eq. (22)

=
∑
j∈V

∑
v∈L
∇cj(v)

∑
d∈R

∂cj(v)

∂md
j (v)

∂md
j (v)

∂θi−r,i(µ, λ)
.back Eq. (21)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇cj(v)
∂cj(v)

∂md
j (v)

∂md
j (v)

∂m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i(µ, λ)
.back Eq. (20)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i(µ, λ)
.

(35)
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Now we update∇m̂d
j (v) by Eq. (26). Then

∇θi−r,i(µ, λ) =
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i(µ, λ)
.from Eq. (35)

= ∇m̂r
i (λ)|µ=prk,i(λ)

. .back Eq. (18) without recursion

(36)
One can note that the memory requirement of {θi−r,i(µ, λ)} is 4

∑
r∈R |Er||L||L|

bytes using single-precision floating-point values. This will be high when the number
of disparities |L| is large. In practical, since the pairwise potentials can be decomposed
by θi,j(λ, µ) = θi,jV (λ, µ),∀(i, j) ∈ E ,∀λ, µ ∈ L with edge weights θi,j and a
pairwise function V (·, ·), it takes up 4(

∑
r∈R |Er| + |L||L|) bytes in total, which is

much less than 4
∑
r∈R |Er||L||L| above. Therefore, we additionally provide the gra-

dient derivations of these two terms, edge weights and pairwise functions, for practical
implementations of the backpropagation.

D.2.4 Gradient of Edge Weights
Proposition: Gradients of edge weights {θi−r,i} are represented by

∇θi−r,i =
∑
v∈L
∇m̂r

i (v)V (prk,i(v), v), ∀i ∈ V,∀r ∈ R . (37)

Derivation:

∇θi−r,i =
dL

dθi−r,i

=
∑
j∈V

∑
v∈L
∇cj(v)

∂cj(v)

∂θi−r,i
.back Eq. (23)-Eq. (22)

=
∑
j∈V

∑
v∈L
∇cj(v)

∑
d∈R

∂cj(v)

∂md
j (v)

∂md
j (v)

∂θi−r,i
.back Eq. (21)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇cj(v)
∂cj(v)

∂md
j (v)

∂md
j (v)

∂m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i
.back Eq. (20)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i
.

(38)
Again, before updating gradients of edge weights by Eq. (18), ∇m̂d

j (v) is updated by
Eq. (26). Then
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∇θi−r,i =
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂θi−r,i
.from Eq. (38)

=
∑
j∈V

∑
v∈L

∑
d∈R

∇m̂d
j (v)

∂m̂d
j (v)

∂θj−d,j
V (pdk,j(v), v)

∂θj−d,j
∂θi−r,i

.back Eq. (18), no recursion

=
∑
v∈L
∇m̂r

i (v)V (prk,i(v), v) .

(39)

In the case that when edge weights are undirected, i.e., θi,j = θj,i, the derivations
above still hold, and if θi,j = θj,i are stored in the same tensor, ∇θi,j will be accumu-
lated by adding ∇θj,i for storing the gradient of this edge weight. This is also applied
to the gradient of pairwise potentials in Eq. (34) above.

D.2.5 Gradients of Pairwise Functions
Proposition: Gradients of a pairwise function V (·, ·) are

∇V (λ, µ) =
∑
j∈V

∑
r∈R

θj−r,j∇m̂r
j(µ)

∣∣
λ=prk,j(µ)

, ∀λ, µ ∈ L . (40)

Derivation:

∇V (λ, µ) =
dL

dV (λ, µ)

=
∑
j∈V

∑
v∈L
∇cj(v)

∂cj(v)

∂V (λ, µ)
.back Eq. (23)-Eq. (22)

=
∑
j∈V

∑
v∈L
∇cj(v)

∑
r∈R

∂cj(v)

∂mr
j(v)

∂mr
j(v)

∂V (λ, µ)
.back Eq. (21)

=
∑
j∈V

∑
v∈L

∑
r∈R
∇cj(v)

∂cj(v)

∂mr
j(v)

∂mr
j(v)

∂m̂r
j(v)

∂m̂r
j(v)

∂V (λ, µ)
.back Eq. (20)

=
∑
j∈V

∑
v∈L

∑
r∈R
∇m̂r

j(v)
∂m̂r

j(v)

∂V (λ, µ)
.

(41)

∇m̂r
j(v) is updated by Eq. (26). Then
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∇V (λ, µ) =
∑
j∈V

∑
v∈L

∑
r∈R
∇m̂r

j(v)
∂m̂r

j(v)

∂V (λ, µ)
.from Eq. (41)

=
∑
j∈V

∑
v∈L

∑
r∈R
∇m̂r

j(v)
∑
λ′∈L

∂m̂r
j(v)

∂V (λ′ , v)

∂V (λ
′
, v)

∂V (λ, µ)
.from Eq. (18)

=
∑
j∈V

∑
r∈R

θj−r,j∇m̂r
j(µ)

∣∣
λ=prk,j(µ)

.

(42)

D.3 Characteristics of Backpropagation

1. Accumulation. Since a message update usually has several components, its gradi-
ent is therefore accumulated when backpropagating through every component. For in-
stance, in Eq. (29), the gradient of unary potential∇θi(λ) has∇ci(λ) and∇m̂r

i+r(v),∀r ∈
R and ∀v satisfying λ = prk,i+r(v) at kth iteration. It is calculated recursively but not
at once due to multiple nodes on a tree, multiple directions, and multiple iterations. In
Eq. (33), the message gradient of a node relies on the gradient of all nodes after it in
the forward propagation since this message will be used to all the message updates after
this node.
2. Zero Out Gradients. Message gradients are not accumulated throughout the back-
propagation but should be zeroed out in some cases. In more details, in the forward
propagation, the repeated usage of mr and m̂r is for all iterations but the messages
are, in fact, new variables whenever they are updated. Since the gradient of a new mes-
sage must be initialized to 0, zeroing out the gradients of the new messages is im-
portant. Specifically, in ISGMR that within an iteration mr ← m̂r is executed only
when message updates in all directions are done. Thus, ∇mr must be zeroed out af-
ter ∇m̂r ← ∇mr. Similarly, after using ∇m̂r to update the gradients of learnable
parameters and messages,∇m̂r ← 0,∀r ∈ R.

D.4 PyTorch GPU version vs. our CUDA version

For the compared PyTorch GPU version, we highly paralleled individual trees in each
direction while sequential message updates in each tree (equally scanline) are iterative.
As Pytorch auto-grad is not customized for our min-sum message passing algorithms,
these iterative message updates require to allocate new GPU memory for each updated
message, which makes it very inefficient and memory-consuming. Its backpropagation
is slower since extra memory is needed to unroll the forward message passing to com-
pute gradients of messages and all intermediate variables that require gradients.

In contrast, our implementation is specific to the min-sum message passing. This
min-sum form greatly accelerates our backpropagation by updating gradients only re-
lated to the indices which are stored in pre-allocated GPU memory during forward pass
(line 10 in Alg. 1). For example, from node i to i + r in Fig. 2(a), forward pass needs
messages over 9 edges (grey lines); but only one (1 of 3 blue lines) from i + r to i re-
quires gradient updates in the backpropagation. This makes our CUDA implementation
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much faster than the PyTorch GPU version, especially the backpropagation with at least
700× speed-up.

E Computational Complexity of Min-Sum & Sum-Product TRW

Given a graph with parameters {θi, θi,j}, maximum iteration K, set of edges {Er},
disparities L, directions R, computational complexities of min-sum and sum-product
TRW are shown below. For the efficient implementation, let θi,j(λ, µ) = θi,jV (λ, µ).

E.1 Computational Complexity of Min-Sum TRW

Representation of a message update in min-sum TRW is

mr
i (λ) = min

µ∈L

(
ρi−r,i

(
θi−r(µ) +

∑
d∈R

md
i−r(µ)

)
−mr−

i−r(µ) + θi−r,iV (µ, λ)
)
. (43)

In our case where the maximum disparity is less than 256, memory for the back-
propagatio of the min-sum TRW above is only for indices µ∗ = prk,i(λ) ∈ L from
message minimization with K

∑
r∈R |Er||L| bytes 8-bit unsigned integer values, as

well as for indices from message reparametrization with K
∑
r∈R |Er| bytes. In total,

the min-sum TRW needs K
∑
r∈R |Er| (|L|+ 1) bytes for the backpropagation.

E.2 Computational Complexity of Sum-Product TRW

Representation of a message update in sum-product TRW is

exp(−mr
i (λ)) =

∑
µ∈L

exp
(
− ρi−r,i

(
θi−r(µ) +

∑
d∈R

md
i−r(µ)

)
+mr−

i−r(µ)

− θi−r,iV (µ, λ)
)

=
∑
µ∈L

(
exp

(
− ρi−r,iθi−r(µ)

) ∏
d∈R

exp
(
− ρi−r,imd

i−r(µ)
)

exp(mr−

i−r(µ)) exp
(
− θi−r,iV (µ, λ)

))
.

(44)

Usually, it can be represented as

m̃r
i (λ) =

∑
µ∈L

(
exp
−ρi−r,iθi−r(µ)

1

∏
d∈R

(
m̃d
i−r(µ)2

)ρi−r,i 1

m̃r−
i−r(µ) 3

exp
−θi−r,i

4
V (µ,λ)

5

)
.

(45)
Problem 1: Numerical Overflow: For single-precision floating-point data, a valid nu-
merical range of x in exp(x) is less than around 88.7229; otherwise, it will be infinite.
Therefore, for the exponential index in Eq. (44), a numerical overflow will happen quite
easily. One solution is to reparametrize these messages to a small range, such as [0, 1],
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in the same manner as SoftMax(), which requires logarithm to find the maximum index,
followed by exponential operations.
Problem 2: Low efficiency OR high memory requirement in backpropagation: In
the backpropagation, due to the factorization in Eq. (45), it needs to rerun the forward
propagation to calculate intermediate values OR store all these values in the forward
propagation. However, the former makes the backpropagation at least as slow as the
forward propagation while the later requires a large memory,
K
∑
r∈R |Er||L| (8|L|+ 4|R||L|+ 4) bytes single-precision floating-point values.

Derivation:
For one message update in Eq. (45), the gradient calculation of terms 1,2-3,4,5

(underlined) requires 4×{|L|, |R||L|, 1, |L|} bytes respectively. ForK iterations, set of
directions R, edges {Er}, ∀r ∈ R, it requires K

∑
r∈R |Er||L| (8|L|+ 4|R||L|+ 4)

bytes in total. This is in O(|R||L|) order higher than the memory requirement in the
min-sum TRW memory requirement, K

∑
r∈R |Er| (|L|+ 1) bytes.

F Additional Evaluations

F.1 More Evaluations with Constant Edge Weights

More results from the main experiments are given in Tables 6-7.

Table 6: Energy minimization on Middlebury with constant edge weights. For Map,
ISGMR-4 has the lowest energy among ISGMR-related methods; for others, ISGMR-8
and TRWP-4 have the lowest energies in ISGMR-related and TRWP-related methods
respectively. ISGMR is more effective than SGM in optimization, and TRWP-4 outper-
forms MF and SGM.

Method Tsukuba Teddy Venus Cones Map
1 iter 50 iter 1 iter 50 iter 1 iter 50 iter 1 iter 50 iter 1 iter 50 iter

MF-4 3121704 1620524 3206347 2583784 108494928 14618819 9686122 6379392 1116641 363221
SGM-4 873777 644840 2825535 2559016 5119933 2637164 3697880 3170715 255054 216713
TRWS-4 352178 314393 1855625 1807423 1325651 1219774 2415087 2329324 150853 143197
ISGMR-4 (ours) 824694 637996 2626648 1898641 4595032 1964032 3296594 2473646 215875 148049
TRWP-4 (ours) 869363 314037 2234163 1806990 32896024 1292619 3284868 2329343 192200 143364

MF-8 2322139 504815 3244710 2545226 68718520 2920117 7762269 3553975 840615 213827
SGM-8 776706 574758 2868131 2728682 4651016 2559933 3631020 3309643 243058 222678
ISGMR-8 (ours) 684185 340347 2532071 1847833 4062167 1285330 3039638 2398060 195718 149857
TRWP-8 (ours) 496727 348447 1981582 1849287 8736569 1347060 2654033 2396257 162432 151970
MF-16 1979155 404404 3315900 2622047 43077872 1981096 6741127 3062965 638753 204737
SGM-16 710727 587376 2907051 2846133 4081905 2720669 3564423 3413752 242932 232875
ISGMR-16 (ours) 591554 377427 2453592 1956343 3222851 1396914 2866149 2595487 190847 165249
TRWP-16 (ours) 402033 396036 1935791 1976839 2636413 1486880 2524566 2660964 162655 164704

F.2 More Visualizations for Image Denoising

We provide more visualizations of image denoising on “Penguin” and “House” in Fig-
ures 10-11 corresponding to Table 2 in the main paper.
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Table 7: Energy minimization on 3 image pairs of KITTI2015 and 2 of ETH-3D with
constant edge weights. ISGMR is more effective than SGM in optimization in both
single and multiple iterations, and TRWP-4 outperforms MF and SGM.

Method 000002 11 000041 10 000119 10 delivery area 1l facade 1s
1 iter 50 iter 1 iter 50 iter 1 iter 50 iter 1 iter 50 iter 1 iter 50 iter

MF-4 82523536 44410056 69894016 36163508 72659040 42392548 19945352 9013862 13299859 6681882
SGM-4 24343250 18060026 15926416 12141643 24999424 18595020 5851489 4267990 1797314 1429254
TRWS-4 9109976 8322635 6876291 6491169 10811576 9669367 1628879 1534961 891282 851273
ISGMR-4 (ours) 22259606 12659612 14434318 9984545 23180608 18541970 5282024 2212106 1572377 980151
TRWP-4 (ours) 40473776 8385450 30399548 6528642 36873904 9765540 9899787 1546795 2851700 854552
MF-8 61157072 18416536 53302252 16473121 57201868 21320892 16581587 4510834 10978978 3422296
SGM-8 20324684 16406781 13740635 11671740 20771096 16652122 5396353 4428411 1717285 1464208
ISGMR-8 (ours) 17489158 8753990 11802603 6639570 18411930 10173513 4474404 1571528 1438210 884241
TRWP-8 (ours) 18424062 8860552 13319964 6678844 20581640 10445172 4443931 1587917 1358270 889907
MF-16 46614232 14192750 40838292 12974839 44706364 16708809 13223338 3229021 9189592 2631006
SGM-16 18893122 16791762 13252150 12162330 19284684 16936852 5092094 4611821 1670997 1535778
ISGMR-16 (ours) 15455787 9556611 10731068 6806150 16608803 11037483 3689863 1594877 1324235 937102
TRWP-16 (ours) 11239113 9736704 8187380 6895937 13602307 11309673 2261402 1630973 1000985 950607

(a) noisy (b) GT (c) MF-4 (d) MF-8 (e) MF-16

(f) SGM-4 (g) SGM-8 (h) SGM-16 (i) TRWS-4 (j) ISGMR-4

(k) ISGMR-8 (l) ISGMR-16 (m) TRWP-4 (n) TRWP-8 (o) TRWP-16

Fig. 10: Visualization of MRF inferences for image denoising on “Penguin”.
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(a) noisy (b) GT (c) MF-4 (d) MF-8 (e) MF-16

(f) SGM-4 (g) SGM-8 (h) SGM-16 (i) TRWS-4 (j) ISGMR-4

(k) ISGMR-8 (l) ISGMR-16 (m) TRWP-4 (n) TRWP-8 (o) TRWP-16

Fig. 11: Visualization of MRF inferences for image denoising on “House”.
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