
Optimization of Markov Random
Fields in Computer Vision

Thalaiyasingam Ajanthan

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

November 2017

c© Copyright by Thalaiyasingam Ajanthan 2017
All Rights Reserved





Declaration

I hereby declare that this submission is my own work (based on publications in
collaboration with the co-authors where due acknowledgement is made) and that, to
the best of my knowledge, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for the
award of any other degree or diploma at ANU or any other educational institution,
except where due acknowledgment has been made.

I also declare that all sources used in this thesis have been fully and properly
cited.

Thalaiyasingam Ajanthan
20 November 2017





To my family.





Acknowledgements

First and foremost, I would like to express my sincere gratitude to my primary super-
visor, Prof. Richard Hartley, for his guidance, motivation, and support throughout
my PhD research. It has been an absolute privilege to work with Richard, and this
work would not have been possible without his contagious enthusiasm for research.
Thank you, professor, for being immensely helpful in many ways both in academic
and personal matters. In particular, thank you for inspiring me to work on the ex-
citing field of MRF optimization. Your upcoming book on Solution of Markov Random
Fields has been instrumental in reducing my learning time.

I am equally grateful to my co-supervisors, As.Prof. Hongdong Li (panel chair)
and Dr. Mathieu Salzmann. Thank you for giving me valuable pointers and ideas,
shaping my research and carefully reviewing all manuscripts I produced during my
PhD. I am indebted to Mathieu for his continuous guidance even after he moved to
EPFL, Switzerland. I would also like to thank the other researchers at Data61 and
ANU for their feedback on my research during various seminars and reading groups.

I would like to thank Prof. Philip Torr for offering me to visit his group at the
University of Oxford for almost 5 months and introducing me to exciting new prob-
lems. I am deeply grateful to As.Prof. Pawan Kumar for being a great mentor and
working with me during my time in Oxford. I would also like to thank my collabo-
rators, Alban and Rudy and other colleagues at the University of Oxford for warmly
welcoming me to their circle.

I am grateful to my colleagues at Data61 and ANU, past and present, who created
a wonderful research environment. Especially, I would like to convey my gratitude
to Sadeep (for introducing me to Mathieu and guidance on various matters), Ka-
malaruban (for the countless things he has done for me), Zeeshan, Arash, Saeed,
Masoud and Samitha.

I graciously acknowledge and appreciate the financial support from the Aus-
tralian National University, NICTA (now Data61, CSIRO) and the Australian Gov-
ernment for my PhD research. Their scholarships and generous travel grants have
allowed me to focus on my research without having to worry about financial support.

I am indebted to my teachers at the University of Moratuwa, especially, Dr. Ranga
Rodrigo for constantly encouraging me to pursue a PhD in computer vision. I am
equally indebted to my teachers back in my hometown Jaffna, Sri Lanka.

Most importantly, I would like to express my gratitude to my family and friends.
Thank you, my father late Thalaiyasingam, mother Jeyaluxmy, and brother Sugan-
than, for your unconditional love and support. This thesis is dedicated to you. Fi-
nally, my dear friends (in Canberra and other parts of the world), thank you for
making my life fun-filled.

vii





Abstract

A large variety of computer vision tasks can be formulated using Markov Random
Fields (MRF). Except in certain special cases, optimizing an MRF is intractable, due
to a large number of variables and complex dependencies between them. In this
thesis, we present new algorithms to perform inference in MRFs, that are either
more efficient (in terms of running time and/or memory usage) or more effective (in
terms of solution quality), than the state-of-the-art methods.

First, we introduce a memory efficient max-flow algorithm for multi-label submod-
ular MRFs. In fact, such MRFs have been shown to be optimally solvable using max-
flow based on an encoding of the labels proposed by Ishikawa, in which each variable
Xi is represented by ` nodes (where ` is the number of labels) arranged in a column.
However, this method in general requires 2 `2 edges for each pair of neighbouring
variables. This makes it inapplicable to realistic problems with many variables and
labels, due to excessive memory requirement. By contrast, our max-flow algorithm
stores 2 ` values per variable pair, requiring much less storage. Consequently, our
algorithm makes it possible to optimally solve multi-label submodular problems in-
volving large numbers of variables and labels on a standard computer.

Next, we present a move-making style algorithm for multi-label MRFs with ro-
bust non-convex priors. In particular, our algorithm iteratively approximates the
original MRF energy with an appropriately weighted surrogate energy that is easier
to minimize. Furthermore, it guarantees that the original energy decreases at each it-
eration. To this end, we consider the scenario where the weighted surrogate energy is
multi-label submodular (i.e., it can be optimally minimized by max-flow), and show
that our algorithm then lets us handle of a large variety of non-convex priors.

Finally, we consider the fully connected Conditional Random Field (dense CRF)
with Gaussian pairwise potentials that has proven popular and effective for multi-
class semantic segmentation. While the energy of a dense CRF can be minimized ac-
curately using a Linear Programming (LP) relaxation, the state-of-the-art algorithm
is too slow to be useful in practice. To alleviate this deficiency, we introduce an effi-
cient LP minimization algorithm for dense CRFs. To this end, we develop a proximal
minimization framework, where the dual of each proximal problem is optimized via
block-coordinate descent. We show that each block of variables can be optimized in
a time linear in the number of pixels and labels. Consequently, our algorithm enables
efficient and effective optimization of dense CRFs with Gaussian pairwise potentials.

We evaluated all our algorithms on standard energy minimization datasets con-
sisting of computer vision problems, such as stereo, inpainting and semantic seg-
mentation. The experiments at the end of each chapter provide compelling evidence
that all our approaches are either more efficient or more effective than all existing
baselines.
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Chapter 1

Introduction

Computer vision aims at building artificial systems that extract useful information
(e.g., objects, their boundaries, motion and 3D information, etc.) from images and
videos. Unlike humans, this is an extremely difficult task for a computer, because it
needs to interpret image data (a bunch of matrices) to descriptions of the world. Due
to the inherent uncertainty, many of these problems are formulated as inference in
probabilistic graphical models.

Probabilistic Graphical Models (PGM) [Koller and Friedman, 2009] describe mul-
tivariate probability distributions which factor according to a graph structure. Specif-
ically, the underlying graph expresses the conditional dependence structure between
random variables that hold in the encoded distribution. Two branches of graphical
models are commonly used, namely, Bayesian networks and Markov Random Fields
(MRF). These two models differ in the graph structure (i.e., in the set of indepen-
dences they can encode), namely, for Bayesian networks, the underlying graph is
directed and acyclic and in the case of MRFs, it is an undirected graph.

In this thesis, we focus on Markov random fields. Inference in an MRF is often
expressed as a discrete optimization problem, where the dependencies of the vari-
ables are encoded in a graph. Such problems are often referred to as combinatorial
optimization1 problems. This combinatorial nature makes it a theoretically interesting
research problem and in general, the optimization is NP-hard, i.e., computationally
intractable [Nemhauser and Wolsey, 1988]. Furthermore, many computer vision ap-
plications of MRF have millions of variables and complex dependencies between
them, making the inference more challenging. Therefore, to develop practically ef-
ficient algorithms, researchers either restrict themselves to a certain class of MRFs
(e.g., restricted graph structures and restricted cost functions) or focus on developing
approximate algorithms.

The existing MRF optimization algorithms in computer vision can be catego-
rized into three groups: 1) exact combinatorial algorithms for certain special cases;
2) move-making style algorithms which iteratively minimize surrogate problems; 3)
continuous relaxation based methods which make use of convex optimization tech-
niques. In this thesis, we make contributions in all three categories by introducing

1Combinatorial optimization is the study of optimization on discrete and combinatorial objects (e.g.,
graphs).

1
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new algorithms that are either more efficient (in terms of running time and/or mem-
ory usage) or more effective (in terms of solution quality), than the state-of-the-art
methods.

Before presenting our contributions, we briefly review a few examples of com-
puter vision problems and show how they can be formulated as discrete labelling
problems.

1.1 Some Computer Vision Applications

Here we briefly discuss some core computer vision applications that are usually for-
mulated as MRFs and hence a discrete labelling problem. We will formally define an
MRF and related inference algorithms in Chapter 2. However, for better understand-
ing, we first define the labelling problem and then turn to the examples.

1.1.1 The Labelling Problem

The objective of the labelling problem is to classify a set of nodes V = {1, 2, . . . , n}
by assigning a label to each node from a label set L. In this thesis, we consider the
label set L to be discrete and finite. In particular, the labelling can be represented
by a function x : V → L, and the label assignment of a node i is usually denoted as
xi = x(i).

Note that there are |L|n possible label configurations. In a typical computer vision
problem, each label configuration has a cost associated with it (called an energy),
and the objective is to find the label configuration with the minimum cost (called
energy minimization). Except in certain special cases, one has to check all |L|n possible
configurations, making it an intractable problem. It will be seen in the next chapter
that a Markov random field can be expressed as a discrete labelling problem.

1.1.2 Stereo Correspondence Estimation

In stereo correspondence estimation [Scharstein and Szeliski, 2002], a pair of cali-
brated images are given, a left image and a right image, and the objective is to find
the disparity between those two images. Here, by calibrated, we mean that the two
images are aligned up to a horizontal displacement only, and disparity means that
the horizontal displacement of a pixel in the left image to the corresponding pixel
in the right image. Hence, it is a labelling problem where V is the set of pixels and
L is the set of possible disparities. See Figure 1.1 for an example. In fact, given the
disparity, the depth can be determined [Hartley and Zisserman, 2003] and therefore
stereo estimation is essential to obtain 3D information of a scene.

1.1.3 Image Denoising and Inpainting

Another low level vision problem is image denoising and inpainting [Szeliski et al.,
2008]. Here, given a noisy image with corrupted pixels (due to problems in image
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(a) Left image (b) Right image (c) Disparity map

Figure 1.1: An example of stereo correspondence estimation. Given the left and right images,
we need to find the disparity map between them.

(a) Corrupted image (b) Restored image

Figure 1.2: An example of image denoising and inpainting. Given the noisy image with
corrupted pixels, we need to restore the original image.

acquisition), the objective is to restore the original content of the image. In this case,
one needs to estimate the pixel intensities. Therefore, this is a labelling problem
where V is the set of pixels and L is the set of intensities ({0, . . . , 255} in case of a
gray scale image). See Figure 1.2 for an example.

1.1.4 Semantic Segmentation

Semantic segmentation is a high-level vision task [Everingham et al., 2010] where we
need to partition a given an image into regions and assign each region to an object
class. In fact, in contrast to putting bounding boxes around objects, we need to seg-
ment the images according to object boundaries. Similarly to stereo and inpainting,
this is also a labelling problem, where V is the set of pixels and L is the possible
object classes. A more sophisticated task of semantic segmentation is instance seg-
mentation, where we need to identify and segment different instances of the same
object. See Figure 1.3 for examples of object segmentation and instance segmenta-
tion. These problems are useful for scene understanding and practical applications,
such as autonomous driving.
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(a) Input image (b) Segmented image

Figure 1.3: An example of object segmentation (top) and instance segmentation (bottom).
Given the input image, we need to segment the objects (or instances) and label them. The
color indicates the class (or instance) label.

1.2 Limitations of Existing Algorithms

Note that, in most vision applications, there is a variable in the MRF corresponding
to each pixel in the image2. Therefore, a typical MRF has millions of variables and
complex dependencies between them, defined by the underlying graph structure.
Usually, in computer vision, a sparse connectivity is assumed (e.g., 4-connected or
8-connected neighbourhood structure). However, as will be seen later, in certain
applications, dense connectivity (i.e., each node is connected to every other node) is
preferred [Krähenbühl Philipp, 2011]. In fact, the difficulty of optimizing an MRF
depends on the underlying graph structure and the form of the cost function used to
model the problem.

Over the past decade, various MRF optimization algorithms have been intro-
duced. They can be categorized into three groups: 1) exact algorithms for certain
special cases; 2) move-making style algorithms; 3) continuous relaxation based meth-
ods. In fact, exact optimization is possible only for certain restricted cases (e.g.,
submodular energy functions and tree structured MRFs). For example, when the
MRF energy is submodular (defined later in Chapter 2), it can be optimized using
the max-flow algorithm [Kolmogorov and Zabin, 2004]. However, for general MRFs,

2Superpixels (polygonal parts in the image resulting from partitioning) based MRFs have also been
studied in the literature, but they are usually less accurate in pixelwise labelling tasks [Kappes et al.,
2015].
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one has to settle for an approximate algorithm. One class of algorithms approximate
the original MRF energy by iteratively minimizing a surrogate energy (usually a sub-
modular energy), and guarantee a monotonic decrease in the original MRF energy. At
each iteration, such an algorithm moves from the current labelling to a lower energy
labelling, and therefore this class of algorithms are referred to as move-making algo-
rithms [Boykov et al., 2001]. On the other hand, the discrete labelling problem can
be relaxed to a continuous optimization problem (such as a linear program [Chekuri
et al., 2004; Werner, 2007] or a quadratic program [Ravikumar and Lafferty, 2006])
and tackled using convex optimization techniques.

We now point out some limitations of the existing algorithms in each of the above
mentioned category, and, in the next section, we briefly discuss how our algorithms
overcome these limitations.

1. Ishikawa [Ishikawa, 2003] introduced a max-flow-based method to globally
minimize the energy of multi-label submodular MRFs (defined later). In the gen-
eral case, however, this method requires 2 `2 directed edges (where ` is the
number of labels) for each pair of neighbouring variables. For instance, for a
1000× 1000, 4-connected image with 256 labels, it would require approximately
1000× 1000× 2× 2562 × 2× 4 ≈ 1000 GB of memory to store the edges (as-
suming 4 bytes per edge). Clearly, this is beyond the storage capacity of most
computers. Even though the optimal solution can be obtained in polynomial
time, due to excessive memory requirement, this algorithm cannot be applied
to realistic problems with many variables and labels.

2. As we pointed out previously, in most scenarios one has to rely on an approx-
imate algorithm to optimize a multi-label MRF. Even though move-making al-
gorithms [Boykov et al., 2001] have proven successful for specific problems (e.g.,
metric priors), there does not seem to be a single algorithm that performs well
with different non-convex priors. In particular, while widely acknowledged as
highly effective in computer vision, optimizing multi-label MRFs with robust
non-convex priors, such as the truncated quadratic, the Cauchy function and
the corrupted Gaussian still remains challenging.

3. The fully connected Conditional Random Field3 (dense CRF) with Gaussian
pairwise potentials has proven popular and effective for multi-class semantic
segmentation [Krähenbühl Philipp, 2011]. For such problems, the Linear Pro-
gramming (LP) relaxation provides strong theoretical guarantees on the quality
of the solution [Kleinberg and Tardos, 2002; Kumar et al., 2009]. Even though
there are efficient algorithms for LP relaxation of sparse CRFs [Kolmogorov,
2006], optimizing a dense CRF is extremely challenging and the state-of-the-art
algorithm [Desmaison et al., 2016a] is too slow to be useful in practice.

3From the optimization point of view, the CRF and the MRF are identical. This will become clear
when we formally define them in Chapter 2.
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1.3 Contributions

In this thesis, we introduce new algorithms for MRF optimization, targeting com-
puter vision applications. Our algorithms are either more efficient (in terms of run-
ning time and/or memory usage) or more effective (in terms of solution quality),
than the state-of-the-art methods. Furthermore, we briefly discuss how our algo-
rithms address the limitations of the existing ones.

1. We introduce a memory efficient variant of the max-flow algorithm for multi-
label submodular MRFs. Specifically, our max-flow algorithm stores only two
`-dimensional vectors (where ` is the number of labels) per variable pair instead
of the 2 `2 edge capacities of the standard max-flow algorithm. Consequently,
we reduce the memory requirement of the max-flow algorithm by O(`) for
Ishikawa type graphs, while not compromising on optimality. As a result, our
approach lets us optimally solve much larger problems on a standard computer.

2. We present a move-making style algorithm for multi-label MRFs with robust
non-convex priors. In particular, our algorithm iteratively approximates the
original MRF energy with an appropriately weighted surrogate energy that
is easier to minimize. We show that, under suitable conditions on the non-
convex priors, and as long as the weighted surrogate energy can be decreased,
our approach guarantees that the true energy decreases at each iteration. To
this end, we consider the scenario where the global minimizer of the weighted
surrogate energy can be obtained by a max-flow algorithm (i.e., the surrogate
energy is multi-label submodular), and show that our algorithm then lets us
handle of a large variety of non-convex priors.

3. We introduce an efficient LP minimization algorithm for dense CRFs with
Gaussian pairwise potentials. In particular, we develop a proximal minimiza-
tion framework, where the dual of each proximal problem is optimized via
block-coordinate descent. We show that each block of variables can be opti-
mized in a time linear in the number of pixels and labels. To the best of our
knowledge, this constitutes the first LP minimization algorithm for dense CRFs
that has linear time iterations. Consequently, our algorithm enables efficient
and effective optimization of dense CRFs with Gaussian pairwise potentials.

We evaluated all our algorithms on standard energy minimization datasets con-
sisting of computer vision problems, such as stereo, inpainting and semantic seg-
mentation. The experiments at the end of each chapter provide compelling evidence
that all our approaches are either more efficient or more effective than all existing
baselines.

1.4 Thesis Outline

The remaining chapters of the thesis are summarized below.
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Chapter 2. This chapter provides the fundamentals of Markov random fields and
reviews relevant state-of-the-art optimization algorithms. The basic theories related
to the algorithms are also introduced. In particular, we discuss the max-flow algo-
rithm for submodular MRFs, formalize move-making algorithms and later we discuss
the linear programming relaxation of an MRF. The material included in this chapter
is needed to understand the rest of the thesis.

Chapter 3. This chapter is based on our work [Ajanthan et al., 2016] with substan-
tial extensions, and the extended version is available in [Ajanthan et al., 2017c]. Here,
we introduce our memory efficient max-flow algorithm and show that the memory
requirement reduces by O(`) compared to the standard max-flow algorithm. Fur-
thermore, we prove its polynomial time complexity and also discuss its relationship
to the min-sum message passing algorithm (reviewed in Chapter 2).

Chapter 4. This chapter is based on our work published in [Ajanthan et al., 2015]
with some extensions. Here, we present our iteratively reweighted graph cut al-
gorithm for multi-label MRFs with a certain class of non-convex priors. We show
that, by iteratively minimizing a multi-label submodular energy function, we can
approximately minimize MRFs with robust non-convex priors. We also discuss the
relationship of our algorithm to the majorize-minimize framework.

Chapter 5. Here we present our efficient LP minimization algorithm for fully con-
nected CRFs with Gaussian pairwise potentials. This work is published in [Ajanthan
et al., 2017a] and the extended version is available in [Ajanthan et al., 2017b]. In this
chapter, we show how the LP relaxation of a dense CRF can be minimized using a
block-coordinate descent algorithm that has linear time iterations. To this end, we also
discuss a modification to the permutohedral lattice based filtering method [Adams
et al., 2010], which enables us to perform approximate Gaussian filtering with order-
ing constraints in linear time. The work presented in this chapter was conducted under
the supervision of Prof. Philip Torr and As.Prof. Pawan Kumar, during my visit at the Torr
Vision Group at the University of Oxford, from 4th July 2016 to 4th December 2016.

Chapter 6. We conclude the thesis by summarizing the works presented in the the-
sis and suggesting a number of possible future directions to extend them.

1.5 Publications

The contributions described in this thesis have previously appeared in the following
publications.
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1.5.1 Under Review

• T. Ajanthan, R. Hartley, and M. Salzmann, Memory Efficient Max Flow for
Multi-label Submodular MRFs, Submitted to Transactions on Pattern Analysis and
Machine Intelligence (PAMI), February 2017.

1.5.2 Conferences

• T. Ajanthan, A. Desmaison, R. Bunel, M. Salzmann, P. H. S. Torr and M. P. Ku-
mar, Efficient Linear Programming for Dense CRFs, The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017.

• T. Ajanthan, R. Hartley, and M. Salzmann, Memory Efficient Max Flow for
Multi-label Submodular MRFs, The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2016.

• T. Ajanthan, R. Hartley, M. Salzmann, and H. Li, Iteratively Reweighted Graph
Cut for Multi-label MRFs with Non-convex Priors, The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2015.



Chapter 2

Background and Preliminaries

The role of this chapter is to provide the fundamentals of Markov random fields and
review some state-of-the-art optimization algorithms. In Section 2.1, we formally
introduce Markov random fields. Section 2.2 discusses binary MRF optimization and
introduces the basic concepts on pseudo-boolean optimization and the min-cut/max-
flow (graph-cut) algorithm. In Section 2.3, we turn to the multi-label MRFs. In this
section, we first review a graph-cut algorithm for multi-label submodular MRFs, and
then formalize move-making algorithms and discuss some useful special cases. Later,
we consider the linear programming relaxation of the discrete MRF problem. In this
case, we discuss a tree-based decomposition algorithm where each subproblem (tree
MRF) is optimally minimized using the message passing algorithm.

2.1 Markov Random Fields

Let X = {X1, . . . , Xn} be a set of random variables taking values in a discrete label
set L, with |L| = `. Let us define the set of indices V = {1, . . . , n}, and for all i ∈ V ,
define the neighbours Ni ⊂ V \ {i}, where j ∈ Ni implies i ∈ Nj.

Definition 2.1.1. The set of joint random variables X = {X1, . . . , Xn} taking values
x = {x1, . . . , xn} with neighbourhood structure {Ni | i ∈ V} constitutes a Markov
Random Field (MRF) if the following conditions are satisfied

1. P(x) > 0 for all x ∈ Ln.

2. P(Xi | XNi) = P(Xi | XV\{i}).

Here, P(x) denotes the joint probability of the random variables X taking values x.

The first condition is required to prove an important theorem about MRFs, which
allows us to represent the MRF using an energy function (discussed subsequently).
The second condition enforces the Markov property, which states that the conditional
probability distribution of a given random variable Xi depends only on the values of
its neighbours.

An MRF is often called an undirected graphical model and represented by an undi-
rected graph G = (V , E) such that

9
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Figure 2.1: Example of an MRF represented by an undirected graph. Here, we used i ∈ V to
denote the nodes. Due to their one-to-one correspondence with the random variable Xi, some
authors denote them with Xi ; i ∈ V . If two nodes are neighbours in the MRF, then they are
connected by an edge in this graph. Here the edges correspond to pairwise cliques. The largest
clique in this graph is a 3-clique: (2, 4, 5).

1. The vertices V (or nodes) are in one-to-one correspondence with the random
variables X , denoted using their indices.

2. There is an undirected edge between i and j if and only if i ∈ Nj.

In this MRF graph, we denote the number of vertices and number of edges with n
and m, i.e., |V| = n and |E | = m. An example of an MRF graph is shown in Figure 2.1.
A clique in a graph is a subset of its vertices such that every two vertices in the subset
are connected by an edge.

We will now state the Hammersley-Clifford theorem [Besag, 1974; Grimmett,
1973] which allows us to represent the MRF using an energy function.

Theorem 2.1.1. Consider a set of random variables X = {X1, . . . , Xn} associated with the
vertices of a graph, and let x = {x1, . . . , xn} be a corresponding set of values. For each clique
C in the graph, let FC(x) be a positive function depending only on the values xi for i ∈ C.
Then the joint probability distribution P(x) defines an MRF on the graph if and only if

P(x) =
1
Z ∏

C∈C
FC(x) , (2.1)

where C is the set of all cliques and Z is a normalizing constant chosen such that ∑x∈Ln P(x) =
1.

Proof. This is a well known theorem. See [Besag, 1974; Grimmett, 1973] for the proof.

Since FC is positive for all C ∈ C, one may define θC(x) = − log(FC(x)), referred
to as clique potentials, then Eq. (2.1) can be written in the following form

P(x) =
1
Z

exp

(
− ∑

C∈C
θC(x)

)
. (2.2)
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(a) 4-connected (b) 8-connected

Figure 2.2: Sparse neighbourhood structures often used in computer vision, left: 4-connected
neighbourhood, often referred to as the grid structure; and right: 8-connected neighbourhood
structure. Here the circles denote the MRF nodes (usually pixels in the image).

The function E(x) = ∑C∈C θC(x) is often referred to as the Gibbs energy function or
simply the energy function of the MRF. A probability distribution P(x) that is written
in the form (2.1) or (2.2) is called a Gibbs distribution. Here, the normalizing constant
Z is often referred to as the partition function and it has the following form

Z = ∑
x∈Ln

exp (−E(x)) . (2.3)

In this thesis, we are particularly interested in pairwise MRFs, i.e., MRFs with max-
imum clique size two. Although this seems restrictive, it can be shown that all MRFs
with arbitrary size cliques have an equivalent pairwise MRF formulation [Yedidia
et al., 2003]. The energy associated with a pairwise MRF takes the following form

E(x) = ∑
i∈V

θi(xi) + ∑
(i,j)∈E

θij(xi, xj) , (2.4)

where θi and θij denote the unary potentials (i.e., data costs) and pairwise potentials
(i.e., interaction costs), respectively. Here, V is the set of vertices, e.g., corresponding
to pixels or superpixels1 in an image, and E is the set of edges, e.g., encoding a 4-
connected or 8-connected grid over the image pixels. See Figure 2.2.

Example 2.1.1. Recall the image inpainting problem discussed in Section 1.1.3. Let
us formulate the corresponding energy function in the form of Eq. (2.4). In this case
the label set is the set of image intensities. Assuming a gray scale image,

L = {0, 1, . . . , 255} . (2.5)

The graph G = (V , E) corresponds to the image grid, i.e., V is the set of pixels
and E has the 4-connected neighbourhood structure (see Figure 2.2). The unary
potentials are defined such that the restored intensity at any pixel should be close to

1A superpixel is a polygonal part of a digital image, larger than a normal pixel, resulting from a
process of its partitioning into multiple segments. Usually the pixels in a superpixel have the same (or
very similar) intensities.
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(a) Input (b) Unary only (c) With pairwise (d) Ground truth

Figure 2.3: An example of image inpainting with (c) and without (b) pairwise potentials.
Note that the pairwise potentials ensure a smooth restoration.

the observed intensity. An example is [Szeliski et al., 2008],

θi(xi) = |I(i)− xi|2 , (2.6)

where I(i) denotes the observed intensity at pixel i. Now, for this choice of unary
term, if there is no pairwise term, then the restored image would be the same as the
input (i.e., noisy). Usually the pairwise term is used as a smoothing cost which has
the following form [Szeliski et al., 2008],

θij(xi, xj) = γij θ(|xi − xj|) , (2.7)

where γij ≥ 0 is a weight depending on the pixels i and j and θ(·) is a non-negative
non-decreasing function. The function θ(·) is often referred to as the regularizer (or
prior). A regularizer commonly used for this problem is,

θ(|xi − xj|) = min(|xi − xj|2, κ) , (2.8)

where κ is the maximum smoothness penalty. An image inpainting example with
the energy formulation discussed above is shown in Figure 2.3.

2.1.1 Conditional Random Fields

Usually in computer vision applications we would like to use energy parameters that
are data dependent. A probabilistic model which allows us to use data dependent
energy parameters is the Conditional Random Field (CRF) [Lafferty et al., 2001]. A
CRF can be defined as follows.

Definition 2.1.2. Consider two finite probability spaces: data D, and labellings Γ (e.g.,
Γ may be the set of labellings Ln). A CRF is a joint probability distribution defined
on Γ × D, such that, for any event d ∈ D, the conditional probability distribution
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P(x | d) is an MRF (as a distribution over x ∈ Γ), with the same neighbourhood
structure for all d ∈ D.

From an optimization point-of-view, the data d is given, and so the problem of op-
timizing the CRF means the task of optimizing the conditional probability distribution
P(x | d), which is an MRF. In fact, apart from defining the probability distribution
P(x | d), the data does not play any role in the optimization process. Therefore, from
the optimization perspective both MRF and CRF models are identical and hence in
this thesis, the term CRF refers to the corresponding MRF.

2.1.2 Optimizing an MRF

In general, optimizing an MRF may imply several meanings, such as finding the
most probable assignment, computing the partition function or finding the marginal
probabilities. In this thesis, we are interested in finding the most probable assignment
or labelling of the MRF, and the term “optimizing an MRF” uniquely refers to this.

In most computer vision applications, we want to find an assignment x that max-
imizes the probability. This is often referred to as the Maximum A Posteriori (MAP)
estimation in the literature. Formally, it requires us to find the labelling x∗ such that

x∗ = argmax
x∈Ln

P(x) , (2.9)

= argmax
x∈Ln

1
Z

exp (−E(x)) ,

= argmin
x∈Ln

E(x) .

The above simplification is due to the fact that the partition function is constant, and
the exponential function is monotone. Now it becomes clear that, optimizing an MRF
is equivalent to an energy minimization problem. Note that the minimization is over
all possible assignments of x and the number of assignments is exponentially large.
Therefore, this is an intractable (NP-hard) problem in general.

2.1.3 MRF Optimization Algorithms

MRF optimization plays an important role in many computer vision applications in-
cluding stereo, inpainting and semantic segmentation [Szeliski et al., 2008; Kappes
et al., 2015]. In fact, this problem is closely related to several interesting combinatorial
optimization problems, such as min-cut [Goemans and Williamson, 1995], multi-way
cut [Dahlhaus et al., 1992] and metric labelling [Boykov et al., 2001; Kleinberg and
Tardos, 2002]. On the other hand, this discrete optimization can be relaxed to a con-
tinuous optimization problem [Chekuri et al., 2004; Kumar et al., 2009], which would
enable us to leverage the well studied convex optimization literature [Bertsekas, 1999;
Boyd and Vandenberghe, 2009]. Furthermore, on the probability domain, MRF opti-
mization (MAP estimation) has an information theoretic interpretation [Wainwright
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et al., 2008] and has wide applicability in areas beyond computer vision and machine
learning.

Even though, optimizing an MRF is NP-hard in general [Boykov et al., 2001],
there are special cases (i.e., restricted classes of pairwise potentials and restricted
graph structures) that can be solved optimally in polynomial time. In particular, if a
binary MRF energy is submodular (defined later in Definition 2.2.2), it is equivalent to
a min-cut (sometimes called graph-cut) problem [Kolmogorov and Zabin, 2004] and
there are many polynomial time algorithms to solve it [Ford and Fulkerson, 1962;
Boykov and Kolmogorov, 2004]. This submodularity condition was later extended to
multi-label MRFs [Schlesinger and Flach, 2006], hence such MRFs are solvable using
a graph-cut algorithm [Ishikawa, 2003]. On the other hand, if the MRF is defined on a
tree (an acyclic graph), then it can be solved using a message passing algorithm [Pearl,
1988].

Optimal algorithms are available only for certain restricted classes of MRFs and
for general MRFs one has to settle with an approximate algorithm. The basic idea
of designing an approximate algorithm is to utilize the optimal algorithms in some
framework, such as in a move-making algorithm [Boykov et al., 2001] or a decomposition-
based algorithm [Wainwright et al., 2005; Komodakis et al., 2011] in the continuous
domain. In the former, the idea is to reduce the original MRF into a sequence of
binary (or multi-label) submodular problems and solve them using a graph-cut al-
gorithm. In the latter, the MRF is decomposed into optimally solvable subproblems
(e.g., tree MRFs) and each subproblem is tackled independently. In most cases, the
approximate algorithms provide a bound on their solution relative to the optimal
solution.

The remainder of this chapter is dedicated to the state-of-the-art MRF optimiza-
tion algorithms (both exact and approximate) and their basic theories are introduced
in the relevant sections. In the next section, we discuss binary MRFs and their graph
solvability. Next, we turn to the multi-label MRFs. In this section, we first review
a graph-cut algorithm for multi-label submodular MRFs, and then formalize move-
making algorithms and discuss useful special cases. Later, we consider the linear
programming relaxation of the discrete problem. In this case, we will discuss a
tree-based decomposition algorithm where each subproblem (tree MRF) is optimally
minimized using the message passing algorithm. Finally, we briefly review other
continuous relaxations based methods including the mean-field algorithm.

2.2 Binary MRF Optimization

Let us recall the energy function associated with a pairwise MRF (2.4),

E(x) = ∑
i∈V

θi(xi) + ∑
(i,j)∈E

θij(xi, xj) , (2.10)

where xi ∈ L for all i ∈ V . For a binary MRF, the label set L = {0, 1}. Examples of
binary MRFs include interactive binary image segmentation [Boykov and Jolly, 2001]
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and foreground-background segmentation. More than their applications, studying
binary MRFs is important to understand the basic concepts of MRF optimization
and to design move-making style approximate algorithms.

The idea is to formulate the minimization of the above energy function (2.10) as
a min-cut problem and understand the required properties for it to be graph solvable,
meaning it can be minimized optimally, using a graph-cut (or max-flow) algorithm
in polynomial time [Ford and Fulkerson, 1962].

To this end, let us first introduce the concepts on pseuo-boolean optimization and
submodular functions.

2.2.1 Pseudo-Boolean Functions

Definition 2.2.1. Define B = {0, 1}. A pseudo-boolean function is a mapping f : Bn →
IR, where IR is the set of real numbers. A quadratic pseudo-boolean function is a pseudo-
boolean function with maximum degree two.

Now, we will write the energy function (2.10) as a quadratic pseudo-boolean
function. Note that the variables xi ∈ B for all i ∈ L. We denote the complement of
xi with x̄i, i.e., x̄i = 1− xi. This means if xi = 1, then x̄i = 0 and vice versa. With this
notation, we can write Eq. (2.10) as

E(x) = ∑
i∈V

(θi:0 x̄i + θi:1 xi) + ∑
(i,j)∈E

(
θij:00 x̄i x̄j + θij:01 x̄i xj + θij:10 xi x̄j + θij:11 xi xj

)
.

(2.11)
Here, we use the shorthand θi:λ = θi(λ) and θij:λµ = θij(λ, µ). It is clear that Eq. (2.11)
is a quadratic pseudo-boolean function.

In general minimizing a quadratic pseudo-boolean function is an NP-hard prob-
lem [Boros and Hammer, 2002], meaning that there does not exist a polynomial time
algorithm for finding the minimum (unless P = NP). However, we will now see a
useful special case, where an efficient polynomial time algorithm can be used to find
the minimum.

2.2.2 Submodular Functions

The submodularity condition is usually defined on set functions [Fujishige, 2005].
However, due to the one-to-one correspondence between set functions and pseudo-
boolean functions, one can define it as follows.

Definition 2.2.2. A pseudo-boolean function f : Bn → IR is submodular if

f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) , (2.12)

for all x, y ∈ Bn. Here ∨ and ∧ are componentwise logical OR and AND operations.
For a quadratic pseudo-boolean function with n = 2, the submodularity definition
reduces to

f (0, 1) + f (1, 0) ≥ f (0, 0) + f (1, 1) . (2.13)
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Now, it is easy to see that the energy function (2.11) is submodular if the pairwise
terms satisfy the following inequality

θij:01 + θij:10 ≥ θij:00 + θij:11 , (2.14)

for all (i, j) ∈ E . Note that there is no condition on the unary potentials and hence,
they can be arbitrary.

Example 2.2.1. Consider a binary segmentation problem where foreground is de-
noted with label 1 and background with label 0. Here the unary potentials are based
on the image intensities and possibly learned from the dataset. To have a smooth
segmentation, the pairwise potentials usually have the following form (see Exam-
ple 2.1.1),

θij(xi, xj) = γij θ(|xi − xj|) , (2.15)

where γij ≥ 0 is a weight depending on the pixels i and j and θ(·) is a non-negative
non-decreasing function. For an MRF with binary labels,

θij:00 = θij:11 = γij θ(0) , (2.16)

θij:01 = θij:10 = γij θ(1) ,

where θ(0) ≤ θ(1). Therefore, from Eq. (2.14), such an MRF is submodular. Further-
more, these pairwise potentials are often referred to as attractive potentials.

The significance of submodularity is that, such an energy function is graph solv-
able. Let us now discuss the graph representability of quadratic pseudo-boolean
functions and then turn to the max-flow algorithm.

2.2.3 Graph Representability

In this section, we discuss how a quadratic pseudo-boolean function can be repre-
sented by an st-graph.

Definition 2.2.3. An st-graph is a weighted directed graph Ĝ = (V̂ ∪ {0, 1}, Ê+, φ).
Here V̂ is the set of vertices or nodes and {0, 1} are special nodes2, called source
and terminal respectively. Here Ê+ is the set of directed edges and the undirected
edges are denoted with Ê , where (i, j) ∈ Ê means (i, j) ∈ Ê+ and (j, i) ∈ Ê+. The
set of edge weights (or capacities) are denoted with φ, which has a real value φij
for each directed edge (i, j) ∈ Ê+. Furthermore, we introduce notations Êe and Êι,
where Ê = Êe ∪ Êι, to denote the external edges (i.e., those connecting the source or
the terminal) and the internal edges (i.e., Êι ⊂ V̂ × V̂).

Definition 2.2.4. A partition or cut of an st-graph is a division of the vertices V̂ into
two disjoint subsets V̂0 and V̂1, such that 0 ∈ V̂0 and 1 ∈ V̂1. The cost of the partition

2Some authors denote these nodes as s and t.
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Figure 2.4: Example of an st-graph. Here, the cut ({xi}, {xj}) corresponds to the labelling
x = {0, 1} and the cost of the cut is CĜ({xi}, {xj}) = 2 + 1 + 2 = 5.

is the sum of weights on the edges passing from V̂0 to V̂1,

CĜ(V̂0, V̂1) = ∑
i∈V̂0,j∈V̂1

φij . (2.17)

Example of an st-graph is shown in Figure 2.4. An st-graph represents the binary
labelling in a different way. In fact, each labelling x is determined by the partition
(V̂0, V̂1), specifically, xi = 1 if and only if i ∈ V̂1. Then the function value for any
labelling is equal to the cost of the corresponding partition,

f (x) = CĜ(V̂0, V̂1) . (2.18)

Consider an edge (i, j) ∈ Ê+ such that i ∈ V̂0 and j ∈ V̂1. This edge contributes to the
cost of the partition for the labelling xi = 0 and xj = 1. Therefore, an edge (i, j) in
the st-graph represents the term φij x̄i xj. Similarly, the edges from the source (node
0) and the edges to the terminal (node 1) represent the linear terms. In particular, for
all i ∈ V̂ ,

φ0i 0̄ xi = φ0i xi edge 0→ i , (2.19)

φi1 x̄i 1 = φi1 x̄i edge i→ 1 ,

φ01 0̄ 1 = φ01 edge 0→ 1 .

Note that the constant term is represented by an edge 0 → 1. Now, we can write
the quadratic pseudo-boolean function represented by an st-graph in the following
form,

f (x) = φ01 + ∑
i∈V̂

(φ0i xi + φi1 x̄i) + ∑
(i,j)∈Ê+ι

φij x̄i xj . (2.20)

From Eq. (2.18), minimizing f (x) amounts to finding the minimum cut (shortly min-
cut) solution in the st-graph. To obtain the min-cut solution in polynomial time,
the edge capacities need to be non-negative [Ford and Fulkerson, 1962]. Note that
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Eq. (2.20) can be reparametrized (using the identity x̄i = 1− xi) to make the coeffi-
cients of the linear terms non-negative. In particular, for all i ∈ V̂ , φ0i, φi1 ≥ 0 and
φ01 may be negative. However, the constant term does not play any role in the mini-
mization and hence it can be removed from the graph. For the quadratic terms, this
reparametrization trick do not make any coefficients non-negative and they need to
be non-negative to start with. Let us state it as a theorem.

Theorem 2.2.1. Let f (x) be a quadratic pseudo-boolean function represented by an st-graph
as in Eq. (2.20). If φij ≥ 0 for all (i, j) ∈ Ê+ι , then minx f (x) can be obtained in polynomial
time.

Proof. This is the standard result of graph solvability of quadratic pseudo-boolean
functions. See [Ford and Fulkerson, 1962; Boros and Hammer, 2002].

2.2.3.1 Representing the Binary MRF Energy in an st-graph

We now discuss how one can represent the energy function (2.11) in an st-graph.
To this end, the set of vertices V and the set of edges E of the MRF graph have
one-to-one correspondence with the set V̂ and Êι of the st-graph. Specifically,

V̂ = V , (2.21)

Êι = E .

Additionally, there are external edges in the st-graph connecting the vertices V̂ with
the source and the terminal nodes. Now, it remains to find the edge capacities that
would represent the energy function exactly for all label assignments.

Let us now rewrite the energy function (2.11) in the form of Eq. (2.20). This can
be done using the identity x̄i = 1− xi for all i ∈ V .

E(x) = ∑
i∈V

(θi:0 x̄i + θi:1 xi) + ∑
(i,j)∈E

(
θij:00 x̄i x̄j + θij:01 x̄i xj + θij:10 xi x̄j + θij:11 xi xj

)
,

(2.22)

= ∑
i∈V

(θi:0 x̄i + θi:1 xi) + ∑
(i,j)∈E

(
θij:00 x̄i + θij:10 xi + (θij:11 − θij:10) xj

)
+ ∑

(i,j)∈E
(θij:01 + θij:10 − θij:00 − θij:11) x̄i xj .

The edge capacities φ can be easily derived from the above equation. An st-graph
representation of a unary term and a pairwise term are shown in Figure 2.5.

From Theorem 2.2.1, to minimize this energy function optimally, the coefficients
of the quadratic terms need to be non-negative. Note that, for a submodular quadratic
pseudo-boolean function,

φij = θij:01 + θij:10 − θij:00 − θij:11 ≥ 0 , (2.23)

for all (i, j) ∈ E . Therefore, if the binary MRF energy is submodular, then the mini-
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Figure 2.5: The st-graph representation of a binary MRF energy function. Specifically, the
unary term (left) for the node i ∈ V and the pairwise term (right) for the edge (i, j) ∈ E are
represented in the st-graph, for the energy function (2.22).

mum energy labelling can be obtained in polynomial time using a min-cut algorithm
in the corresponding st-graph.

2.2.4 Min-Cut and Max-Flow

In this section, we establish the connection between the min-cut and max-flow prob-
lems. To this end, let us first define a flow in an st-graph as follows.

Definition 2.2.5. Given an st-graph Ĝ = (V̂ ∪ {0, 1}, Ê+, φ), a flow is a mapping
ψ : Ê+ → IR, denoted by ψij for the edge (i, j) ∈ Ê+, that satisfies the anti-symmetry
condition ψij = −ψji for all (i, j) ∈ Ê . A flow is called conservative3 if the total flow
into a node is zero for all nodes except for the source and the terminal, i.e., for all
i ∈ V̂ ,

∑
(j,i)∈Ê+

ψji = 0 . (2.24)

Once a flow ψ is passed in an st-graph, the edge capacities φ are updated as,

φ′ = φ−ψ , (2.25)

where φ′ are called the residual capacities.

Definition 2.2.6. A flow ψ is called permissible if φij − ψij ≥ 0 for all (i, j) ∈ Ê+.

Note that, if a permissible flow is passed in an st-graph with non-negative capac-
ities, then the capacities remain non-negative.

As we have seen in the previous section, finding the minimum of a submodular
quadratic pseudo-boolean function is the same as finding the min-cut solution of the
corresponding st-graph. This can be achieved by finding the maximum flow (shortly

3A conservative flow is often referred to as a flow in the literature.
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max-flow) from the source (0 node) to the terminal (1 node). In fact, min-cut and
max-flow are dual LP problems. We now state the well-known min-cut/max-flow
theorem [Ford and Fulkerson, 1962] below.

Theorem 2.2.2. Consider a submodular quadratic pseudo-boolean function f (x) and let ψ

be a permissible conservative flow on the corresponding st-graph. Then,

min
x

f (x) = max
ψ

∑
(0,i)∈Ê+

ψ0i . (2.26)

Proof. This is a result of the duality between the max-flow and min-cut problems
and can be proven by computing the Lagrange dual of one of them. See [Ford and
Fulkerson, 1962].

Max-Flow Algorithms. Broadly speaking, there are three different kinds of max-
flow algorithms: those relying on finding augmenting paths [Ford and Fulkerson,
1962], the push-relabel approach [Goldberg and Tarjan, 1988] and the pseudo-flow
techniques [Chandran and Hochbaum, 2009]. The polynomial time guarantee of
max-flow was first proven in [Edmonds and Karp, 1972] by modifying the augment-
ing path algorithm, to always find the shortest augmenting path. There are numerous
max-flow implementations available for general purpose as well as specific to com-
puter vision applications. Among them, the specialized implementations are signif-
icantly faster in practice. In particular, the BK method [Boykov and Kolmogorov,
2004] is arguably the fastest implementation for 2D and sparse 3D graphs arising
from computer vision applications. Recently, for dense problems, the EIBFS algo-
rithm [Goldberg et al., 2015] was shown to outperform the BK method.

2.2.5 Non-Submodular MRFs

Non-submodular MRF energy functions can also be represented by an st-graph, but
the graph would contain negative edges. Therefore the standard max-flow tech-
niques cannot be applied. However, such an energy function can be approximated
using a roof-dual technique [Boros and Hammer, 2002]. Such a technique is usually
known as Quadratic Pseudo-Boolean Optimization (QPBO) and it can be used to ob-
tain a partially optimal labelling. In other words, the optimal labels can be obtained
only for a subset of nodes and the unlabelled nodes are usually assigned based on
some heuristics. We refer the interested reader to [Boros and Hammer, 2002] for a
detailed treatment on pseudo-boolean optimization.

2.3 Multi-Label MRF Optimization

In this section, we consider a more useful MRF, where the label set is no longer binary.
Here, without loss of generality we assume, that the label set L = {0, 1, . . . , `− 1}. In
contrast to binary MRFs, multi-label MRFs have a variety of applications in computer
vision.
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Figure 2.6: Example of a multi-label graph. Here the nodes represent the unary potentials
θi:λ and the edges represent the pairwise potentials θij:λµ.

2.3.1 Multi-Label Graph

An alternative way of representing an MRF labelling x ∈ Ln is by defining indicator
variables xi:λ ∈ {0, 1}, where xi:λ = 1 if and only if xi = λ. For a given i, exactly
one of xi:λ ; λ ∈ L can have value 1. In terms of the indicator variables, the energy
function (2.4) may be written as

E(x) = ∑
i∈V

∑
λ∈L

θi:λ xi:λ + ∑
(i,j)∈E

∑
λ,µ∈L

θij:λµ xi:λ xj:µ . (2.27)

Here, we use the shorthand θi:λ = θi(λ) and θij:λµ = θij(λ, µ). One may define a
graph, called a multi-label graph, with nodes denoted by Xi:λ ; i ∈ V , λ ∈ L, as shown
in Figure 2.6. This graph represents the energy function. Given a labelling x, the
value of the energy function is obtained by summing the weights on all nodes with
xi:λ = 1 (in other words xi = λ) plus the weights θij:λµ such that xi:λ = 1 and xj:µ = 1.
This multi-label graph representation of the energy function (2.27) will be useful to
understand some properties of the energy as well as the algorithms used to minimize
it.

2.3.2 Ishikawa Algorithm

Ishikawa [Ishikawa, 2003] introduced a method to solve (minimize the energy) of
multi-label MRFs with convex edge terms. This method can be easily extended
[Schlesinger and Flach, 2006] to energy functions satisfying a multi-label submodu-
larity condition, analogous to the submodularity condition for MRFs with binary
labels.

Multi-Label Submodularity. An energy function can be minimized optimally if it
satisfies the multi-label submodularity condition [Schlesinger and Flach, 2006] de-
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Figure 2.7: The multi-label submodularity condition illustrated using the multi-label graph.
The sum of red edge capacities must be greater than or equal to the sum of black edge capacities.

fined below.

Definition 2.3.1. The energy function given in Eq. (2.27) is multi-label submodular if
the pairwise potentials satisfy

θij:λ′µ + θij:λµ′ − θij:λµ − θij:λ′µ′ ≥ 0 , (2.28)

for all λ < λ′ and µ < µ′. This condition assumes an ordered label set.

Note that the multi-label submodularity condition (2.28) can be equivalently stated
as,

θij:λ+1µ + θij:λµ+1 − θij:λµ − θij:λ+1µ+1 ≥ 0 , (2.29)

for λ, µ ∈ {0, . . . `− 2}. This can be easily verified using induction. Figure 2.7 shows
this condition graphically, in the multi-label graph.

Example 2.3.1. Consider pairwise potentials of the form,

θij:λµ = γij θ(|λ− µ|) , (2.30)

where γij ≥ 0 and θ(·) is a convex function4. Substituting this in Eq. (2.29) and
neglecting γij,

θ(|λ− µ + 1|) + θ(|λ− µ− 1|)− 2 θ(|λ− µ|) ≥ 0 . (2.31)

This is true for a convex function θ(·). These pairwise potentials are referred to
as convex priors and they constitute a multi-label submodular energy function. See
Figure 2.8 for some examples of convex priors used in computer vision.

Ishikawa [Ishikawa, 2003] introduced a different way of representing the multi-
label energy function. The basic idea behind the Ishikawa construction is to encode
the label Xi = xi of a vertex i ∈ V using binary-valued random variables Ui:λ, one

4A function f : X → IR is convex if for all x, y ∈ X and t ∈ [0, 1], f (t x + (1− t) y) ≤ t f (x) + (1−
t) f (y) [Boyd and Vandenberghe, 2009]. Furthermore, if f is convex, then − f is concave.
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(a) Quadratic (b) Linear (c) Huber

Figure 2.8: Examples of convex priors: a) θ(|δ|) is a quadratic function; b) a linear function;
and c) a Huber function (Eq. (2.43)).

for each label λ ∈ L. In particular, the encoding is defined as ui:λ = 1 if and only if
xi ≥ λ, and 0 otherwise. The Ishikawa graph is then an st-graph (see Definition 2.2.3)
Ĝ = (V̂ ∪ {0, 1}, Ê+, φ), where the set of nodes and the set of edges are defined as
follows,

V̂ = {Ui:λ | i ∈ V , λ ∈ {1, · · · , `− 1}} , (2.32)

Ê+ = Ê+v ∪ Ê+c ,

Ê+v = {(Ui:λ, Ui:λ±1) | i ∈ V , λ ∈ {1, · · · , `− 1}} ,

Ê+c = {(Ui:λ, Uj:µ), (Uj:µ, Ui:λ) | (i, j) ∈ E , Ui:λ, Uj:µ ∈ V̂} ,

where Ê+v is the set of vertical edges and Ê+c is the set of cross edges. Note that the
directed edges are denoted with �+. We denote the Ishikawa edges by eij:λµ ∈ Ê+
and their capacities by φij:λµ. We also denote by ei:λ the downward edge (Ui:λ+1, Ui:λ).
An example of an Ishikawa graph is shown in Figure 2.9.

From the definition of Ui:λ above, we find the basic relation

xi:λ = ui:λ − ui:λ+1 , (2.33)

= ūi:λ+1 − ūi:λ ,

= ūi:λ+1 ui:λ ,

which also entails the relation ui:λ ≥ ui:λ+1. In addition, since xi ≥ 0, it follows
that ui:0 = 1. Thus, node Ui:0 is identified with the vertex 1. Furthermore, since
xi < `, we may identify ui:` = 0. In other words, nodes Ui:0 may be identified with
node 1 and Ui:` with node 0, which is useful in interpreting Eq. (2.33) for all λ ∈ L .
Consequently, only the nodes Ui:λ for λ ∈ {1, · · · , `− 1} are included in the set V̂ .

In an st-graph, a labeling x is represented by a cut (see Definition 2.2.4) in the
graph. Therefore, in the Ishikawa graph, if the downward edge ei:λ is in the cut, then
vertex i takes label λ. In MRF energy minimization, each vertex i takes exactly one
label xi, which means that exactly one edge ei:λ must be in the min-cut of the Ishikawa
graph. This is ensured by having infinite capacity for each upward edge eii:λλ+1, i.e.,
φii:λλ+1 = ∞ for all i ∈ V and λ ∈ L. Since the energy of a labelling is represented by
a cut in the Ishikawa graph, the capacities φ and the energy parameters θ are related
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Figure 2.9: Example of an Ishikawa graph. The graph incorporates edges with infinite ca-
pacity from Ui:λ to Ui:λ+1, not shown in the graph. Here the cut corresponds to the labeling
x = {1, 2} where the label set L = {0, 1, 2, 3}.

as follows,

θi:λ = φii:λ+1λ = φi:λ , (2.34)

θij:λµ = ∑
λ′>λ
µ′≤µ

φij:λ′µ′ + ∑
λ′≤λ
µ′>µ

φji:µ′λ′ .

Now, we need to determine the capacities φ from the energy parameters θ. To this
end, one can work out how an energy function of the form (2.27) may be written
in terms of the variables ui:λ, and hence encoded in an Ishikawa graph. Given the
energy function (2.27), one wishes to write it in the form representable by an st-graph
(see Section 2.2.3),

E(x) = φ01 + ∑
i∈V
λ∈L

φi:λ ūi:λ+1 ui:λ + ∑
(i,j)∈E
λ,µ∈L

φij:λµ ūi:λ uj:µ . (2.35)

To this end, we substitute xi:λ = ūi:λ+1 ui:λ and

xi:λ xj:µ = (ūi:λ+1 − ūi:λ) (uj:µ − uj:µ+1) , (2.36)

= ūi:λ+1 uj:µ + ūi:λ uj:µ+1 − ūi:λ uj:µ − ūi:λ+1 uj:µ+1 ,

which applies for all λ, µ ∈ L provided ui:0 is interpreted as 1 and ui:` as 0. This
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leads to the expression,

E(x) = ∑
i∈V
λ∈L

θi:λ ūi:λ+1 ui:λ + ∑
(i,j)∈E
λ,µ∈L

θij:λµ (ūi:λ+1 uj:µ + ūi:λ uj:µ+1− ūi:λ uj:µ− ūi:λ+1 uj:µ+1) ,

(2.37)
which is of the form (2.35) with

φi:λ = θi:λ , (2.38)

φij:λµ = θij:λµ−1 + θij:λ−1µ − θij:λµ − θij:λ−1µ−1 .

In this formula, the value of ui:` is to be interpreted as 0, which means that any terms
involving ui:` is zero. In addition, uj:0 = 1, so similarly any terms involving ūj:0 is
zero. Furthermore, any term involving uj:−1 is not defined and hence will be omitted.
By omitting the undefined or zero terms, for all λ, µ ∈ {1, . . . , `− 1},

φij:λ0 = θij:λ−10 − θij:λ0 , (2.39a)

φij:`µ = θij:`−1µ − θij:`−1µ−1 , (2.39b)

φij:`0 = θij:`−10 , (2.39c)

φij:λµ = θij:λµ−1 + θij:λ−1µ − θij:λµ − θij:λ−1µ−1 . (2.39d)

Note that the equations (2.39a) and (2.39b) correspond to linear terms and Eq. (2.39c)
corresponds to the constant term, since,

φij:λ0 ūi:λ uj:0 = φij:λ0 ūi:λ 1 , (2.40)

φij:`µ ūi:` uj:µ = φij:`µ 0̄ uj:µ ,

φij:`0 ūi:` uj:0 = φij:`0 0̄ 1 .

Therefore, the only quadratic terms are of the form Eq. (2.39d), and they are non-
negative for a multi-label submodular energy function. All the linear terms can be
made non-negative by reparametrization (see Section. 2.2.3.1). At this point, we have
shown that a multi-label submodular energy function can be encoded in an st-graph
(called an Ishikawa graph) where the edge capacities are all non-negative. Hence, as
discussed in Section 2.2.4, the min-cut solution can be obtained in polynomial time
using the max-flow algorithm.

Note that, the Ishikawa graph has |V̂ | = O(n `) nodes and |Ê | = O(n `+ m `2)
edges, where |V| = n and |E | = m. For a sparse graph, i.e., m = O(n), the space
complexity of the Ishikawa graph is O(n `2).

Convex Priors. In this section, we are interested in an MRF with convex priors (see
Example 2.3.1), i.e.,

θij:λµ = γij θ(|λ− µ|) , (2.41)

where γij ≥ 0 and θ(·) is a convex function with θ(0) = 0. This is not a restriction as
θ(·) is non-decreasing and a constant can be subtracted from the pairwise potentials
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to make θ(0) = 0. In this case, the Ishikawa edge capacities take the following
form [Ishikawa, 2003],

φi:λ = θi:λ , (2.42)

φij:λµ =


0 if λ < µ
γij
2 θ”(|λ− µ|) if λ = µ

γij θ”(|λ− µ|) if λ > µ

,

where θ”(|δ|) = θ(|δ + 1|) + θ(|δ− 1|)− 2 θ(|δ|), which is non-negative for a convex
function θ(·). Note that, if θ(·) is linear, then θ”(δ) is zero except for δ = 0. Hence,
the space complexity of the Ishikawa graph reduces to O(n `). Furthermore, in case
of a Huber function [Huber, 1964], i.e.,

θ(|δ|) =
{ 1

2 |δ|2 if |δ| ≤ κ

κ
(
|δ| − 1

2 κ
)

otherwise ,
(2.43)

where κ is the Huber value, the space complexity is O(n κ `). However, in general,
the space complexity of the Ishikawa graph is O(n `2).

This quadratic complexity in the number of labels makes the Ishikawa algorithm
inapplicable to realistic problems with many pixels and labels, due to excessive mem-
ory requirement. In Chapter 3, we introduce an algorithm, named Memory Efficient
Max-Flow (MEMF), that has linear space complexity in `. Consequently, our MEMF
algorithm makes it possible to optimally solve multi-label submodular MRFs involv-
ing large numbers of pixels and labels on a standard computer.

2.3.3 Move-Making Algorithms

So far, we have discussed submodular MRF energy functions and exact algorithms to
minimize them. In this section, we discuss a family of approximate algorithms that
make use of exact optimization techniques to efficiently minimize a more general
class of MRF energies.

We first characterize the family of move-making algorithms and then turn to use-
ful special cases. A move-making algorithm iteratively updates the current labelling
of the multi-label MRF, by minimizing a surrogate energy (usually a binary MRF en-
ergy). An iteration is called a move, and each move decreases the original multi-label
energy function.

Let us recall the energy function associated with a multi-label pairwise MRF (2.4),

E(x) = ∑
i∈V

θi(xi) + ∑
(i,j)∈E

θij(xi, xj) , (2.44)

where xi ∈ L = {0, 1, . . . , `− 1}. The binary label associated with a move is denoted
with ui ∈ {0, 1} for all i ∈ V . For each i, the value of ui determines a move in the
original MRF, which is defined by a move-function. In fact, in a typical move-making
algorithm, it is necessary to apply a sequence of different moves. Therefore such
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move-functions are usually parametrized.

Definition 2.3.2. A set of move-functions ρν, parametrized by ν, are defined such that
each ρν is a function,

xt+1
i = ρν

(
xt

i , ui
)

, (2.45)

for all i ∈ V . Here, xt
i is the assignment of the random variable Xi at iteration t

and ui is the binary label. Furthermore, for some value of ui, the label xi must be
unchanged, i.e.,

xt+1
i = ρν(xt

i , ui) = xt
i . (2.46)

Usually, for a given parameter ν, the move-function takes the following form,

xt+1
i = ρν

(
xt

i , ui
)
=

{
x0

i if ui = 0
x1

i if ui = 1 ,
(2.47)

where x0
i , x1

i ∈ L depend on the current label xt
i and the parameter ν. One can write

this in vector form as
xt+1 = ρν

(
xt, u

)
. (2.48)

Now, one can write the energy function associated with the move as

Eρν(u) = E(xt+1) = E
(
ρν

(
xt, u

))
. (2.49)

Note that the above energy function is over the binary variables u. At each iter-
ation t, the optimal move is computed by minimizing the above surrogate energy
and the labelling xt+1 is updated. A complete move-making algorithm is given in
Algorithm 2.1.

From Algorithm 2.1, it is evident that the surrogate energy must be easy to mini-
mize. The obvious choice would be submodular functions. Even though this choice
would restrict the multi-label energy functions that can be minimized using a move-
making algorithm, different choices of move-function (or surrogate energy) would let
us handle different multi-label energy functions. Furthermore, since ρν(xt

i , ui) = xt
i

for some ui (see Definition 2.3.2), by finding optimal moves, move-making algorithms
guarantee a monotonic decrease of the multi-label energy function.

We will now describe two examples of move-making algorithms that differ only
by the choice of the move functions.

2.3.3.1 α-expansion

The α-expansion algorithm was introduced for the metric-labelling problem in [Boykov
et al., 2001]. In addition to being fast, it also provides an approximation bound on
the solution obtained by it.

Given the current labelling xt and a label α ∈ L, during an iteration of α-
expansion, each node i is given a choice to switch to the new label α or retain its
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Algorithm 2.1 A Move-Making Algorithm

Require: ρν for all ν . The set of move-functions
x0 . Initial solution
repeat

for each ρν from a given set of parameters do
u∗ ← argmin

u
E
(
ρν

(
xt, u

))
. Minimize the binary energy

xt+1 ← ρν

(
xt, u∗

)
. Update labelling

end for
until E(xt+1) cannot be decreased any further
return xt+1

(a) Current labelling (b) After green expansion

Figure 2.10: Example of an α-expansion iteration. Given the current labelling (left), the
green label is expanded to obtain a lower energy labelling (right).

current label. See Figure 2.10. Hence, the set of move-functions can be defined as

xt+1
i = ρα

(
xt

i , ui
)
=

{
xt

i if ui = 0
α if ui = 1 .

(2.50)

Here, the move-function is parametrized by α ∈ L. The energy associated with the
binary optimization problem can be written as,

Eα(u) = E
(
ρα

(
xt, u

))
, (2.51)

= ∑
i∈V

θα
i (ui) + ∑

(i,j)∈E
θα

ij(ui, uj) ,

where the energy parameters θα depend on the current labelling xt. Let us now
derive these energy parameters. Consider the unary term θα

i (ui). From Eq. (2.50), it
is clear that

θα
i (0) = θi(xt

i ) , (2.52)

θα
i (1) = θi(α) .

Let us now turn to the pairwise terms. Similarly, from the move-function, we can
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Figure 2.11: The st-graph construction for the α-expansion algorithm. Note that the graph
construction is very similar to Figure 2.5, where label 1 is replaced with α and 0 is replaced
with the current label xt

i .

write

θα
ij(0, 0) = θij(xt

i , xt
j) , (2.53)

θα
ij(0, 1) = θij(xt

i , α) ,

θα
ij(1, 0) = θij(α, xt

j) ,

θα
ij(1, 1) = θij(α, α) .

Note that, for the binary energy function (2.51) to be submodular, the pairwise terms
must satisfy

θα
ij(0, 1) + θα

ij(1, 0) ≥ θα
ij(0, 0) + θα

ij(1, 1) , (2.54)

θij(xt
i , α) + θij(α, xt

j) ≥ θij(xt
i , xt

j) + θij(α, α) ,

for all (i, j) ∈ E and α ∈ L. Hence, the optimal α-expansion move can be computed
for any multi-label MRF that satisfies the above condition. The corresponding st-
graph construction for α-expansion is given in Figure 2.11. See Section 2.2 for more
detail on binary MRF optimization.

Metric Potentials. We consider pairwise potentials of the form,

θij(λ, µ) = γij θ(λ, µ) , (2.55)

where γij ≥ 0 and θ(·, ·) is a metric distance function.

Definition 2.3.3. A distance function θ : L× L → IR+ is called a metric if it satisfies
the following conditions,

1. θ(λ, µ) ≥ 0 for all λ, µ ∈ L.
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(a) Truncated linear (b) Logarithmic (c) Truncated quadratic

Figure 2.12: Examples of metric and semi-metric potentials: a) θ(|δ|) is a truncated linear
function; b) a logarithmic function and c) a truncated quadratic function. Here, (a) and (b)
are concave and hence metric, and (c) is a semi-metric but not a metric. Note that the plot is
given for δ ≥ 0.

2. θ(λ, µ) = 0 if and only if λ = µ.

3. θ(λ, µ) = θ(µ, λ) for all λ, µ ∈ L.

4. θ(λ, δ) + θ(δ, µ) ≥ θ(λ, µ) for all λ, µ, δ ∈ L.

The last condition is referred to as the triangle inequality. A distance function satisfy-
ing all the above properties except the triangle inequality is called a semi-metric.

Note that a non-negative function of the form θ(|λ − µ|) is a metric if θ(·) is
concave. Such functions are often referred to as concave priors. See Figure 2.12 for
examples of metric and semi-metric distance functions. Note that any metric func-
tion is also a semi-metric. Furthermore, in case of metric pairwise potentials, the
submodular condition (2.54) reduces to the triangle inequality,

θij(xt
i , α) + θij(α, xt

j) ≥ θij(xt
i , xt

j) + θij(α, α) , (2.56)

θij(xt
i , α) + θij(α, xt

j) ≥ θij(xt
i , xt

j) .

Therefore the optimal α-expansion move can be computed using the max-flow algo-
rithm. Furthermore, for such an MRF, the solution obtained by α-expansion is within

a multiplictive bound of 2 c, where c = maxλ 6=µ θ(λ,µ)
minλ 6=µ θ(λ,µ) .

2.3.3.2 Convex α-expansion

Let us now discuss a different expansion algorithm that makes optimal moves for a
multi-label submodular MRFs. Note that, even though Ishikawa algorithm is optimal
in this case, this algorithm can be used to quickly approximate the optimal solution,
with a fraction of resources (memory and computation power) [Carr and Hartley,
2009]. Since pairwise MRFs with convex priors and ordered label set are mutli-label
submodular, this algorithm got its name.
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Figure 2.13: An example binary labelling problem of convex α-expansion, where xt
i = 0 and

xt
j = 3 and α = 2 (left) and corresponding label proposals from Eq. (2.58) (right). Note that,

for a multi-label submodular function, the sum of red edge weights are greater than the sum
of black edge weights (see Figure 2.7). Hence, the binary labelling problem is submodular.

The set of move-functions of convex α-expansion are defined as follows,

xt+1
i = ρα

(
xt

i , ui
)
=

{
min(xt

i , α) if ui = 0
max(xt

i , α) if ui = 1 .
(2.57)

Similarly to the original α-expansion, the move-function is parametrized by α ∈ L.
Furthermore, the binary energy associated with this optimization problem has the
same form as Eq. (2.51) and one can derive the unary and the pairwise terms in a
similar manner. For convenience, let us define x0 and x1 below. For all i ∈ V ,

x0
i = min(xt

i , α) , (2.58)

x1
i = max(xt

i , α) .

Now, for the binary energy function to be submodular, the pairwise term must satisfy

θij(x0
i , x1

j ) + θij(x1
i , x0

j ) ≥ θij(x0
i , x0

j ) + θij(x1
i , x1

j ) , (2.59)

for all (i, j) ∈ E . This condition is graphically depicted in Figure 2.13. Note that
the binary energy function is submodular, if the original energy function (2.44) is
multi-label submodular. Therefore, for a multi-label submodular energy function,
the optimal expansion move can be computed.

2.3.3.3 Other Move-Making Algorithms

There are many other move-making algorithms that can handle different pairwise
potentials. For example, αβ-swap [Boykov et al., 2001] finds the optimal move for
semi-metric pairwise potentials. Furthermore, multi-label swap and expansion [Vek-
sler, 2012; Torr and Kumar, 2009] can handle truncated convex priors. On the other
hand, FastPD [Komodakis et al., 2008] generalizes α-expansion by formulating it as
a primal-dual algorithm, and improves its efficiency by utilizing the dual variables
for the optimization. Finally, fusion moves introduced in [Lempitsky et al., 2010]
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is a more general move-making algorithm to fuse two labellings. In general, the
binary optimization problem of fusion moves is not submodular and the QPBO al-
gorithm [Boros and Hammer, 2002] is used to optimize it. Despite this, fusion moves
guarantee a monotonic decrease in the energy.

In Chapter 4, we introduce an iterative algorithm, named Iteratively Reweighted
Graph-Cut (IRGC), that can approximately minimize MRFs with a certain class of
robust non-convex priors. In fact, IRGC is in spirit a move-making algorithm, by
which we mean, at each iteration, it solves a graph-cut problem and guarantees
monotonic decrease in the multi-label energy.

2.3.4 Linear Programming Relaxation

So far, we have discussed both exact and approximate algorithms that have been
based on combinatorial optimization literature. Let us now turn to a more general
and powerful approximation algorithm that has been developed using a continuous
relaxation, in particular the Linear Programming (LP) relaxation. More specifically,
we discuss a tree-based decomposition algorithm to optimize the dual of the LP re-
laxation, where each subproblem (tree MRF) is optimized using the message passing
algorithm. Note that message passing was developed using information theoretic
concepts and there have been many variants in the literature [Pearl, 1988; Yedidia
et al., 2000; Wainwright et al., 2008]. Here we discuss it in the context of LP relax-
ation and try to give a simple and unified description.

Recall the multi-label graph representation of the energy function,

E(x) = ∑
i∈V

∑
λ∈L

θi:λ xi:λ + ∑
(i,j)∈E

∑
λ,µ∈L

θij:λµ xi:λ xj:µ , (2.60)

where x ∈ Γ =

{
x ∑λ∈L xi:λ = 1, i ∈ V

xi:λ ∈ B = {0, 1}, i ∈ V , λ ∈ L

}
.

Here Γ ⊂ Bn` (n = |V| and ` = |L|) denotes the set of all valid integral labellings.
Given a labelling x ∈ Γ, the value of the energy function is obtained by summing
the weights on all nodes with xi:λ = 1 (in other words xi = λ) plus the weights θij:λµ

such that xi:λ = 1 and xj:µ = 1. See Figure 2.14. For convenience, we assume that the
parameters θi:λ and θij:λµ are non-negative. This can be ensured by adding a constant
value to any θi:λ ; λ ∈ L or θij:λµ ; λ, µ ∈ L.

Let us define the parameter vector

θ = [. . . , θi:λ, . . . , θij:λµ, . . .] , (2.61)

where the elements θi:λ ; i ∈ V , λ ∈ L and θij:λµ ; (i, j) ∈ E , λ, µ ∈ L are listed in
some particular order. The dimension of the parameter vector is N = n ` + m `2,
where n = |V| and m = |E |. Similarly, let us introduce additional variables xij:λµ for
the product xi:λ xj:µ and define the vector

x̃ = [. . . , xi:λ, . . . , xij:λµ, . . .] . (2.62)
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Figure 2.14: An example of a multi-label graph corresponding to a linear MRF. Here the
highlighted path corresponds to the labelling x = {(1, 0, 0), (0, 0, 1), (0, 1, 0), (0, 0, 1)}. The
cost of this labelling is the sum of the weights of the highlighted nodes and edges.

Here, the elements are listed in the same order as the parameter vector θ. With this
notation, the energy function (2.60) can be written as,

Eθ(x) = 〈θ, x̃〉 , (2.63)

where 〈·, ·〉 is the standard inner product in IRN.

2.3.4.1 Marginal Polytope

Note that the vector x ∈ Γ and x̃ ∈ BN , where BN is a discrete subset of IRN. Let us
denote the set of all points x̃ for x ∈ Γ as T . Writing T explicitly,

T =

 x̃
∑λ∈L xi:λ = 1, i ∈ V
xi:λ ∈ {0, 1}, i ∈ V , λ ∈ L
xij:λµ = xi:λ xj:µ, (i, j) ∈ E , λ, µ ∈ L

 . (2.64)

Here, T ⊂ BN is a discrete set of `n points, where ` is the number of labels. Now,
from Eq. (2.63), we can write the optimization problem of minimizing the multi-label
energy function as an Integer Linear Program (ILP),

min
x∈Γ

Eθ(x) = min
τ∈T
〈θ, τ〉 . (2.65)

The idea is to relax the integer constraints in the optimization problem. To this end,
let us define the marginal polytope as follows.

Definition 2.3.4. Let T be the set of all points x̃ for x ∈ Γ. The marginal polytope Ω is
defined as the convex hull5 of T , i.e.,

Ω = conv(T ) . (2.66)

5The convex hull of a set C is the set of all convex combinations of points in C [Boyd and Vanden-
berghe, 2009].
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Figure 2.15: The marginal polytope of an example binary MRF with 3 nodes. The vertices
are in one-to-one correspondence with the integral labellings of the MRF.

The marginal polytope Ω is a polytope6 in IRN. The vertices of the marginal poly-
tope and the set T are related according to the following Lemma.

Lemma 2.3.1. The set of vertices of the marginal polytope Ω is in fact the set T .

Proof. Let VΩ denote the vertices of Ω. Since Ω = conv(T ), the set of vertices of Ω is
a subset of T , i.e., VΩ ⊂ T . Also, since T ⊂ Ω, we have,

min
τ∈Ω
〈θ, τ〉 ≤ min

τ∈T
〈θ, τ〉 . (2.67)

Furthermore, the minimum of a linear program over a convex polytope is attained at
a vertex of the polytope [Dantzig, 2016]. This means, the minimum point τ∗ ∈ VΩ ⊂
T . Therefore the above inequality is tight. Since one has the flexibility of choosing
any parameter vector θ, any τ ∈ T can be the minimum. Hence, VΩ = T .

An example of a marginal polytope is illustrated in Figure 2.15. Let us now
consider the following relaxed optimization problem,

min
τ∈Ω
〈θ, τ〉 . (2.68)

From the proof of Lemma 2.3.1, it is clear that, even though the integrality constraints
are relaxed, the optimum of the ILP (2.65) can be obtained. Therefore, we have,

min
x∈Γ

Eθ(x) = min
τ∈T
〈θ, τ〉 = min

τ∈Ω
〈θ, τ〉 . (2.69)

An interesting point to note here is that finding the optimal labelling of an MRF is
equivalent to a linear program. This might be contradictory, as MRF optimization is

6A polytope is the intersection of a finite set of half-spaces. A half-space is the set of points satisfying
a linear inequality aTx + b ≤ 0 [Boyd and Vandenberghe, 2009].
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an NP-hard problem in general. However the explanation is that the LP in Eq. (2.68)
has exponentially many constraints, making it an NP-hard problem.

2.3.4.2 Local Polytope

As mentioned in the previous section, minimizing an arbitrary multi-label MRF en-
ergy can be written as a linear program over the marginal polytope Ω. However, in
general, Ω has exponentially many faces and vertices, hence making it an intractable
problem. In this section, we will approximate the marginal polytope with a simpler
polytope that has a polynomial number of faces.

To this end, one may think of a different relaxation for the set of points T . Before
that, let us first relax the integral constraints on the labelling x ∈ Γ.

Definition 2.3.5. Let us define the set of all valid real (continuous) labellings as

S =

{
y ∑λ∈L yi:λ = 1, i ∈ V

yi:λ ≥ 0, i ∈ V , λ ∈ L

}
. (2.70)

The set of real labellings and the integral labellings are related as follows.

Lemma 2.3.2. The set of real labellings S is the convex hull of the set of valid integral
labellings Γ, i.e., S = conv(Γ).

Proof. It can be easily proven that any point y ∈ S is a convex combination of points
in Γ. Now, since S is a convex set, S = conv(Γ).

Similar to Eq. (2.62), by introducing additional variables yij:λµ, we define the vec-
tor ỹ as

ỹ = [. . . , yi:λ, . . . , yij:λµ, . . .] , (2.71)

with the same ordering of elements as in Eq. (2.62). Note that the vector ỹ ∈ IRN.
Now we are ready to define a convex polytope containing T that has a polynomial
number of faces.

Definition 2.3.6. Let the vector ỹ ∈ IRN be as defined in Eq. (2.71). The local polytope
Λ is defined as

Λ =


ỹ

∑λ∈L yi:λ = 1, i ∈ V
yi:λ ≥ 0, i ∈ V , λ ∈ L
∑λ∈L yij:λµ = yj:µ, (i, j) ∈ E , µ ∈ L
∑µ∈L yij:λµ = yi:λ, (i, j) ∈ E , λ ∈ L
yij:λµ ≥ 0, (i, j) ∈ E , λ, µ ∈ L


. (2.72)

The relationship between Ω and Λ can be stated as follows [Wainwright et al.,
2005].

Lemma 2.3.3. The local polytope Λ is a convex set containing the marginal polytope Ω, i.e.,
Ω ⊂ Λ, and its vertex set includes all the vertices of the marginal polytope.
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Figure 2.16: The local polytope Λ (red) is a convex outer bound of the marginal polytope Ω.
The additional vertices of the local polytope are often referred to as fractional vertices.

Proof. Since Λ is defined using linear constraints, it is convex. Note that any point in
T satisfies the constraints defined in Eq. (2.72) and by definition Ω = conv(T ). Since
Λ is a convex set containing T , it must also contain the convex hull of T . Hence,
Ω ⊂ Λ.

From Lemma 2.3.1, the vertices of the marginal polytope is the set T . Let us now
prove that any point in T is a vertex of Λ. We prove this by showing that there is no
line segment in Λ such that x̃ ∈ T is an interior point7. Consider x̃ ∈ T and ỹ ∈ Λ,
and let

τ = (1− α) x̃ + α ỹ , (2.73)

for some α ∈ [−ε, ε]. Note that, when α < 0, x̃ is an interior point of the line segment
connecting ỹ and τ. We show that τ /∈ Λ if α < 0. Choose i ∈ V and λ ∈ L such
that xi:λ = 0 and yi:λ > 0. This is possible unless ỹ = x̃. Let the element in τ

corresponding to indices {i, λ} be τi:λ. Then,

τi:λ = (1− α) xi:λ + α yi:λ = α yi:λ . (2.74)

Here, if α < 0, then τi:λ < 0. This means τ /∈ Λ. Hence, any point x̃ ∈ T must be a
vertex of Λ.

See Figure 2.16 for an illustration of this Lemma. Now, it is clear that the local
polytope has an exponential number of vertices (because T has an exponential num-
ber of elements) and a polynomial number of faces (because Λ is defined using a
polynomial number of inequalities). However, the local polytope may contain addi-
tional vertices, which are often referred to as fractional vertices. See Figure 2.17 for
an example of a fractional vertex of the local polytope. Since the local polytope is
defined using a polynomial number of constraints, the minimization over it can be
done in polynomial time8 [Karmarkar, 1984].

7If C is a subset of a Euclidean space, then x is an interior point of C, if there exists an open ball
centered at x which is completely contained in C [Boyd and Vandenberghe, 2009]. An open ball centered
at x is defined as, B(x, r) = {y | ‖y− x‖ ≤ r}, for some r > 0, where ‖ · ‖ is some norm.

8The worst case time complexity of an LP is polynomial in the number of variables and constraints.
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Figure 2.17: An MRF example where a fractional labelling is a vertex of the local polytope.
Here, we consider a binary MRF with 3 nodes, and the labelling is denoted with shaded
nodes and edges, where, for all the nodes, yi:λ = 0.5 and, for the edges shown in the figure,
yij:λµ = 0.5. It can be verified that the labelling shown is a vertex of Λ by following the same
argument as in the proof of Lemma 2.3.3.

In general, Λ is strictly larger than Ω. Hence, the minimization over the local
polytope provides a lower bound to the optimal energy,

min
τ∈Λ
〈θ, τ〉 ≤ min

τ∈Ω
〈θ, τ〉 = min

x∈Γ
Eθ(x) . (2.75)

This lower bound is tight for multi-label submodular MRFs [Werner, 2007] and tree
structured MRFs [Wainwright et al., 2005]. Specifically, for such MRFs, the optimal
labelling can be obtained by minimizing the LP relaxation over the local polytope.
This means the minimum obtained by optimizing over Λ is a vertex of the marginal
polytope. In fact, the marginal polytope and local polytope depend on the MRF
graph G = (V , E) and not on the energy parameters θ. Therefore, for tree structured
MRFs, the relationship between Ω and Λ can be stated as follows.

Theorem 2.3.1. For a tree structured MRF, Ω = Λ.

Proof. The idea is that, for tree structured MRFs, the optimal labelling can be obtained
by minimizing over the local polytope [Wainwright et al., 2008], i.e.,

min
τ∈Λ
〈θ, τ〉 = min

τ∈Ω
〈θ, τ〉 = min

x∈Γ
Eθ(x) , (2.76)

and let τ∗ be the point where the minimum is attained. Now, if Ω ⊂ Λ and Ω 6= Λ,
then, one can find a θ such that τ∗ ∈ Λ and τ∗ /∈ Ω, which is a contradiction.
Therefore, Ω = Λ. See [Wainwright et al., 2008] for more detail.

Note that, for multi-label submodular MRFs defined on general graphs, Λ is a
strict outer bound of Ω. However, due to the restriction on the energy parameters
θ, the exact minimum is obtained by optimizing over Λ. In more general cases,

However, a strongly polynomial time algorithm has not yet been discovered.
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optimization over Λ yields fractional labellings. Such a fractional labelling can be
rounded to obtain an integral labelling using simple argmax rounding. Specifically,
let y∗ be the optimal fractional labelling, then the integral labelling x∗ is given by

x∗i = argmax
λ∈L

y∗i:λ ∀ i ∈ V . (2.77)

In general, this rounding procedure is not optimal. Nevertheless, more sophisticated
rounding schemes that provide theoretical bounds on the rounded labelling have
also been introduced [Kleinberg and Tardos, 2002; Ravikumar et al., 2008].

2.3.4.3 Message Passing and Reparametrization

In this section, we discuss an algorithm that can be used to minimize the LP relax-
ation of a multi-label MRF over the local polytope. In the remainder of this section,
we use the term LP relaxation to denote the LP over the local polytope,

min
τ∈Λ
〈θ, τ〉 . (2.78)

To this end, let us first briefly describe the well-known min-sum message passing (or
min-sum belief propagation) [Pearl, 1988].

Min-Sum Message Passing. Min-sum message passing is an approximate algo-
rithm for minimizing the multi-label energy function (2.60). This algorithm main-
tains a message vector mij:µ ; µ ∈ L for each directed edge9 (i, j) ∈ E+. The notation
mij:µ denotes the message from i → j indexed by µ. The basic operation of this al-
gorithm is passing a message from i → j for each directed edge (i, j) ∈ E+. This
operation can be written as

mij:µ ← min
λ∈L

θij:λµ + θi:λ + ∑
(k,i)∈E+

k 6=j

mki:λ

 , (2.79)

for all µ ∈ L. A message from i → j is valid if this update does not change the
message vector mij. The idea of this algorithm is to keep passing messages of this
form, in some particular order, until convergence, i.e., until all messages are valid.
Note that the time complexity of one message passing step is O(`2), where ` is the
number of labels. Upon convergence, the algorithm provides beliefs (approximate
min-marginals) for all random variables,

θ′i:λ = θi:λ + ∑
(k,i)∈E+

mki:λ , (2.80)

9E+ denotes the set of directed edges between the vertices in the MRF, i.e., if (i, j) ∈ E then, (i, j) ∈
E+ and (j, i) ∈ E+.
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Figure 2.18: An elementary reparametrization. Subtract α from all incoming edges of node
Xi:λ and add it to the node potential. This corresponds to the message mji:λ = α. The reverse
operation is also a valid reparametrization.

for all i ∈ V and λ ∈ L. Then, the approximate labelling can be obtained from the
beliefs,

x′i:λ = argmin
λ∈L

θ′i:λ . (2.81)

It will be seen later, that min-sum message passing is optimal on tree structured
MRFs. However, for a graph with loops, the convergence of this algorithm is not
guaranteed. Despite of this shortcoming, the idea of min-sum message passing will
be useful in developing algorithms to minimize the LP relaxation.

Reparametrization. A given multi-label energy function can be written in different
ways as a sum of unary and pairwise terms. In particular, there may exist a different
set of parameters θ′ such that Eθ(x) = Eθ′(x) for all x, denoted as Eθ ≡ Eθ′ .

Lemma 2.3.4. Two energy functions Eθ and Eθ′ are equivalent if and only if there exist
values mji:λ and mij:µ for (i, j) ∈ E and λ, µ ∈ L such that

θ′ij:λµ = θij:λµ −mji:λ −mij:µ , (2.82)

θ′i:λ = θi:λ + ∑
(k,i)∈E+

mki:λ .

Proof. This result is well known, and we refer the interested reader to [Kolmogorov,
2006; Werner, 2007].

The values of mij:µ constitute a message mij passed from the edge (i, j) to the node
j10; it may be thought of as a message vector (indexed by µ). A message mij causes
values mij:µ to be swept out of all the edges θij:λµ and added to the nodes θj:µ. Messages
are passed in both directions from an edge (i, j). An elementary reparametrization is
illustrated in Figure 2.18.

10This is the same as the message vector passed from i→ j in the min-sum message passing algorithm.
However, thinking it as a message from the edge (i, j) to node j may be more intuitive.
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In fact, reparametrization provides an alternative way of implementing the min-
sum message passing algorithm, where the parameters θ are updated directly based
on the messages. Similarly to Eq. (2.81), the labelling can be obtained as

x′i:λ = argmin
λ∈L

θ′i:λ , (2.83)

where Eθ′ ≡ Eθ. This suggests a lower bound of Eθ(x), i.e.,

∑
i∈V

min
λ∈L

θ′i:λ ≤ Eθ(x) . (2.84)

Now, one can try to maximize this lower bound over all possible reparametrizations,
while keeping the parameters non-negative (the parameters θ are non-negative to
start with). This leads to the following optimization problem,

max
θ′

∑
i∈V

min
λ∈L

θ′i:λ , (2.85)

s.t. Eθ′ ≡ Eθ ,

θ′ij:λµ ≥ 0 ∀ (i, j) ∈ E , λ, µ ∈ L .

We refer to this problem as the optimal message passing problem. The interesting
relationship between the above problem and the LP relaxation is characterized by
the following theorem [Werner, 2010].

Theorem 2.3.2. The LP relaxation over the local polytope (2.78) and the optimal message
passing (2.85) are dual LP problems.

Proof. The proof of this theorem is a direct application of Lagrange duality to the LP
relaxation over the local polytope. See [Werner, 2010] for details.

This means that the lower bound computed by optimizing either of these prob-
lems yields the same value. Therefore, reparametrization (or message passing) is
a good candidate to optimize the LP relaxation. However, the order in which the
messages should be passed is still not clear. In particular, an algorithm based on
message passing that would optimize the LP relaxation would be ideal. To this end,
let us first give an algorithm for MRFs defined on trees and then turn to the more
general algorithm.

2.3.4.4 Optimality of Message Passing on Tree Structured MRFs

On tree structured MRFs, there is a natural order (from leaves to root) to pass the
messages and in two passes (called forward pass and backward pass) the algorithm con-
verges and yields the optimal labelling [Pearl, 1988]. In particular, for an arbitrarily
chosen root node r ∈ V , in the forward pass, the messages are passed (reparametriza-
tion) from leaf nodes to the root node. In the backward pass, the messages are passed
from root to leaf nodes. This message passing algorithm can be better explained us-
ing the multi-label graph. See Figure 2.19.
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(a) Initial graph. (b) Step-1, Eq. (2.86). (c) Step-2, Eq. (2.87).

(d) Message passing X1 → X2. (e) Forward pass completed. (f) Backward pass completed.

Figure 2.19: Message passing on a linear MRF with 3 nodes. Here, red indicates that
the node or edge has zero weight. At the end of the forward pass, except for the root node
(X3), the weights on all other nodes are zero. In the backward pass, the optimal labelling
x∗ = {(0, 1, 0), (0, 1, 0), (0, 0, 1)} is recovered by backtracking through zero edges. Here, the
cost of the optimal labelling E(x∗) = 11.

At any stage of the forward pass, consider a directed edge (i, j) ∈ E+ in the
forward path. Let θ′ be the current parameters (reparametrized according to the
messages passed until now). Note that the messages mji and mij are only used
locally and are initialized to zero. There are two steps of reparametrization at each
message passing step. In the first step, θ′ is reparametrized as follows,

mji:λ ←− θ′i:λ ∀ λ ∈ L , (2.86)

θ′ij:λµ ← θ′ij:λµ −mji:λ = θ′ij:λµ + θ′i:λ ∀ λ, µ ∈ L ,

θ′i:λ ← θ′i:λ + mji:λ = 0 ∀ λ ∈ L .

The second step of reparametrization is,

mij:µ ←min
λ∈L

θ′ij:λµ ∀ µ ∈ L , (2.87)

θ′ij:λµ ← θ′ij:λµ −mij:µ ∀ λ, µ ∈ L ,

θ′j:µ ← θ′j:λ + mij:µ ∀ µ ∈ L .

Note that, after the first step, the unary parameters θ′i:λ = 0 for all λ ∈ L. Further-
more, during the second step, the minimum edge weight is subtracted from all the
edges θ′ij:λµ. This means that, after the second step, at least one of θ′ij:λµ is zero for all
µ ∈ L. Therefore, at the end of the forward pass, the resulting parameters satisfy the
following conditions,
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1. The weights on nodes θ′i:λ = 0, for all i ∈ V \ {r}, where r is the root node and
for all λ ∈ L.

2. There exists λ′ ∈ L such that θ′ij:λ′µ = 0, for all (i, j) ∈ E and µ ∈ L. Here, λ′

may be different for each edge (i, j) and label µ.

Now, it is evident that the total cost of the optimal labelling x∗ can be computed as,

Eθ(x∗) = Eθ′(x
∗) = min

λ∈L
θ′r:λ . (2.88)

Furthermore, the optimal labelling x∗ is computed by back-tracking through the zero
weight edges and nodes (backward pass). This two pass procedure is optimal for tree
structured MRFs and, for a graph with loops, it is not guaranteed to find the opti-
mum. In fact, it has been shown that, for multi-label submodular MRFs, one can find
an ordering of optimal message passing that would guarantee optimality [Werner,
2007, 2010]. However, in general, the algorithm may not even converge. Despite that,
the optimality on tree MRFs made it an ideal choice to tackle the LP relaxation, in a
dual-decomposition framework [Wainwright et al., 2005; Komodakis et al., 2011].

2.3.4.5 Tree Reweighted Message Passing

Tree Reweighted Message Passing (TRW) [Wainwright et al., 2005] can be thought of
as a dual-decomposition [Bertsekas, 1999] algorithm for minimizing the LP relaxation
over the local polytope (2.78), where the dual subproblems are defined over tree
structured MRFs.

Recall that the MRF graph is denoted by G = (V , E). Consider a collection of
subtrees of G, denoted by TG . Let us denote the parameter vector of the original
graph MRF with θG and the parameter vector for each tree T ∈ TG with θT.

Definition 2.3.7. A tree decomposition T ∈ TG is valid if the parameter vectors θT
satisfy

∑
T∈TG

θT = θG . (2.89)

An example of a valid tree decomposition is shown in Figure 2.20. For a valid
tree decomposition,

〈τ, θG〉 = ∑
T∈TG
〈τ, θT〉 , (2.90)

for all τ ∈ Ω, where Ω is the marginal polytope (see Definition 2.3.4) of the original
MRF. Now, the tree-based lower bound can be written as

min
x∈Γ

EθG (x) = min
τ∈Ω
〈τ, θG〉 ≥ ∑

T∈TG
min
τ∈Ω
〈τ, θT〉 . (2.91)

The inequality is due to the fact, that each tree T ∈ TG is minimized independently
and therefore the minimization is less constrained. Note that, once the minimiza-
tion is completed, if the labelling (given τ∗, the corresponding labelling x∗ can be
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(a) MRF graph G (b) Subtree T1 (c) Subtree T2

Figure 2.20: A valid tree decomposition, where each subtree is chosen to be a spanning tree.
Here, the edge parameters (or weights) are shown next to the edges. Note that, all the nodes
appear in both the subtrees, and the node parameters are divided equally in both the trees (not
shown). For the edges, except the edges (2, 5) and (4, 5), all other edges appear in both the
trees and each of them has 0.5 weight. The edges (2, 5) and (4, 5) retain their original weights
in their respective trees.

obtained) is consistent across all the trees, then the optimum is found. This situation
is referred to as the tree agreement in [Wainwright et al., 2005]. However, for gen-
eral MRFs, this is not the case, and therefore one tries to maximize this lower bound.
This is the basic idea behind the TRW algorithm, and the corresponding optimization
problem can be written as

max
θT

∑
T∈TG

min
τ∈Ω
〈τ, θT〉 , (2.92)

s.t. ∑
T∈TG

θT = θG .

Since subproblems minτ∈Ω〈τ, θT〉 are defined over trees, their optimal labellings can
be obtained using the message passing algorithm discussed above. Once the sub-
problems are optimized, the tree parameters θT are updated in the direction that
maximizes the lower bound. Theorem 2.3.2 stated that the optimal message pass-
ing and the LP relaxation are dual problems. Similarly, the relationship of the TRW
problem (2.92) and LP relaxation (2.78) can be stated as follows [Wainwright et al.,
2005],

Theorem 2.3.3. The tree reweighted message passing (TRW) problem (2.92) and the LP
relaxation over the local polytope (2.78) are dual LP problems.

Proof. This is also an application of the Lagrange dual of the LP relaxation (2.78).
See [Wainwright et al., 2005] for a detailed proof.

The term dual-decomposition is clear now, as the TRW problem (2.92) is the
dual of the LP relaxation, which is decomposed into tree-based subproblems. An
important consequence of this theorem is that any valid tree decomposition (see
Definition 2.3.7) will yield the same bound on the optimal MRF energy. Furthermore,
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note that the maximum values of the TRW problem (2.92) and the optimal message
passing problem (2.85) are the same since they are duals of the same LP problem.

After the introduction of the TRW algorithm in [Wainwright et al., 2005], many al-
gorithms following the same idea have been introduced [Kolmogorov, 2006; Glober-
son and Jaakkola, 2008; Werner, 2010; Komodakis et al., 2011]. Among them, the
sequential version of TRW, referred to as TRWS [Kolmogorov, 2006] is practically effi-
cient and used widely in computer vision applications. Furthermore, Komadakis [Ko-
modakis et al., 2011] identified this idea as a dual-decomposition technique, and pro-
posed a more general algorithm, where the subproblems are not only restricted to
tree MRFs. Since these algorithms optimize a subset of variables (subproblem) at a
time, this family of algorithms are often referred to as block-coordinate descent methods
in the literature.

Note that these methods efficiently optimize the LP relaxation by exploiting
the sparse structure of the MRF. By contrast, in Chapter 5, we introduce a block-
coordinate descent method for fully connected MRFs (or CRFs), for efficient opti-
mization of the LP relaxation. In fact, the time complexity of one iteration of our
algorithm is linear in the number of pixels and labels, which is the first LP minimiza-
tion algorithm for dense CRFs to have linear time iterations.

2.3.5 Other Continuous Relaxations

In addition to the LP relaxation, there are many other continuous relaxations have
been studied in the literature. This includes Quadratic Programming (QP) [Raviku-
mar and Lafferty, 2006], Second Order Cone Programming (SOCP) [Muramatsu and
Suzuki, 2003] and Semi-Definite Programming (SDP) [Torr, 2003] relaxations. Among
them, the LP relaxation was shown to provide a better approximation than a large
class of QP and SOCP relaxations (see [Kumar et al., 2009]) and the SDP relaxation
was shown to scale poorly [Olsson et al., 2007]. Furthermore, researchers have stud-
ied approaches to tighten the LP relaxation [Sontag et al., 2008; Komodakis and
Paragios, 2008].

On the other hand, the Mean-Field (MF) method [Wainwright et al., 2008] can
also be used to perform approximate inference on an MRF. In particular, the mean-
field algorithm11 approximates the true probability distribution P(x) of the MRF
(defined in Eq. (2.1)) by a fully-factorized distribution12 Q(x), by minimizing the KL-
divergence [Kullback and Leibler, 1951] between them (denoted by DKL(Q‖P)). Once
the distribution Q is obtained, finding the most probable configuration is straight
forward, since Q is a product of independent distributions defined over each pixel.
In fact, the mean-field algorithm can also be thought of as a continuous relaxation
method, which optimizes a linear objective function over a non-convex subset of the
marginal polytope (Definition 2.3.4). We refer the interested reader to [Ravikumar
and Lafferty, 2006; Wainwright et al., 2008] for more detail.

11This algorithm is referred to as naïve mean-field in [Wainwright et al., 2008].
12A distribution is fully-factorized if it is a product of independent distributions. In this case Q(x) =

∏i∈V Qi(xi).
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2.4 Summary

In this chapter, we have studied the important theories on Markov random fields and
some state-of-the-art optimization algorithms. These algorithms can be categorized
into three groups: 1) max-flow for submodular MRFs; 2) move-making algorithms;
and 3) continuous relaxations. In the subsequent chapters, we describe our contribu-
tions in these three categories. First, in the next chapter, we discuss a memory effi-
cient variant of the max-flow algorithm for multi-label submodular MRFs. This algo-
rithm constitutes the method of choice for Ishikawa type graphs when the complete
graph cannot be stored in memory. Next, in Chapter 4, we explain a move-making
style algorithm for multi-label MRFs with a certain class of robust non-convex pri-
ors. This approach is effective in obtaining significantly lower energy solutions than
other move-making algorithms for MRFs with such robust non-convex priors. Later,
in Chapter 5, we describe a block-coordinate descent algorithm for the LP relaxation
of fully connected CRFs. This constitutes the first LP relaxation algorithm for dense
CRFs that has linear time iterations.
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Chapter 3

Memory Efficient Max-Flow for
Multi-Label Submodular MRFs

In this chapter, we introduce our memory efficient max-flow algorithm and show
that the memory requirement reduces by O(`) (where ` is the number of labels)
compared to the standard max-flow algorithm described in Chapter 2. Furthermore,
we prove its polynomial time complexity and also discuss its relationship to the min-
sum message passing algorithm (reviewed in Section 2.3.4.3). This chapter is based
on our work [Ajanthan et al., 2016] with substantial extensions available in [Ajanthan
et al., 2017c].

3.1 Introduction

As discussed in Section 2.3.2, Ishikawa [Ishikawa, 2003] introduced a max-flow-based
method to globally minimize the energy of multi-label MRFs with convex edge terms.
In [Schlesinger and Flach, 2006], this method was extended to energy functions sat-
isfying the multi-label submodularity condition, analogous to the submodularity con-
dition for MRFs with binary labels. In the general case, however, this method re-
quires 2 `2 directed edges for each pair of neighbouring variables. For instance, for
a 1000× 1000, 4-connected image with 256 labels, it would require approximately
1000× 1000× 2× 2562 × 2× 4 ≈ 1000 GB of memory to store the edges (assuming 4
bytes per edge). Clearly, this is beyond the storage capacity of most computers.

In this chapter, we introduce a variant of the max-flow algorithm that requires
storing only two `-dimensional vectors per variable pair instead of the 2 `2 edge
capacities of the standard max-flow algorithm. In the example discussed above, our
algorithm would therefore use only 4 GB of memory for the edges. As a result, our
approach lets us optimally solve much larger problems.

More specifically, in contrast to the usual augmenting path algorithm [Ford and
Fulkerson, 1962], we do not store the residual edge capacities at each iteration. In-
stead, our algorithm records two `-dimensional flow-related quantities for every pair
of neighbouring variables. We show that, at any stage of the algorithm, the residual
edge capacities can be computed from these flow-related quantities and the initial
edge capacities. This, of course, assumes that the initial capacities can be computed

47
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by some memory-efficient routine, which is almost always the case in computer vi-
sion.

The optimality of Ishikawa’s formalism made it a method of choice as a sub-
routine in many approximate energy minimization algorithms, such as multi-label
moves [Torr and Kumar, 2009; Veksler, 2012]. Since our approach can simply replace
the standard max-flow algorithm [Boykov and Kolmogorov, 2004] in Ishikawa-type
graphs, it also allows us to minimize the energy of much larger non-submodular
MRFs in such approximate techniques. Furthermore, due to the similarity to stan-
dard max-flow, our algorithm can easily be extended to handle dynamic MRFs [Kohli
and Torr, 2005] and also be accelerated using the parallel max-flow technique [Strand-
mark and Kahl, 2010].

We demonstrate the effectiveness of our algorithm on the problems of stereo cor-
respondence estimation and image inpainting. Our experimental evaluation shows
that our method can solve much larger problems than standard max-flow on a stan-
dard computer and is an order of magnitude faster than state-of-the-art message-
passing algorithms [Kolmogorov, 2006; Komodakis et al., 2011; Savchynskyy et al.,
2012]. Our code is available at https://github.com/tajanthan/memf.

3.2 Preliminaries

Let us recall the energy function associated with a pairwise MRF (2.4),

E(x) = ∑
i∈V

θi(xi) + ∑
(i,j)∈E

θij(xi, xj) , (3.1)

where xi ∈ L for all i ∈ V . Here, V is the set of vertices, e.g., corresponding to pixels
or superpixels in an image, and E is the set of edges, e.g., encoding a 4-connected or
8-connected grid over the image pixels.

In this chapter, we consider a pairwise MRF with an ordered label set L =
{0, 1, · · · , `− 1}, and we assume that the pairwise terms satisfy the multi-label sub-
modularity condition (Definition 2.3.1):

θij(λ
′, µ) + θij(λ, µ′)− θij(λ, µ)− θij(λ

′, µ′) ≥ 0 , (3.2)

for all λ, λ′, µ, µ′ ∈ L, where λ < λ′ and µ < µ′. Furthermore, we assume that
the pairwise potentials can be computed either by some routine or can be stored in
an efficient manner. In other words, we assume that we do not need to store each
individual pairwise term. Note that, in computer vision, this comes at virtually no
loss of generality.

3.2.1 The Ishikawa Graph

We briefly revisit the Ishikawa algorithm and more details can be found in Sec-
tion 2.3.2. Ishikawa [Ishikawa, 2003] introduced a method to represent the multi-label
energy function (3.1) in a graph. The basic idea behind the Ishikawa construction is

https://github.com/tajanthan/memf
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Figure 3.1: Example of an Ishikawa graph. The graph incorporates edges with infinite ca-
pacity from Ui:λ to Ui:λ+1, not shown in the graph. Here the cut corresponds to the labeling
x = {1, 2} where the label set L = {0, 1, 2, 3}.

to encode the label Xi = xi of a vertex i ∈ V using binary-valued random variables
Ui:λ, one for each label λ ∈ L. In particular, the encoding is defined as ui:λ = 1
if and only if xi ≥ λ, and 0 otherwise. The Ishikawa graph is then an st-graph
Ĝ = (V̂ ∪ {0, 1}, Ê+, φ), where the set of nodes and the set of edges are defined as
follows,

V̂ = {Ui:λ | i ∈ V , λ ∈ {1, · · · , `− 1}} , (3.3)

Ê+ = Ê+v ∪ Ê+c ,

Ê+v = {(Ui:λ, Ui:λ±1) | i ∈ V , λ ∈ {1, · · · , `− 1}} ,

Ê+c = {(Ui:λ, Uj:µ), (Uj:µ, Ui:λ) | (i, j) ∈ E , Ui:λ, Uj:µ ∈ V̂} ,

where Ê+v is the set of vertical edges and Ê+c is the set of cross edges. Note that
the directed edges are denoted with �+. Furthermore, the nodes Ui:` and Ui:0 are
identified as node 0 and node 1, respectively. We denote the Ishikawa edges by
eij:λµ ∈ Ê+ and their capacities by φij:λµ. We also denote by ei:λ the downward edge
(Ui:λ+1, Ui:λ). An example of an Ishikawa graph is shown in Figure 3.1.

Note that, by construction of the Ishikawa graph, the capacities φ and the energy
parameters θ are related according to the following formula:

θi(λ) = φii:λ+1λ = φi:λ , (3.4)

θij(λ, µ) = ∑
λ′>λ
µ′≤µ

φij:λ′µ′ + ∑
λ′≤λ
µ′>µ

φji:µ′λ′ .

Finding the minimum energy labeling is a min-cut problem, which can be solved
optimally using the max-flow algorithm [Ford and Fulkerson, 1962] when the edge
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capacities are non-negative. A multi-label submodular energy function can be repre-
sented by an Ishikawa graph with non-negative edge capacities φ and can therefore
be minimized optimally by max-flow.

3.2.2 Max-Flow

As discussed in Section 2.2.4, the most popular max-flow algorithm in computer
vision [Boykov and Kolmogorov, 2004] is an augmenting path algorithm that finds
a path from node 0 to node 1 through positive edges (called an augmenting path)
and then pushes the maximum flow without exceeding the edge capacities (called
augmentation). The augmentation operation changes the edge capacities in the graph,
and therefore, the residual graph needs to be stored. That is, when applied to the
Ishikawa graph, the max-flow algorithm stores 2 `2 values per pair of neighbouring
variables. For large number of labels and of variables, the memory requirement is
high and, in many practical problems, exceeds the capacity of most computers.

3.2.3 Our Idea

Let us assume that the max-flow algorithm is applied to the Ishikawa graph. As the
algorithm proceeds, the capacities on the edges in the graph change in response to
the flow. Here, instead of storing the residual graph, we propose recording the flow
that has been applied to the graph.

However, since storing the flow would also require 2 `2 values per variable pair,
we propose recording two `-dimensional quantities related to the flow between pair
of variables. More precisely, for each directed edge1 (i, j) ∈ E+, we record the sum of
outgoing flows from each node Ui:λ to the nodes Uj:µ for all µ ∈ {1, · · · , `− 1}. We
call this quantity an exit-flow, denoted by Σij:λ (defined below in Eq. (3.6)). We show
that these exit-flows allow us to reconstruct a permissible flow, which in turn lets us
compute the residual edge capacities from the initial ones. Importantly, while flow
reconstruction is not unique, we show that all such reconstructions are equivalent up
to a null flow (Definition 3.3.5), which does not affect the energy function. Note that
this idea can be applied to any augmenting path algorithm, as long as the residual
graph can be rapidly constructed.

For increased efficiency, we then show how finding an augmenting path can be
achieved in a simplified Ishikawa graph that amalgamates the nodes in each column
into blocks. We then perform augmentation, which translates to updating our exit-
flows, in this simplified graph. As a side effect, since an augmenting path in our
simplified graph corresponds to a collection of augmenting paths in the Ishikawa
graph, our algorithm converges in fewer iterations than the standard max-flow im-
plementation of [Boykov and Kolmogorov, 2004].

1E+ denotes the set of directed edges between the vertices in the MRF, i.e., if (i, j) ∈ E then, (i, j) ∈
E+ and (j, i) ∈ E+.
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3.3 Memory Efficient Flow Encoding

Before we introduce our memory efficient max flow algorithm, let us describe how
the cumulative flow can be stored in a memory efficient manner. This technique can
be used in any augmenting path flow algorithm, by reconstructing the residual edge
capacities whenever needed.

To this end, let us first recall the definition of a flow and then turn to our memory
efficient flow encoding technique.

Definition 3.3.1. A flow is a mapping ψ : Ê → IR, denoted by ψij:λµ for the edges
eij:λµ, that satisfies the anti-symmetry condition ψij:λµ = −ψji:µλ for all eij:λµ ∈ Ê .

A flow is called conservative if the total flow into a node is zero for all nodes,
except for the source and the terminal, i.e.,

∑
j,µ|eji:µλ∈Ê+

ψji:µλ = 0 ∀Ui:λ ∈ V̂ . (3.5)

Given ψ, the residual capacities of the Ishikawa graph are updated as φ = φ0 −
ψ, where φ0 represents the initial edge capacities. Furthermore, we call the flow
restricted to each column column-flows, which we denote by ψi:λ ; i ∈ V , λ ∈ L.

At first sight, it might seem that, to apply the max-flow algorithm, it is necessary
to keep track of all the values ψij:λµ, which would require the same order of storage
as recording all the edge capacities. Below, however, we show that it is necessary to
store only O(`) values for each (i, j) ∈ E , instead of O(`2).

To this end, the flow values that we store in our algorithm, namely source-flows
and exit-flows are defined below.

Definition 3.3.2. For each i ∈ V , the flow out from the source node ψi:`−1 is called a
source-flow.

Definition 3.3.3. For each (i, j) ∈ E+ and λ ∈ {1, · · · , `− 1}, we define an exit-flow
as

Σij:λ = ∑
µ

ψij:λµ . (3.6)

We will show that these source-flows and exit-flows permit the flow ψ to be
reconstructed up to equivalence.

Now, let us define some additional properties of flow, which will be useful in our
exposition.

Definition 3.3.4. A flow ψ is called permissible if φ0
ij:λµ − ψij:λµ ≥ 0 for all eij:λµ ∈ Ê+.

Definition 3.3.5. A flow ψ is called null if the total flow into a node is zero for all
nodes including the source and the terminal, i.e., satisfies Eq. (3.5) for all Ui:λ ∈
V̂ ∪ {0, 1}.

Note that a null flow does not change the energy function represented by the
st-graph and it is identical to passing flow around loops. Also, if ψ is a null flow
then so is −ψ.
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(a) ψ (b) ψ′ (c) ψ ≡ ψ′

Figure 3.2: An example of two equivalent flow representations with the same exit-flows. Note
that each red arrow represents the value ψij:λµ and the opposite arrows ψji:µλ are not shown.
Furthermore, the exit-flows Σ are shown next to the nodes and the initial edges φ0 are not
shown. In (c), the flow ψ′ is obtained from ψ by passing flow around a loop.

Furthermore, and as discussed in Section 2.2.3 the energy function encoded by
an st-graph is a quadratic pseudo-boolean function [Boros and Hammer, 2002], and
a reparametrization of such a function is identical to a null flow in the corresponding
st-graph.

Lemma 3.3.1. Two sets of capacities φ and φ′ represent the same energy function exactly
(not up to a constant), written as Eφ ≡ Eφ′ , if and only if φ′ −φ is a null flow.

Proof. A null flow can be shown to be equivalent to reparametrizing the pseudo-
boolean function using the identity ȳi = 1− yi (where yi, ȳi ∈ {0, 1} and ȳi is the
complement of yi). A brief overview of pseudo-boolean optimization is given in
Section 2.2. We refer the interested reader to [Boros and Hammer, 2002] for more
detail.

In fact, this lemma is a restatement of the reparametrization lemma (Lemma 2.3.4)
in the context of st-graphs.

Let φ and φ′ be two sets of residual capacities obtained from an initial set of
capacities φ0 by passing two flows ψ and ψ′, i.e., φ = φ0 − ψ and φ′ = φ0 − ψ′. If
φ and φ′ are equivalent, then, by Lemma 3.3.1, (φ0 − ψ)− (φ0 − ψ′) = ψ′ − ψ is
a null flow. Hence ψ′ can be obtained from ψ by passing flow around loops in the
graph. See Figure 3.2.

We can now state our main theorem.

Theorem 3.3.1. Let φ0 be the initial capacities of an Ishikawa graph, and let Σ be a set of
exit-flows. Suppose that ψ and ψ′ are two conservative flows with identical source-flows,
then Eφ0−ψ ≡ Eφ0−ψ′ . Furthermore, if both the flows are compatible with Σ, meaning that
(3.6) holds for both ψ and ψ′, then ψ and ψ′ have identical column-flows.

The idea is then as follows. If a permissible conservative flow ψ is obtained
during an augmenting path flow algorithm, but only the exit-flows Σij:λ are retained
for each (i, j) ∈ E+ and label λ, then one wishes, when required, to reconstruct the
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Figure 3.3: Given φ0 and Σ (left), flow reconstruction is formulated as a max-flow problem
(right). Here the nodes with positive exit-flows are connected to the source (0) and those with
negative exit-flows are connected to the terminal (1).

flow ψ on a given edge (i, j) ∈ E . Although the reconstructed flow ψ′ may not be
identical with the flow ψ, the two will result in equivalent energy functions (not just
equal up to a constant, but exactly equal for all assignments). In the augmenting
path algorithm, the current flow values are only needed temporarily, one edge at a
time, to find a new augmenting path, and hence do not need to be stored, as long as
they can be rapidly computed.

Now we prove Theorem 3.3.1.

Proof. First we prove the equivalence. Note that, if two conservative flows ψ and ψ′

have identical source-flows, then from Definition 3.3.5, ψ′ − ψ = (φ0 − ψ)− (φ0 −
ψ′) is a null-flow. Therefore, from Lemma 3.3.1, Eφ0−ψ ≡ Eφ0−ψ′ .

Now we prove that ψ and ψ′ have identical column-flows. For a conservative
flow

ψi:λ −

ψi:λ−1 + ∑
(i,j)∈E+

Σij:λ

 = 0 , (3.7)

for all i ∈ V and λ ∈ {1, . . . , `− 1}. Since ψ and ψ′ are compatible with Σ and have
identical source-flows, ψi:λ = ψ′i:λ for all i ∈ V and λ = L. Hence they have identical
column-flows.

3.3.1 Flow Reconstruction

Note that, from Eq. (3.7) it is clear that given the source-flows ψi:`−1 ; i ∈ V , the
column-flows ψi:λ ; i ∈ V , λ ∈ L can be computed in a top-down fashion. Now we
turn to the problem of finding the flows along the cross-edges eij:λµ.

Given the set of exit-flows Σ, the objective is to find a permissible flow ψ′ satis-
fying Eq. (3.6). Note that there exists a permissible conservative flow ψ compatible
with Σ and hence we find ψ′ such that ψ′ − ψ is a null flow. We do this by consid-
ering one edge (i, j) ∈ E at a time and reconstruct the flow by formulating a small
max-flow problem.
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Considering all the nodes Ui:λ and Uj:µ for a given pair (i, j), we join them with
edges with initial capacities φ0

ij:λµ. Nodes with positive exit-flow Σij:λ are joined to
the source with edges of capacities

∣∣Σij:λ
∣∣. Similarly, those with negative exit-flow are

joined to the terminal. See Figure 3.3.
Note that, in this network, the edges from the source can be thought of as “sup-

ply” and the edges to the terminal can be thought of as “demand”. Since the total
supply equals the total demand in this network and there exists a permissible flow
ψij compatible with Σ (i.e., satisfying the supply-demand equality), the maximum
flow solution of this network ψ′ij is compatible with Σ, i.e., satisfies Eq. (3.6). In fact
we are interested in non-negative residual capacities φ′ij = φ0

ij−ψ′ij which are readily
available in this network.

This problem can be solved using a greedy augmenting path algorithm. While
this graph has O(`) nodes and O(`2) edges, this remains perfectly tractable, since
we only consider one edge (i, j) at a time. Therefore, ultimately, flow reconstruction
can be done efficiently.

At this point, given the initial capacities φ0, the source-flows ψi:`−1 ; i ∈ V and the
set of exit-flows Σ, we have shown how to reconstruct the non-negative residual edge
capacities φ′. This requires O(n + m `) values to be stored, where n = |V|, m = |E |
and ` = |L|.

3.4 Polynomial Time Memory Efficient Max-Flow

We now introduce our polynomial time memory efficient max flow algorithm, which
minimizes multi-label submodular MRF energies with pairwise interactions. Our al-
gorithm follows a similar procedure as the standard Edmonds-Karp algorithm [Ed-
monds and Karp, 1972], in that it iteratively finds the shortest augmenting path and
then pushes the maximum flow through it without exceeding the edge capacities.
However, instead of storing the residual graph, we store exit-flows as proposed in
Section 3.3, which, at any stage of the algorithm, would allow us to compute the
residual graph. Below, we discuss how one can find an augmenting path and update
the exit-flows, i.e., perform augmentation, without storing the full Ishikawa graph.

3.4.1 Finding an Augmenting Path

Our algorithm finds an augmenting path in a subgraph of the Ishikawa graph, called
lower-graph. In particular, the lower-graph contains only a subset of Ishikawa edges
which satisfy the lowest-cross-edge property.

Definition 3.4.1. Consider a directed edge (i, j) ∈ E+. For each node Ui:λ, the lowest-
cross-edge is defined as, the edge eij:λµ where µ is the smallest value such that φij:λµ >
0.

More specifically, in addition to the vertical edges Ê+v , the lower-graph contains
the lowest-cross-edges. Therefore, we only store O(`) edges per variable pair (i, j).
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Now, the relationship between augmenting paths in the original Ishikawa graph and
the lower-graph can be characterized by the following theorem.

Theorem 3.4.1. Given the Ishikawa graph, there is an augmenting path in the lower-graph
if and only if there exists an augmenting path in the Ishikawa graph.

Proof. Since the lower-graph is a subgraph of the Ishikawa graph, if there is an
augmenting path in the lower-graph, then there exists an augmenting path in the
Ishikawa graph.

We will now prove the converse. Consider a directed edge (i, j) ∈ E+. Let eij:λµ

and eij:λµ′ be two positive capacity edges from Ui:λ and eij:λµ′ be the lowest-cross-
edge. Then, due to the upward infinite capacity edges from Uj:µ′  Uj:µ, there is
a positive capacity path from Ui:λ  Uj:µ through the lowest-cross-edge eij:λµ′ . This
proves the theorem.

This enables us to find all the augmenting paths in the Ishikawa graph by search-
ing in a smaller graph that has O(`) edges per variable pair (i, j).

Note that, as mentioned earlier, we find the shortest augmenting path in this
lower-graph. However, in contrast to the Edmonds-Karp algorithm, the path dis-
tance is computed considering zero distance for the infinite capacity edges and unit
distance for other edges, instead of unit distance for all the edges. The intuition for
this modification is that the infinite capacity edges will never become saturated (or
eliminated from the graph) for the entire course of the algorithm. Note that, with this
definition of path distance, the augmenting paths in both lower-graph and Ishikawa
graph have the same length. This will enable us to prove the polynomial time bound
of our algorithm in a similar manner as the standard Edmonds-Karp algorithm. Note
that, even in this case, the shortest augmenting path can be found using a Breadth
First Search (BFS) scheme.

3.4.2 Augmentation

Now, given an augmenting path p, we want to push the maximum permissible flow
through it. The edges in the augmenting path p are updated in the same manner as
in the usual max-flow algorithm. In addition to that, for each cross edge eij:λµ ∈ Ê+c
that is in the augmenting path, the exit-flows are updated as follows,

Σij:λ = Σij:λ + α , (3.8)

Σji:µ = Σji:µ − α ,

where α is the maximum possible flow along the path p.
After the flow augmentation, the lower-graph needs to be updated to maintain

the lowest-cross-edge property. Note that the lowest-cross-edge property may be
violated due to the following reasons:

1. A new lowest-cross-edge eij:λµ is created due to a flow along the edge eji:µλ.
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Algorithm 3.1 Memory Efficient Max-Flow (MEMF) - Polynomial Time Version

Require: φ0 . Initial Ishikawa capacities
Σ← 0 . Initialize exit-flows
φ̄← lower-graph(φ0) . Store the lowest-cross-edges
repeat

p← shortest-augmenting-path(φ̄) . Section 3.4.1
(φ̄, Σ)← augment(p, φ̄) . Section 3.4.2
for each edge eij:λµ becomes saturated do

φij ← compute-edges(φ0, Σ, i, j) . Section 3.3.1
φ̄ij ← lower-graph(φij, i, j) . Section 3.4.1

end for
until no augmenting paths possible
return get-labelling(φ̄) . Find the cut using BFS

2. A new lowest-cross-edge eij:λµ is created due to a saturating flow along eij:λµ′

for some µ′ < µ, i.e., the edge eij:λµ′ disappears from the Ishikawa graph.

Note that, during an augmentation, if a new lowest-cross-edge is created due to
a flow in the opposite direction (case-1 above), then the new lowest-cross-edge is
known and the lower-graph can be updated directly, i.e., the new lowest-cross-edge
can be stored.

On the other hand, if a cross edge becomes saturated (case-2), then we need to run
the flow reconstruction algorithm to find the new lowest-cross-edge and update the
lower-graph. This can be done in a memory efficient manner, since it only involves
one edge (i, j) ∈ E at a time.

3.4.3 Summary

Our memory efficient max flow is summarized in Algorithm 3.1. Let us briefly ex-
plain the subroutines below.

lower-graph. Given the initial Ishikawa edge capacities φ0, this subroutine con-
structs the lower-graph (with edge capacities φ̄) by retaining the lowest-cross-edges
from each node Ui:λ ∈ V̂ , for each directed edge (i, j) ∈ E+ (see Section 3.4.1). If
the input to this subroutine is the Ishikawa capacities φij corresponding to the edge
(i, j) ∈ E , then it retains the lowest-cross-edges φ̄ij.

shortest-augmenting-path. Given the lower-graph parameters φ̄, this subroutine
finds the shortest augmenting p using BFS, as discussed in Section 3.4.1.

augment. Given the path p, this subroutine finds the maximum possible flow through
the path and updates the lower-graph and the set of exit-flows, as discussed in Sec-
tion 3.4.2. In addition, if a new lowest-cross-edge is created due to a flow in the
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opposite direction (case-1 in Section 3.4.2), then it also updates the lower-graph ca-
pacities φ̄.

compute-edges. Given the initial Ishikawa edge capacities φ0 and the set of exit-
flows Σ, this subroutine computes the non-negative residual Ishikawa capacities φij
corresponding to the given edge (i, j). This is accomplished by solving a small max-
flow problem (see Section 3.3.1).

get-labelling. This subroutines finds the partition of the lower-graph by running
BFS.

As discussed above, the exit-flows Σ require O(`) storage for each edge (i, j) ∈
E . In addition, the lower-graph can have at most O(n `) nodes and O(m `) edges.
Furthermore, recall that we assume that the initial Ishikawa edge capacities φ0 can
be stored efficiently. Therefore, ultimately, the space complexity of our algorithm
is O((n + m) `) = O(m `). Let us now prove the polynomial time bound of our
algorithm.

3.4.4 Time Complexity Analysis

We follow the time complexity analysis given in [Cormen et al., 2001] for the stan-
dard Edmonds-Karp algorithm to derive a polynomial time bound on our algorithm.
In particular, the analysis first proves that the shortest path distance from the source
(node 0) to any node is monotonically increasing with each flow augmentation. Then,
it derives a bound on the number of augmentations. In fact, the number of aug-
mentations of our MEMF algorithm also has the same bound as the Edmonds-Karp
algorithm.

Let us denote the Ishikawa graph by Ĝ = (V̂ ∪ {0, 1}, Ê) and the lower-graph
by Ĝs = (V̂ ∪ {0, 1}, Ê s)2. In this section, we denote the nodes with u, v, etc. The
notation u1 ≤ u means that the node u1 and u are in the same column where u1

is below u. Let Ĝs
f denote the residual graph of the lower-graph after the flow f

and similarly Ê s
f denotes the set of non-zero residual edges. Let d f (u, v) denote the

shortest path distance from u to v calculated by MEMF (Algorithm 3.1).

Lemma 3.4.1. If the MEMF algorithm (Algorithm 3.1) is run on the Ishikawa graph Ĝ =
(V̂ ∪ {0, 1}, Ê) with source 0 and terminal 1, then for any node v ∈ V̂ , the shortest path
distance d f (0, v) in the residual lower-graph Ĝs

f increases monotonically with each flow aug-
mentation.

Proof. We suppose that, for some node v ∈ V̂ , there is a flow augmentation that
causes the shortest path distance from 0 to v to decrease, and then we derive a

2For simplified notation, we removed the capacity argument for the st-graph and the superscript +
for the set of edges. However, the sets Ê and Ê s contains directed edges. The superscript s in Ê s is used
to restate the fact, that the lower-graph is a subgraph of the Ishikawa graph.
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contradiction. Let f be the flow just before the first augmentation that decreases
some shortest path distance, and let f ′ be the flow just afterward. Let v be the node
with the minimum d f ′(0, v) whose distance was decreased by the augmentation, so
that d f ′(0, v) < d f (0, v). Let p = 0 u → v be a shortest path from 0 to v in Ĝs

f ′ , so

that (u, v) ∈ Ê s
f ′ and

d f ′(0, v) =
{

d f ′(0, u) if u < v (infinite edge)
d f ′(0, u) + 1 otherwise .

(3.9)

Because of how we chose v, we know that the distance of node u from the source 0
did not decrease, i.e.,

d f ′(0, u) ≥ d f (0, u) . (3.10)

We claim that (u, v) /∈ Ê s
f . Why? If we had (u, v) ∈ Ê s

f , then we would also have

d f (0, v) ≤ d f (0, u) + 1 , (3.11)

≤ d f ′(0, u) + 1 ,

= d f ′(0, v) ,

which contradicts our assumption that d f ′(0, v) < d f (0, v). The above argument
simply follows even if (u, v) is an infinite capacity edge. Hence (u, v) /∈ Ê s

f .

How can we have (u, v) /∈ Ê s
f and (u, v) ∈ Ê s

f ′? Note that, in this case, (u, v)
cannot be an infinite capacity edge. There can be two reasons:

1. A new lowest edge (u, v) is created due to the flow from v to u. This means
that the augmentation must have increased the flow from v to u. The MEMF al-
gorithm always augments flow along shortest paths, and therefore the shortest
path from 0 to u in Ĝs

f has (v, u) as its last edge. Therefore,

d f (0, v) = d f (0, u)− 1 , (3.12)

≤ d f ′(0, u)− 1 ,

= d f ′(0, v)− 2 ,

which contradicts our assumption that d f ′(0, v) < d f (0, v).

2. A new edge (u, v) is created due to a saturating flow from u to v1 for some
v1 < v. The MEMF algorithm always augments flow along shortest paths, and
therefore the shortest path from 0 to v1 in Ĝs

f has (u, v1) as its last edge. Since
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d f (0, v) ≤ d f (0, v1), due to the upward infinite capacity edges, we have,

d f (0, v) ≤ d f (0, v1) , (3.13)

= d f (0, u) + 1 ,

≤ d f ′(0, u) + 1 ,

= d f ′(0, v) ,

which contradicts our assumption that d f ′(0, v) < d f (0, v).

We conclude that our assumption that such a node v exists is incorrect.

The next theorem bounds the number of iterations of the MEMF algorithm.

Theorem 3.4.2. If the MEMF algorithm (Algorithm 3.1) is run on the Ishikawa graph Ĝ =
(V̂ ∪ {0, 1}, Ê) with source 0 and sink 1, then the total number of augmentations performed
by the algorithm is O(|V̂ ||Ê |).

Proof. We say that an edge (u, v) in a residual lower-graph Ĝs
f is critical on an aug-

menting path p if the residual capacity of p is the residual capacity of (u, v), i.e., if
c f (p) = c f (u, v). After we have augmented flow along an augmenting path, any
critical edge on the path disappears from the residual graph. Moreover, at least one
edge on any augmenting path must be critical. We will show that each of the |Ê |
edges can become critical at most |V̂ |/2 + 1 times. Furthermore, note that an infinite
capacity edge cannot be critical at any point of the algorithm.

Let u and v be nodes in V̂ ∪ {0, 1} that are connected by an edge in Ê s. Since
augmenting paths are shortest paths, when (u, v) is critical for the first time, we have

d f (0, v) = d f (0, u) + 1 . (3.14)

Once the flow is augmented, the edge (u, v) disappears from the residual graph.
Since we maintain the lowest-cross-edge property, there cannot be an edge (u, v1)
in Ĝs

f for some v1 < v. Therefore, the edge (u, v) cannot reappear later on another
augmenting path until after the flow from u to v1 for some v1 ≤ v is decreased,
which occurs only if (v1, u) appears on an augmenting path. If f ′ is the flow when
this event occurs, then we have

d f ′(0, u) = d f ′(0, v1) + 1 . (3.15)

Since d f ′(0, v) ≤ d f ′(0, v1), due to the upward infinite capacity edges, and d f (0, v) ≤
d f ′(0, v) by Lemma 3.4.1, we have

d f ′(0, u) = d f ′(0, v1) + 1 , (3.16)

≥ d f ′(0, v) + 1 ,

≥ d f (0, v) + 1 ,

= d f (0, u) + 2 .
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Consequently, from the time (u, v) becomes critical to the time when it next be-
comes critical, the distance of u from the source increases by at least 2. The distance
of u from the source is initially at least 0. The intermediate nodes on a shortest path
from 0 to u cannot contain 0, u or 1 (since (u, v) on an augmenting path implies that
u 6= 1). Therefore, until u becomes unreachable from the source, if ever, its distance is
at most |V̂ |. Thus, after the first time that (u, v) becomes critical, it can become critical
at most |V̂ |/2 times more, for a total of |V̂ |/2 + 1 times. Since there are O(|Ê |) pairs
of nodes that can have an edge between them in a residual graph, the total number of
critical edges during the entire execution of the MEMF algorithm is O(|V̂ ||Ê |). Each
augmenting path has at least one critical edge, and hence the theorem follows.

Let us analyze the time complexity of each subroutine of Algorithm 3.1 be-
low. Note that both the subroutines shortest-augmenting-path and augment runs in
O(m `) time, since, in the worst case, both subroutines need to check each edge
in the lower-graph. However, compute-edges requires to run the flow reconstruction
algorithm which takes O(`3) time for each variable pair (i, j) (assuming a small
max-flow problem with 2 ` nodes and `2 edges, solved using the most efficient
algorithm [Orlin, 2013], see Section 3.3.1). Also lower-graph requires O(`2) time
for each variable pair (i, j), since it needs to check each of the Ishikawa edges.
Hence, the worst case running time of each iteration (i.e., augmentation step) is
O(m `+ κ (`3 + `2)) = O(m `+ m `3) = O(m `3), where κ is the maximum number
of flow-reconstructions (i.e., saturated cross edges) at an augmentation step. Since
the number of augmentations is bounded by O(|V̂ ||Ê |), the worst case running time
of the entire execution of the MEMF algorithm is O(n `m `2 m `3) = O(n m2 `6). This
is O(`) slower than the standard Edmonds-Karp algorithm on the Ishikawa graph.
Note, however, that MEMF requires O(`) less memory.

3.5 Efficient Algorithm

In the previous section, we have provided a general purpose polynomial time max-
flow algorithm that is also memory efficient. However, for computer vision applica-
tions, the BK algorithm [Boykov and Kolmogorov, 2004] is shown to be significantly
faster than the standard max-flow implementations, even though it lacks the poly-
nomial time guarantee. The basic idea is to maintain a search tree throughout the
algorithm instead of building the search tree from scratch at each iteration.

Motivated by this, we also propose doing search-tree-recycling similarly to the
BK algorithm. Since we lose the polynomial time guarantee, for increased efficiency,
we further simplify the Ishikawa graph. In particular, we find an augmenting path in
a block-graph, that amalgamates the nodes in each column into blocks. Since an aug-
menting path in our block-graph corresponds to a collection of augmenting paths in
the Ishikawa graph, our algorithm converges in fewer iterations than the BK algo-
rithm.
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Figure 3.4: To find an augmenting path in a memory efficient manner, we propose a simplified
representation of the Ishikawa graph in terms of blocks corresponding to consecutive non-zero
edges in each column i.

3.5.1 Efficiently Finding an Augmenting Path

As mentioned above, we find an augmenting path in a block-graph3, whose con-
struction is detailed below.

Given the parameters φ, we rely on the fact that there exists a label λ such that
φi:λ = 0 for each i ∈ V . In fact, it is easy to see that in each column i, if all φi:λ
are positive, then there exists a trivial augmenting path from Ui:` to Ui:0, and the
minimum along the column can be subtracted from each φi:λ. Now, at each column
i, we partition the nodes Ui:λ for all λ ∈ {1, · · · , `− 1} into a set of blocks, such that
each node in a block is connected with positive edges φi:λ. Let us denote these blocks
by Bi:γ, where γ is indexed from bottom to top starting from 0. Note that there is no
edge from Bi:γ+1 to Bi:γ. As depicted by Figure 3.4, our block-graph then contains
only the blocks and the edges between the blocks.

The edges in the block-graph are obtained as follows. Let us consider a directed
edge (i, j) ∈ E+. We add an edge Bi:γ → Bj:δ, where δ is the smallest value such that
φij:λµ > 0 for some Ui:λ ∈ Bi:γ and Uj:µ ∈ Bj:δ. While doing this, we also enforce that
there is no edge Bi:γ′ → Bj:δ′ such that γ′ > γ and δ′ < δ. Meaning, if there is an
edge Bi:γ′ → Bj:δ′ for some γ′ > γ and δ′ < δ, then the new edge Bi:γ → Bj:δ will not
be added. The reasoning behind this is that, because of the upward infinite-capacity
edges between the nodes Ui:λ and Ui:λ+1, we have the following:

1. If a node Uj:µ can be reached from Ui:λ through positive edges, then the nodes

3We called this a simplified graph in [Ajanthan et al., 2016].
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Uj:µ′ , for all µ′ ≥ µ, can also be reached.

2. If a node Uj:µ can be reached from Ui:λ through positive edges, then it can also
be reached from the nodes Ui:λ′ , for all λ′ ≤ λ.

Hence, an edge Bi:γ → Bj:δ indicates the fact that there is some positive flow possible
from any node Ui:λ ∈ Bi:γ′ , for all γ′ ≤ γ, to any node Uj:µ ∈ Bj:δ′ , for all δ′ ≥ δ. In
other words, the set of edges obtained by this procedure is sufficient.

Now, the relationship between augmenting paths in the original Ishikawa graph
and in our block-graph can be characterized by the following theorem.

Theorem 3.5.1. Given the Ishikawa graph, there is an augmenting path in the block-graph
if and only if there exists an augmenting path in the Ishikawa graph.

Proof. The basic idea of this proof is the same as the proof of Theorem 3.4.1. First,
we prove that, if there is an augmenting path in the block-graph, then there exists
an augmenting path in the Ishikawa graph. It is clear that an augmenting path in
the block-graph contains an edge from node 0 to a block and then a sequence of
edges Bi:γ → Bj:δ and finally an edge from a block to node 1. Note that an edge from
node 0 to a block Bi:γ corresponds to a positive edge ei:`−1 in the Ishikawa graph;
similarly an edge from a block Bj:δ to node 1 corresponds to a positive edge ej:0.
Now, consider an edge Bi:γ → Bj:δ in the augmenting path. Corresponding to this,
there exists a positive edge eij:λµ such that Ui:λ ∈ Bi:γ′ for some γ′ ≥ γ and Uj:µ ∈ Bj:δ
in the Ishikawa graph. Furthermore, along the column i, there are upward infinite
capacity edges, and nodes corresponding to a block are also connected with positive
bidirectional edges. Hence, there exists an augmenting path in the Ishikawa graph,
corresponding to the augmenting path in the block-graph.

Now, we prove the converse. Consider an augmenting path in the Ishikawa graph.
The path may contain a sequence of positive edges ei:λ, eij:λµ and infinite capacity
edges eii:λλ+1. Note that, by construction, the ei:λ edges either will be in the same
block Bi:γ in the block-graph, or will be between a block and node 0 or node 1.
Furthermore, the infinite capacity edges either will be in the same block, or there
will be an edge Bi:γ → Bj:δ in the block-graph to represent them. Finally, if eij:λµ

is a positive edge, then, by construction of the block-graph, there exists an edge
Bi:γ → Bj:δ′ where Ui:λ ∈ Bi:γ and Uj:µ ∈ Bj:δ with δ′ ≤ δ. Hence, if there is an
augmenting path in the Ishikawa graph, then there exists an augmenting path in the
block-graph.

Note that the block-graph can only be used to find an augmenting path; the quan-
tity of the maximum permissible flow cannot be determined in this graph. Therefore,
the capacity of an edge Bi:γ → Bj:δ is not important, but it is important to have these
edges. Note also that the block-graph is constructed incrementally for each edge
(i, j) ∈ E . Hence, it only requires us to store the Ishikawa graph parameters φij

corresponding to the edge (i, j). Furthermore, since the block-graph Ĝb is sparse, an
augmenting path can be found fairly quickly.



§3.5 Efficient Algorithm 63

Furthermore, similarly to the BK algorithm, we find an augmenting path Pb using
BFS and maintain the search tree throughout the algorithm, by repairing it when-
ever the block-graph is updated. However, since the block-graph needs to be recon-
structed after each augmentation, for simplicity, we maintain a single tree4. More
specifically, we grow the search tree from source (node 0), in a breadth first manner,
and if sink (node 1) is reached, then the augmenting path Pb is found.

3.5.2 Augmentation in the Block-Graph

Now, given an augmenting path Pb in the block-graph, we want to push the maxi-
mum permissible flow through it. More specifically, since Pb corresponds to a set of
augmenting paths {pb} in the Ishikawa graph, we push the maximum flow through
each path pb, until no such path exists. This could be achieved by constructing the
subgraph Ĝ p of the Ishikawa graph corresponding to the augmenting path Pb, and
then finding each of the augmenting path pb by searching in Ĝ p. This would require
us to either store Ĝ p (not memory efficient) or call the flow reconstruction algorithm
too many times.

Instead, we propose breaking down the augmentation operation in the block-
graph into a sequence of flow-loops and a subtraction along a column. Then, the
maximum flow through the path can be pushed in a greedy manner, by pushing the
maximum flow through each flow-loop. Before describing this procedure in detail,
we introduce the following definitions.

Definition 3.5.1. A flow-loop m(λ, µ, α) in the Ishikawa graph is defined as the fol-
lowing sequence of operations: First, a value α is pushed down the left column from
Ui:` to Ui:λ, then across from Ui:λ to Uj:µ, and finally up the right column from Uj:µ
to Uj:`. Thus, applying the flow-loop m(λ, µ, α) corresponds to replacing φ by φ + ∆,
where

∆i:λ′ = −α ∀λ′ ≥ λ ,

∆ij:λµ = −α ,

∆ji:µλ = α ,

∆j:µ′ = α ∀µ′ ≥ µ .

Definition 3.5.2. A flow-loop m̃(γ, δ, α) in the block-graph Ĝb is defined by the fol-
lowing sequence of operations: First a value α is pushed down the left column from
Ui:` to Bi:γ, then across from Bi:γ to Bj:δ, and finally up the right column from Bj:δ to
Uj:`. The exact procedure is illustrated in Figure 3.5.

Note that, for a flow-loop m̃(γ, δ, α) to be permissible, block Bi:γ must contain
node Ui:`−1. Note also that the flow-loop m̃(γ, δ, α) can be thought of as a summation
of flow-loops m(λ, µ, α′), where Ui:λ ∈ Bi:γ and Uj:µ ∈ Bj:δ′ , for all δ′ ≥ δ (see Figure
3.5).

4The BK algorithm maintains two trees, source-tree and sink-tree, but we only maintain the source-
tree.



64 Memory Efficient Max-Flow for Multi-Label Submodular MRFs

Figure 3.5: An example flow-loop m̃(1, 0, αij) in the block-graph (left) is equivalent to the
summation of two flow-loops m(3, 1, α1) and m(4, 4, α2) in the Ishikawa graph (right), with
αij = α1 + α2.

Figure 3.6: An augmentation operation is broken down into a sequence of flow-loops
m̃(γ, δ, α), and a subtraction along the column k. The augmenting path Ps is highlighted
in red.
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Given these definitions, one can easily see that the augmentation operation along
the path Pb can be broken down into a sequence of flow-loops m̃(γ, δ, α) and a sub-
traction along the last column k, as illustrated in Figure 3.6. Now, we push the
maximum permissible flow through Pb, using the following greedy approach.

For each edge Bi:γ → Bj:δ that is part of the path Pb, we apply a flow-loop
m̃(γ, δ, αij), where αij is the maximum permissible flow through the edge Bi:γ → Bj:δ.
In fact, applying this flow-loop translates to reconstructing the Ishikawa edge capac-
ities φij corresponding to edge (i, j) and then applying flow-loops m(λ, µ, α′) for all
λ ≥ λ̌ and µ ≥ µ̌, starting from λ̌ and µ̌, until no permissible flow-loop m(λ, µ, α′)
exists, with λ̌ and µ̌ the smallest values such that Ui:λ ∈ Bi:γ and Uj:µ ∈ Bj:δ. Finally,
in the last column k, all the values φk:λ are positive, and the minimum along col-
umn k is subtracted from each φk:λ. Note that, after this procedure, no augmenting
path exists5 in Pb and therefore this approach pushes the maximum permissible flow
through the path Pb.

In the above explanation, we did not specifically discuss the scenario where Pb

contains the same edge (i, j) ∈ E more than once, e.g., Pb = 0 Bi:γ → Bj:δ  Bj:δ′ →
Bi:γ′  1. In fact this situation is not different and can be handled exactly the same
way as before. This is mainly because of the construction of the block-graph, which
guarantees γ′ < γ and δ′ ≤ δ. This means, even in this situation, the maximum
flow through Pb is still positive and it can be pushed using the above mentioned
procedure.

Remark. Note that the augmenting path Pb in the block-graph corresponds to a
Directed Acyclic Graph (DAG) in the Ishikawa graph. See Figure 3.7 for an example.
Now, the task is to push the maximum permissible flow through it. Since a DAG in
an st-graph corresponds to a linear multi-label graph (i− j− k for the DAG shown in
Fig. 3.7), pushing the maximum-flow through it can be done using message-passing
(in other words dynamic programming) in a single pass through this linear graph6.
Since augmentation can be performed in a single pass, only `2 values (the Ishikawa
or multi-label graph edges corresponding to variable pair (i, j)) are needed at a time,
and, hence, it can be done in a memory efficient manner. Note that, even in our
algorithm, the augmentation step is performed in a single pass.

Since, for each edge (i, j), we do not store all the 2 `2 capacities, but only the 2 `
exit-flows Σ, augmentation must then also update these values. Fortunately, there
is a direct relation between the flow-loops and Σ. To see this, let us consider the
example flow-loop m̃(1, 0, αij) shown in Figure 3.5. Applying this flow-loop updates

5After the application of this procedure there is no permissible flow-loop of the form m̃(γ, δ, α)
possible.

6More detail on the equivalence between max-flow and message-passing can be found in Section 3.6.
Furthermore, for optimality of message-passing on linear graphs, see Section 2.3.4.4.
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(a) Augmenting path in the block-graph (b) Corresponding directed acyclic graph

Figure 3.7: Augmenting path in the block-graph (left) and its corresponding directed acyclic
graph in the Ishikawa graph (right) are highlighted in red. Here the dashed arrows denote the
upward infinite capacity edges.

the corresponding exit-flows as

Σij:3 = Σij:3 + α1 , (3.17)

Σji:1 = Σji:1 − α1 ,

Σij:4 = Σij:4 + α2 ,

Σji:4 = Σji:4 − α2 .

Similar updates can be done for all flow-loops in our procedure. Note that the edge
Bi:γ → Bj:δ represents a collection of possible paths from all the nodes Ui:λ ∈ Bi:γ
to all the nodes Uj:µ ∈ Bj:δ′ , for all δ′ ≥ δ. Therefore, unlike in the full Ishikawa
graph, after applying a flow-loop, the portion of the graph Ĝb

ij corresponding to edge
(i, j) ∈ E needs to be reconstructed. This, however, can be done in a memory efficient
manner, since it only involves one edge (i, j) at a time.

3.5.3 Summary

Our Memory Efficient Max-Flow (MEMF) method is summarized in Algorithm 3.2.
Let us briefly explain the subroutines below.

block-graph. Given the initial Ishikawa parameters φ0, this subroutine constructs
the block-graph by amalgamating nodes into blocks as described in Section 3.5.1. If
the input to the subroutine is the Ishikawa capacities φij corresponding to the edge
(i, j) ∈ E , then it constructs the block-graph portion Ĝb

ij.
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Algorithm 3.2 Memory Efficient Max-Flow (MEMF) - Efficient Version

Require: φ0 . Initial Ishikawa capacities
Σ← 0, T ← ∅ . Initialize exit-flows and search tree
Ĝb ← block-graph(φ0) . Initial block-graph
repeat

(T, Pb)← augmenting-path(Ĝb, T) . Section 3.5.1
Σ← augment(Pb, φ0, Σ) . Section 3.5.2
for each edge (i, j) ∈ E affected by augmentation do

φij ← compute-edges(φ0, Σ, i, j) . Section 3.3.1
Ĝb

ij ← block-graph(φij, i, j) . Section 3.5.1
end for
T ← repair-tree(T, Ĝb) . Repair search tree

until no augmenting paths possible
return get-labelling(T) . Read from search tree

augmenting-path. Given the block-graph Ĝb and the search tree T, this subroutine
finds an augmenting path Pb by growing the search tree, as discussed in Section 3.5.1.

augment. Given the path Pb, this subroutine pushes the maximum permissible flow
through it by applying flow-loops m̃(γ, δ, α) and then subtracting the minimum from
the last column, as discussed in Section 3.5.2.

compute-edges. This is the same subroutine as in Algorithm 3.1. (see Section 3.4.3).

repair-tree. This subroutine is similar to the adoption stage of the BK algorithm.
Given the reconstructed block-graph, the search tree T is repaired by checking for
valid parent for each orphan node. See Section 3.2.3 in [Boykov and Kolmogorov,
2004] for more detail.

get-labelling. This subroutine directly reads the optimal labelling from the search
tree T.

As discussed Section 3.4.3, the space complexity of our algorithm is O(m `). For
the rest of the chapter, this efficient version of the algorithm is referred to as MEMF.

3.6 Equivalence with Message Passing

In this section, we give a more insightful interpretation of our max-flow algorithm,
by showing equivalence with the min-sum message passing algorithm (see Sec-
tion 2.3.4.3 for an overview). Note that this equivalence was observed in [Tarlow
et al., 2011] for binary submodular MRFs. Here we discuss it in the context of multi-
label submodular MRFs and also show the relationship between the set of exit-flows
and the set of messages. In particular, we first show that our max-flow algorithm
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is in fact solving the optimal message passing problem (2.85). Later, we point out the
relationship between the set of exit-flows and the set of messages. To this end, let us
first recall the optimal message passing problem.

3.6.1 The Optimal Message Passing Problem

As discussed in Section 2.3.4.3, the optimal message passing problem (2.85) takes the
following form,

max
θ′

∑
i∈V

min
λ∈L

θ′i:λ , (3.18)

s.t. Eθ′ ≡ Eθ ,

θ′ij:λµ ≥ 0 ∀ (i, j) ∈ E , λ, µ ∈ L .

Here, Eθ denotes the multi-label energy function (3.1) defined by the parameter vec-
tor θ and the shorthand θi:λ = θi(λ) and θij:λµ = θij(λ, µ) is used. Furthermore, the
notation Eθ′ ≡ Eθ means that Eθ′(x) = Eθ(x) for all labellings x. Recall that the
Ishikawa edge capacities φ and the energy parameters θ are related according to the
formula (3.4).

If Eθ ≡ Eθ′ , then θ′ is a reparametrization of θ, and the conditions for this equiv-
alence are characterized by the reparametrization lemma (see Lemma 2.3.4). We
restate it here for completeness.

Lemma 3.6.1. Two energy functions Eθ and Eθ′ are equivalent if and only if there exist
messages mji:λ and mij:µ for (i, j) ∈ E and λ, µ ∈ L such that

θ′ij:λµ = θij:λµ −mji:λ −mij:µ , (3.19)

θ′i:λ = θi:λ + ∑
(k,i)∈E+

mki:λ .

The optimality of min-sum message passing for the case of multi-label submod-
ular MRFs was observed in [Werner, 2007; Kolmogorov and Wainwright, 2005]. We
now show that our max-flow algorithm is in fact solving the above message passing
problem.

3.6.2 Max-Flow Solves the Optimal Message Passing Problem

Let us state our claim as a theorem.

Theorem 3.6.1. The max-flow algorithm on the Ishikawa graph solves the optimal message
passing problem (3.18) for multi-label submodular MRFs.

A usual max-flow algorithm finds augmenting paths and pushes maximum flow
through them. Before giving the proof, let us first characterize the notion of an
augmenting path below.
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The Notion of an Augmenting Path. Let us consider an augmenting path in the
Ishikawa graph. If it is a trivial augmenting path, i.e., it is an augmenting path along
a column from nodes Ui:` to Ui:0, then pushing the maximum flow along the path
translates to subtracting the minimum value from each φi:λ ; λ ∈ L. Therefore, the
notion of a trivial augmenting path is,

φi:λ > 0 ∀ λ ∈ L , (3.20)

for some i ∈ V .
Let us consider a more interesting augmenting path in the Ishikawa graph, which

contains at least one cross edge eij:λµ ∈ Ê+c . From the discussion in Section 3.5.2, one
can easily see that the augmentation operation can be broken down into a sequence
of flow-loops m(λ, µ, α) (see Definition 3.5.1) and a subtraction along a column. This
intuitively suggests that an augmenting path in the Ishikawa graph can be translated
to a trivial augmenting path by passing flow around loops, i.e., they differ by a null
flow. From Lemma 3.3.1, a null flow corresponds to a reparametrization of φ and
two such energy functions are equivalent. Hence, the notion of any augmenting path
can be characterized as, finding a set of reparametrizations that makes φi:λ positive
for all λ ∈ L for some i ∈ V .

Now we prove our theorem.

Proof. Note that the max-flow algorithm iteratively finds augmenting paths and pushes
flow through them, without making the edge capacities negative. It proceeds until
no augmenting path exists. From the argument above, it becomes clear that any aug-
menting path can be translated to a trivial augmenting path by passing flow around
loops (i.e., reparametrization). Furthermore, pushing permissible flow through a triv-
ial augmenting path is simply a subtraction of the minimum value minλ∈L φi:λ from
each φi:λ ; λ ∈ L. Therefore the max-flow algorithm solves the following optimization
problem:

max
φ′

∑
i∈V

min
λ∈L

φ′i:λ , (3.21)

s.t. Eφ′ ≡ Eφ ,

φ′ij:λµ ≥ 0 ∀ eij:λµ ∈ Ê+c .

Note that, given the Ishikawa edge capacities φ, the corresponding energy parame-
ters θ can be calculated using the following formula,

θi:λ = φi:λ , (3.22)

θij:λµ = ∑
λ′>λ
µ′≤µ

φij:λ′µ′ + ∑
λ′≤λ
µ′>µ

φji:µ′λ′ .

For multi-label submodular MRFs, by construction, Eθ ≡ Eφ ≡ Eφ′ ≡ Eθ′ . Further-
more, for all (i, j) ∈ E and λ, µ ∈ L, θij:λµ ≥ 0, if φij:λµ ≥ 0 for all cross edges Ê+c .



70 Memory Efficient Max-Flow for Multi-Label Submodular MRFs

Hence, Eq. (3.21) can be equivalently written as

max
θ′

∑
i∈V

min
λ∈L

θ′i:λ , (3.23)

s.t. Eθ′ ≡ Eθ ,

θ′ij:λµ ≥ 0 ∀ (i, j) ∈ E , λ, µ ∈ L .

This is exactly the same as the optimal message passing problem (3.18).

3.6.3 Flow-Loop as a Reparametrization

From Lemmas 3.3.1 and 3.6.1, it is clear that a flow-loop corresponds to a reparametriza-
tion of the multi-label energy function. In this section, we find the equivalent reparametriza-
tion of a flow-loop m(λ, µ, α). This will later allow us to understand the relationship
between the set of exit-flows and the set of messages. Let us now state and prove our
theorem.

Theorem 3.6.2. Applying a flow-loop m(λ, µ, α) in the Ishikawa graph is equivalent to a
reparametrization of the multi-label energy function, with messages

mji:λ′ = −α ∀ λ′ ≥ λ , (3.24)

mij:µ′ = α ∀ µ′ ≥ µ .

Proof. Let the Ishikawa parameters be φ and the energy parameters be θ and assume
that the flow is applied between columns i and j. Also, after the flow, the parameters
are φ′ and θ′ respectively. Since θ can be calculated from φ using Eq. (3.4), Eθ ≡ Eφ.
Similarly Eφ′ ≡ Eθ′ . Also from Lemma 3.3.1, Eφ ≡ Eφ′ . Hence, Eθ ≡ Eφ ≡ Eφ′ ≡ Eθ′ .
Now, from Definition 3.5.1,

φ′i:λ′ = φi:λ′ − α ∀ λ′ ≥ λ , (3.25)

φ′j:µ′ = φj:µ′ + α ∀ µ′ ≥ µ ,

φ′ij:λµ = φij:λµ − α ,

φ′ji:µλ = φji:µλ + α .

Substituting in Eq. (3.4),

θ′i:λ′ = θi:λ′ − α ∀ λ′ ≥ λ , (3.26)

θ′j:µ′ = θj:µ′ + α ∀ µ′ ≥ µ ,

θ′ij:λ′µ′ = θij:λ′µ′ − α ∀ λ′ < λ, µ′ ≥ µ ,

θ′ij:λ′µ′ = θij:λ′µ′ + α ∀ λ′ ≥ λ, µ′ < µ .
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Figure 3.8: A flow m(2, 1, α) in the Ishikawa graph (left) and its equivalent reparametriza-
tion in the multi-label graph (right) - the energy parameters can be represented in a multi-
label graph (see Section 2.3.1). Note that the exit-flow vectors (Σij, Σji) and the corresponding
message vectors (mji, mij) are shown next to the nodes.

Now, since Eθ ≡ Eθ′ , by Lemma 3.6.1, there exist messages mji:λ and mij:µ such that

θ′ij:λµ = θij:λµ −mji:λ −mij:µ , (3.27)

θ′i:λ = θi:λ + ∑
(k,i)∈E+

mki:λ .

With a little bit of calculation, one can see that the messages take the following form

mji:λ′ = −α ∀ λ′ ≥ λ , (3.28)

mij:µ′ = α ∀ µ′ ≥ µ .

Note that, for a permissible flow m(λ, µ, α), the parameters φ′ and θ′ are non-
negative.

This equivalence is shown in Figure 3.8 for an example flow-loop m(2, 1, α). Note
that, as shown in the figure, the flow α through an edge φij:λµ may be recorded in the
set of exit-flows Σ. Furthermore, as shown in the figure, the relationship between the
set of exit-flows and the set of messages can be written as

Σij:λ = mji:λ−1 −mji:λ ∀ λ ∈ {1, · · · , `− 1} , (3.29)

Σji:µ = mij:µ−1 −mij:µ ∀ µ ∈ {1, · · · , `− 1} .

Here, note that the exit-flow Σij:λ is the sum of flow passed from node Ui:λ to all
nodes in column j. Whereas mji:λ is the message passed from edge (j, i) to node Xi:λ
in the multi-label graph.
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3.7 Related Work

As we discussed in Chapter 2, the approaches that have been proposed to minimize
multi-label submodular MRFs can be roughly grouped into two categories: those
based on max-flow and those based on an LP relaxation of the problem. Below, we
briefly review representative techniques in each category.

3.7.1 Max-Flow-based Methods

The most popular method to minimize a multi-label submodular MRF energy is to
construct the Ishikawa graph [Ishikawa, 2003] and then apply a max-flow algorithm
to find the min-cut solution. Broadly speaking, as mentioned in Section 2.2.4, there
are three different kinds of max-flow algorithms: those relying on finding augment-
ing paths [Ford and Fulkerson, 1962], the push-relabel approach [Goldberg and Tar-
jan, 1988] and the pseudo-flow techniques [Chandran and Hochbaum, 2009]. Even
though numerous implementations are available, the BK method [Boykov and Kol-
mogorov, 2004] is arguably the fastest implementation for 2D and sparse 3D graphs.
Recently, for dense problems, the IBFS algorithm [Goldberg et al., 2011] was shown
to outperform the BK method in a number of experiments [Verma and Batra, 2012].
Furthermore, for multi-label submodular MRFs with convex unary potentials an effi-
cient algorithm is presented in [Hochbaum, 2001]. For arbitrary unary potentials, all
the above-mentioned algorithms, however, require the same order of storage as the
Ishikawa graph and hence scale poorly. Two approaches have nonetheless been stud-
ied to scale the max-flow algorithms. The first one explicitly relies on the N-D grid
structure of the problem at hand [Delong and Boykov, 2008; Jamriška et al., 2012].
The second one makes use of distributed computing [Shekhovtsov and Hlaváč, 2013;
Strandmark and Kahl, 2010; Vineet and Narayanan, 2008]. Unfortunately, both these
approaches require additional resources (disk space or clusters) to run max-flow on
an Ishikawa graph. By contrast, our algorithm lets us efficiently minimize the energy
of much larger Ishikawa-type graphs on a standard computer. Furthermore, using
the method of [Strandmark and Kahl, 2010], it can also be parallelized.

3.7.2 LP Relaxation-based Methods

One memory-efficient way to minimize a multi-label submodular MRF energy con-
sists of formulating the problem as a linear program and then maximize the dual
using message-passing techniques [Wainwright et al., 2005] (see Section 2.3.4). Many
such algorithms have been studied [Kolmogorov, 2006; Komodakis et al., 2011; Savchyn-
skyy et al., 2012; Werner, 2007]. Even though these algorithms are good at approx-
imating the optimal solution (also theoretically optimal for multi-label submodular
MRFs [Kolmogorov and Wainwright, 2005; Werner, 2007]), as evidenced by the com-
parison of [Kappes et al., 2015] and by our experiments, they usually take much
longer to converge to the optimal solution than max-flow-based techniques.
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Figure 3.9: Left and right images of the stereo instance from the KITTI dataset. The images
are of size 1241× 376, and we set the number of labels to 40. This image pair was chosen
arbitrarily as a representative of the dataset.

3.8 Experiments

We evaluated our algorithm on the problems of stereo correspondence estimation
and image inpainting. For stereo correspondence estimation, we employed six in-
stances from the Middlebury dataset [Scharstein and Szeliski, 2002, 2003]: Tsukuba,
Venus, Sawtooth, Map, Cones and Teddy, and one instance from the KITTI dataset [Geiger
et al., 2013] (see Figure 3.9). For Tsukuba and Venus, we used the unary potentials
of [Szeliski et al., 2008], and for all other stereo cases, those of [Birchfield and Tomasi,
1998]. For inpainting, we used the Penguin and House images employed in [Szeliski
et al., 2008], and we used the same unary potentials as in [Szeliski et al., 2008]. In all
the above cases, we used pairwise potentials that can be expressed as

θij(xi, xj) = γij θ(
∣∣xi − xj

∣∣) , (3.30)

where, unless stated otherwise, the regularizer θ(
∣∣xi − xj

∣∣) is the quadratic function.
Furthermore, we employed a 4-connected neighbourhood structure in all our exper-
iments.

We compare our results with two max-flow implementations: the BK algorithm [Boykov
and Kolmogorov, 2004] and Excesses Incremental Breadth First Search (EIBFS) [Gold-
berg et al., 2015] (which we ran on the Ishikawa graph), and three LP relaxation-
based algorithms: Tree Reweighted Message Passing (TRWS) [Kolmogorov, 2006],
Subgradient-based Dual Decomposition (DDSG) [Komodakis et al., 2011] and the
Adaptive Diminishing Smoothing algorithm (ADSal) [Savchynskyy et al., 2012]. For
DDSG and ADSal, we used the Opengm [Andres et al., 2012] implementations. For
the other algorithms, we employed the respective authors’ implementations.

In practice, we only ran the BK algorithm and EIBFS if the graph could be stored
in RAM. Otherwise, we provide an estimate of their memory requirement. For LP
relaxation-based methods, unless they converged, we ran the algorithms either for
10000 iterations, or for 50000 seconds, whichever occurred first. Note that the run-
ning times reported for our algorithm include graph construction. All our experi-
ments were conducted on a 3.4 GHz i7-4770 CPU with 16 GB RAM.

The memory consumption and running times of the algorithms are provided in
Table 3.1. Altogether, our algorithm lets us solve much larger problems than the
BK algorithm and EIBFS, and is an order of magnitude faster than state-of-the-art
message-passing algorithms.
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Problem ` BK EIBFS DDSG ADSal TRWS MEMF

M
em

or
y

[M
B]

Tsukuba 16 3195 2495 258 252 287 211
Venus 20 7626 5907 424 418 638 396
Sawtooth 20 7566 5860 415 415 633 393
Map 30 6454 4946 171 208 494 219
Cones 60 *72303 *55063 657 939 5024 1200
Teddy 60 *72303 *55063 659 939 5025 1200
KITTI 40 *88413 *67316 1422 1802 6416 2215
Penguin 256 *173893 *130728 236 1123 215 663
House 256 *521853 *392315 689 2389 643 1986

Ti
m

e
[s

]

Tsukuba 16 14 4 >9083 >7065 198 28
Venus 20 35 9 >18156 1884 206 59
Sawtooth 20 31 8 >16238 10478 455 35
Map 30 57 9 >9495 >1679 187 36
Cones 60 - - >50000 >17866 1095 364
Teddy 60 - - >50000 >50000 6766 2055
KITTI 40 - - >50000 >50000 >45408 18665
Penguin 256 - - >50000 >50000 >50000 6504
House 256 - - >50000 >50000 >50000 9001

Table 3.1: Memory consumption and running time comparison with state-of-the-art baselines
for quadratic regularizer (see paragraph 2 of Section 3.8, for details on the algorithms). A “*”
indicates a memory estimate, and “>” indicates that the algorithm did not converge to the
optimum within the specified time. Note that our algorithm has a memory consumption
O(`) times lower than the max-flow-based methods and is an order of magnitude faster than
message-passing algorithms. Compared to EIBFS, our algorithm is only 4 – 7 times slower,
but requires 12 – 23 times less memory, which makes it applicable to more realistic problems.
In all stereo problems, TRWS cached the pairwise potentials in an array for faster retrieval,
but in the case of inpainting, it was not possible due to excessive memory requirement.

3.8.1 MEMF Analysis

In this section, we empirically analyze various properties of our algorithm. First,
note that, at each iteration, i.e., at each augmentation step, our algorithm performs
more computation than standard max-flow. Therefore, we would like our algorithm
to find short augmenting paths and to converge in fewer iterations than standard
max-flow. Below, we analyze these two properties empirically.

In Figure 3.10, we show the distribution of the lengths of the augmenting paths
found by our algorithm for the Tsukuba stereo instance. Note that the median length
is only 5. As a matter of fact, the maximum length observed over all our experiments
was 1073 for the KITTI data. Nevertheless, even in that image, the median length was
only 15. Note that, since our algorithm finds augmenting paths in the block-graph,
the path lengths are not directly comparable to those found by other max-flow-based
methods. In terms of number of augmentations, we found that our algorithm only
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Figure 3.10: Lengths of augmenting paths found by our algorithm for the Tsukuba stereo
instance (see Section 3.8.1). Each bar indicates the proportion of paths of a certain length.
For example, out of all augmenting paths 28% of them were of length 2. The red arrow
indicates the median length.

required between 35% and 50% of the total number of augmentations of the BK
algorithm.

Next, we fixed the number of labels but varied the image size and compare the
running times of the max-flow algorithms, for Tsukuba and Penguin instances in top
row of Figure 3.11. Similarly, we fixed the image size but varied the number of labels
and report the running times in bottom row of Figure 3.11. By doing this, we try to
estimate the empirical time complexity of our algorithm. Note that, similar to other
max-flow algorithms, MEMF exhibited near-linear performance with respect to the
image size and near-cubic performance with respect to the number of labels, in these
experiments.

Finally, we report the percentage of time taken by each subroutine of our algo-
rithm, for Tsukuba and Penguin instances in Figure 3.12. Note that the individual
time complexities of the subroutines compute-edges and block-graph are O(`3) and
O(`2), respectively. Therefore, they become dominant when the number of labels
is large, and hence the corresponding percentages of time are high, particularly for
Penguin.

3.8.2 Robust Regularizer

Since robust regularizers are highly effective in computer vision, we tested our algo-
rithm by choosing Huber loss function (see Eq. (2.43)) as the regularizer. The results
are summarized in Table 3.2. Note that the Ishikawa graph for a Huber regularizer is
significantly smaller, i.e., the number of edges per variable pair is O(κ `), instead of
O(`2) (see Section 2.3.2). Even in this case, our algorithm lets us solve much larger
problems than the BK algorithm and EIBFS, and is an order of magnitude faster than
state-of-the-art message-passing algorithms.
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Figure 3.11: Running time plots (in logarithmic scale) by changing the image size (top) and
by changing the number of labels (bottom), for Tsukuba and Penguin (see Section 3.8.1).
The dashed lines provide the reference slopes. Note that all algorithms exhibited near-linear
performance with respect to the number of pixels and near-cubic performance with respect to
the number of labels, but MEMF required O(`) less memory. The plots of BK algorithm and
EIBFS are not complete, since we could not run them due to excessive memory requirement.

3.8.3 Parallelization

We parallelized our algorithm based on the dual-decomposition technique of [Strand-
mark and Kahl, 2010] and evaluated it on the same six stereo instances from the Mid-
dlebury dataset [Scharstein and Szeliski, 2002, 2003]. The relative times tm/ts, where
tm stands for the multi-thread time and ts for the single-thread one, are shown in
Figure 3.13 for two and four threads. In this experiment, for all problems, the image
grid was split vertically into two and four equally-sized blocks, respectively. Note
that this splitting strategy is fairly arbitrary, and may affect the performance of the
multi-threaded algorithm. In fact finding better splits may itself be a possible future
direction.
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Figure 3.12: Percentage of time taken by each subroutine (see Section 3.8.1). Note that, for
Penguin, due to large number of labels, the percentages of time spend on compute-edges and
block-graph are high.
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Figure 3.13: Our algorithm can be accelerated using the parallel max-flow technique (see
Section 3.8.3). The relative times ranged from 0.56 to 0.99 with 2-threads and from 0.39
to 0.83 with 4-threads. For Teddy, in the case of 2-threads, the multi-threaded algorithm
performs almost the same as the single-threaded algorithm, which may be due to bad splits.
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Problem Memory [MB] Time [s]
Name ` κ BK EIBFS TRWS MEMF BK EIBFS TRWS MEMF
Tsukuba 16 4 1715 1385 287 211 8 3 198 28
Venus 20 4 3375 2719 638 396 17 5 211 57
Sawtooth 20 4 3348 2698 633 393 15 4 467 34
Map 30 6 2680 2116 494 219 22 5 >2953 36
Cones 60 20 *42155 *32167 5025 1200 - - 1118 363
Teddy 60 20 *42155 *32167 5025 1200 - - 6879 2064
KITTI 40 10 *42161 *32627 6416 2215 - - >30165 18923
Penguin 256 25 *33487 *25423 215 663 - - >50000 6277
House 256 25 *100494 *76295 643 1986 - - >50000 8568

Table 3.2: Memory consumption and running time comparison with state-of-the-art baselines
for Huber regularizer (see Section 3.8.2). Here, ` is the number of labels and κ is the Huber
value. A “*” indicates a memory estimate, and “>” indicates that the algorithm did not
converge to the optimum within the specified time. Note that our algorithm has a much lower
memory consumption than the max-flow-based methods and is an order of magnitude faster
than message-passing algorithms. Compared to EIBFS, our algorithm is 7 – 11 times slower,
but requires 7 – 10 times less memory, which makes it applicable to more realistic problems.
In all stereo problems, TRWS cached the pairwise potentials in an array for faster retrieval,
but in the case of inpainting, it was not possible due to excessive memory requirement.

3.9 Discussion

We have introduced a variant of the max-flow algorithm that can minimize multi-
label submodular MRF energies optimally while requiring much less storage. Fur-
thermore, our experiments have shown that our algorithm is an order of magnitude
faster than state-of-the-art methods. We, therefore, believe that our algorithm con-
stitutes the method of choice to minimize Ishikawa type graphs when the complete
graph cannot be stored in memory.

Even though our MEMF algorithm converges in approximately the same time as
that of the BK method, it is 4− 7 times slower than the EIBFS algorithm. Note that
the EIBFS algorithm is an improved version of the BK method which combines push-
relabel techniques with the augmenting path based BK algorithm (see [Goldberg
et al., 2015]). Due to the similarity of MEMF to the BK method, we believe that
MEMF can also be accelerated in a similar fashion. This would not only make MEMF
significantly faster but also improve its worst case time complexity.

On the other hand, the equivalence of MEMF with min-sum message passing
indicates interesting directions to pursue. For instance, MEMF can be used to ob-
tain min-marginals similarly to [Kohli and Torr, 2008]. Furthermore, MEMF can be
combined with a message-passing algorithm, such as TRWS [Kolmogorov, 2006] to
obtain a hybrid algorithm. Potentially, such an algorithm can be designed in a way
that, it has desirable characteristics of both algorithms, i.e., good at approximating
the true energy (similar to TRWS) while being fast to converge (similar to max-flow).
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In the next chapter, we introduce an approximate algorithm for a certain class of
non-submodular MRFs which minimizes a multi-label submodular energy at each
iteration. As shown in Section 4.6.2.1, this allows us to tackle much larger non-
submodular MRFs using MEMF in this approximate technique.
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Chapter 4

Iteratively Reweighted Graph-Cut
for Multi-Label MRFs with
Non-Convex Priors

In the previous chapter, we discussed a memory efficient max-flow algorithm to
optimally solve multi-label submodular MRFs (e.g., MRFs with convex priors). In
this chapter, we present an approximate graph-cut algorithm for multi-label MRFs
with a certain class of non-convex priors. We show that, by iteratively minimizing a
multi-label submodular energy function, we can approximately minimize MRFs with
robust non-convex priors. Furthermore, we discuss its relationship to the majorize-
minimize framework. This chapter is based on our work [Ajanthan et al., 2015] with
some extensions.

4.1 Introduction

In this chapter, we introduce an algorithm to minimize the energy of multi-label
Markov random fields with non-convex edge priors. As discussed in Chapter 2, in
general, minimizing a multi-label MRF energy function is NP-hard. While in rare
cases a globally optimal solution can be obtained in polynomial time, e.g., in the
presence of convex priors [Ishikawa, 2003], in most scenarios one has to rely on an
approximate algorithm (see Chapter 2 for a review). Even though graph-cut-based
algorithms [Boykov et al., 2001] have proven successful for specific problems (e.g.,
metric priors), there does not seem to be a single algorithm that performs well with
different non-convex priors such as the truncated quadratic, the Cauchy function
and the corrupted Gaussian, which are widely acknowledged as highly effective in
computer vision.

Here, we propose to fill this gap and introduce an iterative graph-cut-based al-
gorithm to minimize multi-label MRF energies with a certain class of non-convex
priors. Our algorithm iteratively minimizes a weighted surrogate energy function
that is easier to optimize, with weights computed from the solution at the previous
iteration. We show that, under suitable conditions on the non-convex priors, and as
long as the weighted surrogate energy can be decreased, our approach guarantees

81
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that the true energy decreases at each iteration.
More specifically, we consider MRF energies with arbitrary data terms and where

the non-convex priors are concave functions of some convex priors over pairs of
nodes. In this scenario, and when the label set is linearly ordered, the solution
at each iteration of our algorithm can be obtained by applying the Ishikawa algo-
rithm [Ishikawa, 2003]. Since the resulting solution is optimal, our algorithm guaran-
tees that our MRF energy decreases. Furthermore, our MEMF algorithm described
in Chapter 3 can be applied instead of the standard Ishikawa method to tackle large
scale problems.

Note that, since our algorithm iteratively approximates the true multi-label MRF
energy using a surrogate energy, it can be categorized as a move-making algorithm.
Here, the Ishikawa graph construction at each iteration defines the associated move-
function (see Section 2.3.3 for details on move-making algorithms). Moreover, our
method is inspired by the Iteratively Reweighted Least Squares (IRLS) algorithm
which is well-known for continuous optimization. To the best of our knowledge, this
is the first time that such a technique is transposed to the MRF optimization scenario.

We demonstrate the effectiveness of our algorithm on the problems of stereo cor-
respondence estimation and image inpainting. Our experimental evaluation shows
that our method consistently outperforms other state-of-the-art graph-cut-based al-
gorithms [Boykov et al., 2001; Veksler, 2012], and, in most scenarios, yields lower en-
ergy values than TRWS [Kolmogorov, 2006], which was shown to be one of the best-
performing multi-label approximate energy minimization methods [Szeliski et al.,
2008; Kappes et al., 2015]. Our code is available at https://github.com/tajanthan/irgc.

4.2 Iteratively Reweighted Minimization

Given a set X and functions fa : X → D and ha : D → IR, where D ⊂ IR, let us
assume that we want to minimize an objective function of the form

Ch(x) =
N

∑
a=1

ha ◦ fa(x) , (4.1)

where ◦ denotes the function composition. In addition, without loss of generality,
assume that we have a method to minimize a weighted cost function of the form

Cw(x) =
N

∑
a=1

wa fa(x) . (4.2)

For instance, in the IRLS algorithm, fa(x) is a squared cost.
Our goal is to study the conditions under which Ch can be minimized by iter-

atively minimizing Cw. To this end, we first give the definition of a supergradient,
which we will rely upon in the following discussion.

Definition 4.2.1. Let D be a subset of IR. A supergradient of a function h : D → IR at

https://github.com/tajanthan/irgc
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a point c is a value hs(c) ∈ IR such that

h(d) ≤ h(c) + (d− c) hs(c) , (4.3)

for any point d ∈ D.

A supergradient hs is called a strict supergradient if the inequality is strict for
any point d 6= c. If the function is differentiable, then the supergradient at a point
is unique and equal to the derivative. A concave function defined on a subset of the
real numbers has a supergradient at each interior point.

In [Aftab and Hartley, 2015], the following lemma was provided to study the
behavior of iteratively reweighted minimization methods.

Lemma 4.2.1. Let h(·) be a concave function defined on a subset D of the real numbers and
hs(ca) be a supergradient at ca. If ca and da in D satisfy

N

∑
a=1

da hs(ca) ≤
N

∑
a=1

ca hs(ca) , (4.4)

then
N

∑
a=1

h(da) ≤
N

∑
a=1

h(ca) . (4.5)

If the first inequality is strict, so is the second.

Proof. Since hs is a supergradient,

h(da) ≤ h(ca) + (da − ca) hs(ca) , (4.6)

for all a. Summing over a gives,

N

∑
a=1

h(da) ≤
N

∑
a=1

h(ca) +
N

∑
a=1

(da − ca) hs(ca)︸ ︷︷ ︸
≤0

. (4.7)

The last sum is non-positive by hypothesis, which completes the proof.

The proof of this lemma is illustrated in Figure 4.1. Note that Lemma 4.2.1 only
considers the case where the function h is the same for all the elements in the sum.
This is in contrast with our definition of the cost in Eq. (4.1), where we want to
allow h to be indexed on a. To handle this more general scenario, we introduce the
following lemma.

Lemma 4.2.2. Given a set X , functions fa : X → D and concave functions ha : D → IR,
with D ⊂ IR, such that,

N

∑
a=1

wt
a fa(xt+1) ≤

N

∑
a=1

wt
a fa(xt) , (4.8)
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Figure 4.1: Illustration of Lemma 4.2.1. Here, ∆ = h(ca)− ca hs(ca). Note that, da hs(ca) ≤
ca hs(ca) implies h(da) ≤ h(ca). Furthermore, our iteratively reweighted algorithm, in fact,
minimizes an upper bound (shown in red) of h(y) at each iteration. See Section 4.2.1 for more
detail.

where wt
a = hs

a( fa(xt)) and xt is the estimate of x at iteration t, then

N

∑
a=1

ha ◦ fa(xt+1) ≤
N

∑
a=1

ha ◦ fa(xt) . (4.9)

If the first inequality is strict, so is the second.

Proof. Let us define ca = fa(xt) and da = fa(xt+1). Since hs
a is a supergradient,

ha(da) ≤ ha(ca) + (da − ca) hs
a(ca) , (4.10)

for all a. Summing over a gives,

N

∑
a=1

ha(da) ≤
N

∑
a=1

ha(ca) +
N

∑
a=1

(da − ca) hs
a(ca) . (4.11)

The sum ∑N
a=1(da − ca) hs(ca) = ∑N

a=1 wt
a fa(xt+1)− ∑N

a=1 wt
a fa(xt) is non-positive by

hypothesis, which completes the proof.

It is important to note that this lemma holds for discrete subsets D, as well as
continuous ones, and that the functions ha do not need to be differentiable.

Therefore, for concave functions ha, by choosing the supergradients of ha as
weights at each iteration, we can minimize the objective function Ch(x) of Eq. (4.1)
by iteratively minimizing the cost Cw(x) of Eq. (4.2). This general procedure is sum-
marized in Algorithm 4.1.

Algorithm 4.1 is applicable to any minimization problem, as long as the objective
function takes the form of Eq. (4.1) with concave functions ha. Furthermore, to mini-
mize the surrogate cost of Eq. (4.2), any algorithm (either exact or approximate) can
be used, as long as it decreases this cost.
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Algorithm 4.1 Iteratively Reweighted Minimization

Ch(x)← ∑N
a=1 ha ◦ fa(x) . Concave functions ha

Initialize x
repeat

wt
a ← hs

a( fa(xt))
xt+1 ← argmin

x
∑N

a=1 wt
a fa(x)

until convergence of Ch(x)
return xt+1

4.2.1 Relationship to the Majorize-Minimize Framework

In the Majorize-Minimize (MM) framework [Hunter and Lange, 2004], the original
function is minimized by iteratively minimizing a majorizing function, which is de-
fined below.

Definition 4.2.2. Let C(y) and Ĉ(y | yt) be two real-valued functions, where yt is the
estimate of y at iteration t and the form Ĉ(y | yt) depends on yt. If

Ĉ(y | yt) ≥ C(y) ∀ y , (4.12)

Ĉ(yt | yt) = C(yt) ,

then Ĉ(y | yt) is said to majorize the function C(y).

In our setting, our algorithm minimizes the true cost C(x) = Ch(x) by iteratively
minimizing a surrogate cost C̃(x) = Cw(x). For simplicity, by defining ya = fa(x), we
can write the surrogate cost as

C̃(y) =
N

∑
a=1

hs
a(y

t
a) ya . (4.13)

We would like to point out that this surrogate cost is a majorizing function of the
true cost, up to a constant.

Theorem 4.2.1. Let C(y) be the true cost and C̃(y) (Eq. (4.13)) be the surrogate cost. The
function Ĉ(y | yt) defined as

Ĉ(y | yt) = C̃(y) +
N

∑
a=1

(
ha(yt

a)− hs
a(y

t
a) yt

a
)

︸ ︷︷ ︸
constant

, (4.14)

majorizes C(y).
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Proof.

Ĉ(y | yt) = C̃(y) +
N

∑
a=1

(
ha(yt

a)− hs
a(y

t
a) yt

a
)

, (4.15)

=
N

∑
a=1

(
ha(yt

a) + (ya − yt
a) hs

a(y
t
a)
)

,

≥
N

∑
a=1

ha(ya) since hs
a is a supergradient ,

= C(y) .

Note that the inequality is tight when y = yt. Hence, Ĉ(y | yt) majorizes C(y).

Therefore, our iteratively reweighted algorithm can also be thought of as a majorize-
minimize algorithm.

4.3 An Iteratively Reweighted Scheme for MRFs

Recall that our goal is to tackle the problem of MRF energy minimization. Here, we
show how this can be achieved by exploiting Algorithm 4.1.

To this end, let us first consider an MRF energy in its most general form (see
Section 2.1) as a summation of clique potentials,

E(x) =
|C|

∑
a=1

θa(xa) , (4.16)

where C is the set of cliques in the graph (i.e., the groups of connected nodes). Here,
xa represents the set of variables corresponding to the nodes in clique a, and θa :
L|xa| → IR is the energy (or potential) function associated with clique a, where L is
the label set.

Let us now assume that each potential function can be written as

θa(xa) = ha ◦ fa(xa) , (4.17)

where ha is a concave function and fa an arbitrary one. This lets us rewrite the MRF
energy of Eq. (4.16) as

E(x) =
|C|

∑
a=1

ha ◦ fa(xa) , (4.18)

which has the form of Eq. (4.1)1. Therefore, we can employ Algorithm 4.1 to minimize

1Note that fa(xa) can be equivalently written as fa(x), where the variables xi /∈ xa (i.e., not in clique
a) simply have no effect on the function.



§4.4 Iteratively Reweighted Graph-Cut 87

E(x), and iteratively minimize the surrogate energy

Ẽ(x) =
|C|

∑
a=1

wa fa(xa) , (4.19)

with weight wa taken as the supergradient of ha evaluated using the previous esti-
mate of x.

It is important to note, however, that for this algorithm to be effective, the min-
imization of Ẽ(x) at each iteration must be relatively easy, and at least guarantee
that the surrogate energy decreases. Furthermore, while in practice any existing
MRF energy minimization algorithm (either exact or approximate) can be utilized to
minimize Ẽ(x), the quality of the overall solution found by our algorithm may vary
accordingly. In the next section, we discuss a special case of this general MRF energy
minimization algorithm, which, as depicted in our experiments, is effective in many
scenarios.

4.4 Iteratively Reweighted Graph-Cut

In this section, we introduce an iterative algorithm for the case of multi-label MRFs
with pairwise node interactions. In particular, we propose to make use of the
Ishikawa method [Ishikawa, 2003] at each iteration of our algorithm. The Ishikawa
method yields an optimal solution under the following two conditions2: 1) the label
set must be ordered; 2) the pairwise potential must be a convex function of the la-
bel difference. In practice, such convex priors have limited power due to their poor
ability to model noise. In contrast, while still relying on the first condition, our algo-
rithm allows us to generalize to non-convex priors, and in particular to robust norms
that have proven effective in computer vision. Furthermore, our MEMF algorithm
described in Chapter 3 can be used at each iteration to tackle large scale problems.

4.4.1 MRF with Pairwise Interactions

In an MRF with pairwise node interactions, the energy can be expressed as

E(x) = ∑
i∈V

θi(xi) + ∑
(i,j)∈E

θij(xi, xj) , (4.20)

where θi and θij denote the unary potentials and pairwise potentials, respectively.
Here, V is the set of nodes and E is the set of edges in the MRF graph.

As discussed in Section 4.3, to be able to make use of Algorithm 4.1, we need to
have potential functions of the form given in Eq. (4.17). Under this assumption, we

2In fact, as discussed in Section 2.3.2, the Ishikawa algorithm can optimally solve multi-label sub-
modular MRFs.
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can then rewrite the energy of Eq. (4.20) as

E(x) = ∑
i∈V

hu ◦ fi(xi) + ∑
(i,j)∈E

hb ◦ fij(xi, xj) , (4.21)

where hu and hb are concave functions.

Following Algorithm 4.1, we minimize this energy by iteratively minimizing a
surrogate energy of the form (at iteration t + 1)

Ẽ(x) = ∑
i∈V

hs
u
(

fi(xt
i )
)

fi(xi) + ∑
(i,j)∈E

hs
b

(
fij(xt

i , xt
j)
)

fij(xi, xj) ,

where hs
u and hs

b are the supergradients of hu and hb, respectively, and xt
i denotes the

estimate of xi at iteration t.

Since our goal is to employ the Ishikawa algorithm to minimize Ẽ(x), we need
to define the different functions hu, hb, fi and fij so as to satisfy the requirements of
this algorithm. To this end, for the unary potential, we choose hu to be the identity
function. That is,

θi(xi) = hu ◦ fi(xi) = fi(xi) . (4.22)

This implies that no reweighting is required for the unary potentials, since the super-
gradient of hu is always 1. The Ishikawa algorithm having no specific requirement
on the form of the unary term, fi can be any arbitrary function.

In contrast, for the pairwise potentials, the Ishikawa algorithm requires fij to be
a convex function of the label difference. That is, for a convex function g defined on
a subset of IR,

fij(xi, xj) = g(|xi − xj|) . (4.23)

Such a pairwise term is referred to as a convex prior in Section 2.3.2. In addition,
because the energy Ẽ(x) depends on a weighted sum of pairwise terms, we need
the weights to satisfy some conditions. More precisely, to be able to use the max-
flow algorithm within the Ishikawa method, the weights need to be non-negative.
Since these weights are computed from the supergradient of hb, this translates into
a requirement for hb to be non-decreasing. Note that, in the context of smoothness
potentials in an MRF, this requirement comes at virtually no cost, since we hardly
expect the potentials to decrease as the label difference increases.

Under these conditions, the surrogate energy to be minimized by the Ishikawa
method at each iteration of our algorithm can be written as

Ẽ(x) = ∑
i∈V

fi(xi) + ∑
(i,j)∈E

wt
ij g(|xi − xj|) , (4.24)

where g is a convex function, and wt
ij = hs

b

(
fij(xt

i , xt
j)
)

, with hb a concave, non-

decreasing function. In the first iteration, we set the weights w0
ij to some constant
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Algorithm 4.2 Iteratively Reweighted Graph-Cut (IRGC)

E(x)← ∑
i∈V

fi(xi) + ∑
(i,j)∈E

hb ◦ g
(∣∣xi − xj

∣∣) . g convex, hb non-decreasing concave

w0
ij ← 0.5 . Initialize the weights

repeat
if t 6= 0 then

wt
ij ← hs

b

(
g
(∣∣∣xt

i − xt
j

∣∣∣)) . Update the weights
end if
xt+1 ← argmin

x
∑

i∈V
fi(xi) + ∑

(i,j)∈E
wt

ij g(|xi − xj|) . Ishikawa algorithm

until E(xt+1) = E(xt) . Convergence of E(x)
return xt+1

value3 to make the algorithm independent of any initial estimate x0. Our overall
Iteratively Reweighted Graph-Cut (IRGC) algorithm is summarized in Algorithm
4.2.

Ishikawa Algorithm. Here, we briefly give the Ishikawa graph construction and
refer the interested reader to Section 2.3.2 for more detail. Let the label set L =
{0, 1, . . . , `− 1}. The Ishikawa graph is an st-graph Ĝ = (V̂ ∪ {0, 1}, Ê+, φ). Here,
there are ` nodes corresponding to each pixel i ∈ V , denoted with Ui:λ for all λ ∈ L,
arranged in a column. In addition, it has directed edges connecting each node,
whose capacities are denoted with φij:λµ. For convenience, the edge capacities along
each column i is denoted with φi:λ = φii:λ+1λ. See Figure 4.2 for an Ishikawa graph
corresponding to convex priors.

As discussed in Section 2.3.2, for convex priors, the Ishikawa edge capacities take
the following form,

φi:λ = fi(λ) , (4.25)

φij:λµ =


0 if λ < µ
wt

ij
2 g”(|λ− µ|) if λ = µ

wt
ij g”(|λ− µ|) if λ > µ

,

where g”(|δ|) = g(|δ + 1|) + g(|δ− 1|)− 2 g(|δ|), which is non-negative for a convex
function g.

In our scenario, with our condition that wt
ij be non-negative, the Ishikawa graph

contains no negative edges. Therefore, the global minimum of the corresponding
energy can be found in polynomial time using the max-flow algorithm. Note that,
for a sparsely connected graph, e.g., 4 or 8-connected neighbourhood, the memory
requirement of a general Ishikawa graph is O(n `2), where n = |V| and ` = |L|.
However if g is linear, then the memory required drops to O(n `).

3We set w0
ij = ε, where 0 ≤ ε ≤ 1, so that the effect of the edge terms is smaller for the first estimate.

In our experiments, we found ε = 0.5 to work well and thus always use this value.
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Figure 4.2: Example of an Ishikawa graph for convex priors. Note that only upward cross
edges are non-zero. The graph incorporates edges with infinite capacity from Ui:λ to Ui:λ+1,
not shown in the graph. Here the cut corresponds to the labeling x = {1, 2} where the label
set L = {0, 1, 2, 3}.

4.4.2 Choice of Functions g and hb

While, in Section 4.4.1, we have defined conditions on the functions g and hb (i.e., g
convex and hb concave, non-decreasing) for our algorithm to be applicable with the
Ishikawa algorithm, these conditions still leave us a lot of freedom in the actual choice
of these functions. Here, we discuss several such choices, with special considerations
on the memory requirement of the resulting algorithm.

In the context of computer vision problems with ordered label sets, e.g., stereo
and inpainting, it is often important to make use of robust estimators as pairwise
potentials to better account for discontinuities, or outliers. Many such robust estima-
tors belong to the family of functions with a single inflection point in IR+. In other
words, they can be generally defined as non-decreasing functions θij(|λ− µ|), such
that for a given κ ≥ 0, θ(z) is convex if z ≤ κ, and concave otherwise4. Such func-
tions include the truncated linear, the truncated quadratic and the Cauchy function
θ(z) = κ2/2 log

(
1 + (z/κ)2) [Hartley and Zisserman, 2003]. Note that any convex

or concave function on IR+ also belongs to this family.
For a given such function θ, according to our algorithm, we need to write

θ(z) = hb ◦ g(z) , (4.26)

with a concave, non-decreasing function hb and a convex function g. Note that the
Ishikawa graph structure is determined by the function g. Therefore, to make the
graph as sparse as possible, and thus limit the required memory, we need to choose

4Here z = |λ− µ|, where λ, µ ∈ L.
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(c) θ - Corrupted Gaussian

Figure 4.3: Plots of θ, g and hb with θ(z) = hb ◦ g(z), when θ is (a) the truncated linear,
(b) the Cauchy function and (c) the corrupted Gaussian. Here g is convex and hb is concave.
In (a) and (b), the functions g and hb are derived from Table 4.1. In (c), g(z) = z2 and
hb(y) = θ(

√
y).

y = g(z) hb(y)
z ≤ κ θ(z) y ≤ θ(κ) y

z ≥ κ θ′(κ)(z− κ) + θ(κ) y ≥ θ(κ) θ
(

y+κ θ′(κ)−θ(κ)
θ′(κ)

)
Table 4.1: Functions g and hb corresponding to a given θ(z), such that θ(z) is convex if
z ≤ κ and concave otherwise. It can easily be verified that θ(z) = hb ◦ g(z), and that g
is convex and hb is concave, as well as that both functions are non-decreasing, because θ is
non-decreasing. Here θ′(κ) is the derivative of θ at κ, or its left derivative θ′(κ−) if θ is not
differentiable at κ. See Figure 4.3(a-b) for example plots.

g such that the second order difference g′′(z) is zero for as many values z as possible.
Table 4.1 gives the functions g and hb such that g′′(z) is zero ∀z ≥ κ while satisfying
Eq. (4.26) and the necessary conditions on hb and g. Figure 4.3(a-b) provide the plots
corresponding to the truncated linear and Cauchy function. For a function g derived
according to Table 4.1, the memory requirement of the Ishikawa graph is O(n κ `).

Note that our method is not limited to the family of functions described above. As
an example, we consider the case of another robust estimator, the corrupted Gaussian
function θG(z) = − log(α exp(−z2) + (1− α) exp(−z2/β2)/β) [Hartley and Zisser-
man, 2003], which does not follow the definitions of the functions described before.
However, since θG(

√
·) is concave, we can minimize θG(z) by choosing g(z) = z2 and

hb(y) = θG(
√

y). The corresponding plots for the corrupted Gaussian are provided
in Figure 4.3(c).
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4.4.3 Hybrid Strategy

While our algorithm guarantees that the energy value decreases at each iteration,
it remains prone to getting trapped in local minima (with respect to the iterative
reweighting scheme). Here, we propose a hybrid optimization strategy that combines
IRGC with a different minimization technique, and helps us escape from some of the
local minima of the energy.

In particular, here we make use of α-expansion [Boykov et al., 2001] as an addi-
tional minimization technique. At each iteration of our algorithm, instead of updat-
ing xt → xt+1 in one step, our hybrid strategy performs the following steps:

1. Update xt → x′ by minimizing the surrogate energy using the Ishikawa algo-
rithm.

2. Improve the new estimate x′ → xt+1 using one pass of α-expansion with the
true energy, such that E(xt+1) ≤ E(x′).

For non-metric pairwise potentials, for which regular α-expansion does not apply,
we truncate the non-submodular terms as suggested in [Rother et al., 2005]. Note that
this still guarantees that the energy will decrease. We found that the variety in the
optimization strategy arising from this additional α-expansion step was effective to
overcome local minima. Since both algorithms guarantee to decrease the energy E(x)
at each step, our hybrid algorithm also decreases the energy at each iteration. In our
experiments, we refer to this hybrid algorithm as IRGC+expansion.

Note that other methods, such as αβ-swap, or any algorithm that guarantees
to improve the given estimate can be employed. Alternatively, one could exploit a
fusion move strategy [Lempitsky et al., 2010] to combine the estimates obtained by
the two different algorithms. However, this would come at an additional computation
cost, and, we believe, goes beyond the scope of this work.

4.5 Related Work

We review the past work on two different aspects of our work in order to highlight
our contributions.

4.5.1 Approximate MRF Optimization Algorithms

As discussed in Chapter 2, approximate MRF energy minimization methods can
be categorized into two groups. The first class of such methods consists of move-
making techniques (Section 2.3.3) that were inspired by the success of the graph cut
algorithm at solving binary problems in computer vision. These techniques include
α-expansion, αβ-swap [Boykov et al., 2001] and multi-label moves [Veksler, 2012; Torr
and Kumar, 2009; Jezierska et al., 2011]. The core idea of these methods is to reduce
the original multi-label problem to a sequence of binary graph cut problems, called
surrogate problems. Each graph cut problem can then be solved either optimally by
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the max-flow algorithm [Boykov and Kolmogorov, 2004] if the resulting binary en-
ergy is submodular, or approximately via a roof dual technique [Boros and Hammer,
2002] otherwise. Among these methods, the closest one to our IRGC algorithm is
the multi-label smooth swap introduced in [Veksler, 2012]. This method minimizes
a convex upper bound similar to IRGC, but only applicable to truncated convex pri-
ors. In spite of that, as we mentioned previously, and evidenced by our experiments,
there does not seem to be a single move-making algorithm that perform well with
different robust non-convex priors.

The second type of approximate energy minimization methods consists of mes-
sage passing algorithms (usually based on the LP relaxation, see Section 2.3.4), such
as belief propagation (BP) [Felzenszwalb and Huttenlocher, 2006], tree reweighted
message passing (TRW) [Wainwright et al., 2005; Kolmogorov, 2006] and the dual
decomposition-based approach of [Komodakis et al., 2011], which TRW is a special
case of. Among them, the TRWS algorithm [Kolmogorov, 2006] was shown to be
one of the best performing method [Szeliski et al., 2008; Kappes et al., 2015] and we
compare it against our algorithm with favourable results.

4.5.2 IRLS-based Methods

As mentioned earlier, our algorithm is inspired by the IRLS method. Recently, several
methods similarly motivated by the IRLS have been proposed to minimize different
objective functions. For instance, in [Aftab et al., 2015], the Lq norm (for 1 ≤ q < 2)
was minimized by iteratively minimizing a weighted L2 cost function. In [Ochs et al.,
2013], an iterated L1 algorithm was introduced to optimize non-convex functions that
are the sum of convex data terms and concave smoothness terms. More recently, a
general formulation (not restricted to weighted L2 or L1 minimization) was studied,
together with the conditions under which such iteratively reweighted algorithms
ensure the cost to decrease [Aftab and Hartley, 2015]. In our work, the iteratively
reweighted idea is transposed to the discrete MRF optimization scenario.

4.6 Experiments

We evaluated our algorithm on the problems of stereo correspondence estimation
and image inpainting. In those cases, the pairwise potentials typically depend on
additional constant weights, and can thus be written as

θij(xi, xj) = γij θ(|xi − xj|) , (4.27)

where γij are the constant weights. As long as γij ≥ 0, our algorithm is unaffected
by these weights, in the sense that we can simply multiply our weights wt

ij by these
additional constant weights. Note that since the main purpose of this work is to
evaluate the performance of our algorithm on different MRF energy functions, we
used different smoothing costs θ(·) for different problem instances without tuning
the weights γij for the specific smoothing costs.
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Problem γij θ(·) κ

Teddy
{

30 if ∇ij ≤ 10
10 otherwise Truncated

linear
8

Map 4 6
Sawtooth 20 Truncated

quadratic
3

Venus 50 3
Cones 10

Cauchy
function

8

Tsukuba
{

40 if ∇ij ≤ 8
20 otherwise

2

Table 4.2: Pairwise potential θij(xi, xj) = γij θ(|xi − xj|) used for the stereo problems (see
Section 4.6.1). Here θ(z) is convex if z ≤ κ and concave otherwise, and ∇ij denotes the
absolute intensity difference between the pixels i and j in the left image.

We compare our results with those of α-expansion, αβ-swap [Boykov et al., 2001],
multi-label swap [Veksler, 2012] and TRWS [Kolmogorov, 2006]. For fairer com-
parison, we improved the results of TRWS using α-expansion which is denoted as
TRWS+expansion. For α-expansion, we used the max-flow algorithm when the pair-
wise potentials were metric, and the QPBOP algorithm [Boros and Hammer, 2002;
Rother et al., 2007] (denoted as α-expansionQ) otherwise. In the latter case, if a node
in the binary problem is unlabeled then the previous label is retained. For our com-
parison, we used the publicly available implementation of α-expansion, αβ-swap,
QPBO and TRWS, and implemented the multi-label swap algorithm as described
in [Veksler, 2012]. In our algorithm, the max-flow implementation5 of [Boykov and
Kolmogorov, 2004] is used to find the min-cut solution on the Ishikawa graph.

All the algorithms were initialized by assigning the label 0 to all the nodes (note
that in [Veksler, 2012] multi-label swap was initialized using α-expansion). For multi-
label swap the parameter t was fixed to 2 in all our experiments (see [Veksler, 2012]
for details). The energy values presented in the following sections were obtained
at convergence of the different algorithms, except for TRWS which we ran for 100
iterations and chose the best energy value6. All our experiments were conducted
on a 3.4GHz i7-4770 CPU with 16 GB RAM, and no effort was made to exploit the
multiple cores.

4.6.1 Stereo Correspondence

Given a pair of rectified images (one left and one right), stereo correspondence esti-
mation aims to find the disparity map, which specifies the horizontal displacement
of each pixel between the two images with respect to the left image. For this task,
we employed the same six instances from the Middlebury dataset [Scharstein and

5The EIBFS algorithm [Goldberg et al., 2015] is published after this work and EIBFS is shown to be
faster than the BK method on dense graphs.

6While the energy of TRWS decreases slightly by running more iterations, the algorithm becomes
very slow.
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Algorithm
Teddy Map

E[103] T[s] E[103] T[s]
αβ-swap 2708.1 35 149.5 2

α-expansion 2664.6 21 144.4 2
Multi-label swap 5502.3 236 470.6 13

TRWS 2652.7 318 143.0 34
TRWS+expansion 2646.8 326 142.9 35

IRGC 2687.8 65 144.0 9
IRGC+expansion 2650.3 44 143.2 4

Table 4.3: Comparison of the minimum energies (E) and execution times (T) for stereo
problems with truncated linear prior (see Section 4.6.1). IRGC+expansion found the low-
est energy or virtually the same energy as TRWS+expansion and it was 8 times faster than
TRWS+expansion.

Algorithm
Sawtooth Venus Cones Tsukuba

E[103] T[s] E[103] T[s] E[103] T[s] E[103] T[s]
αβ-swap 1079.5 7 3219.7 8 4489.9 135 409.1 6

α-expansionQ 1067.5 15 3201.5 16 2480.7 183 403.3 8
Multi-label swap 1660.6 103 5740.1 163 - - - -

TRWS 1038.8 52 3098.6 50 2304.8 311 395.8 19
TRWS+expansion 1034.4 56 3083.4 53 2303.7 322 395.5 21

IRGC 1042.1 93 3081.4 49 2301.4 397 397.3 20
IRGC+expansion 1034.9 32 3078.8 26 2301.4 204 396.1 14

Table 4.4: Comparison of the minimum energies (E) and execution times (T) for stereo prob-
lems with semi-metric priors (see Section 4.6.1). IRGC+expansion found the lowest energy
or virtually the same energy as TRWS+expansion. Note that IRGC outperformed all other
graph-cut-based algorithms and found a lower energy than TRWS for Venus and Cones.

Szeliski, 2002, 2003] as in Chapter 3: Teddy, Map, Sawtooth, Venus, Cones and
Tsukuba. For Tsukuba and Venus, we used the unary potentials of [Szeliski et al.,
2008], and for the other cases, those of [Birchfield and Tomasi, 1998]. The pairwise
potentials are summarized in Table 4.2. Note that we do not explicitly model occlu-
sions, which should be handled by our robust potentials.

The final energies and execution times corresponding to the stereo problems are
summarized in Tables 4.3 and 4.4. The disparity maps found using our IRGC+expansion
algorithm and energy vs time plots of the algorithms for some of the problems are
shown in Figure 4.4 and Figure 4.5(a-c), respectively. Note that, in most cases, IRGC
outperforms the other graph-cut-based algorithms. Note also that IRGC+expansion
yields the lowest energy or an energy that is virtually the same as the lowest one.

To illustrate the fact that our algorithm can also exploit priors that are not first
convex and then concave, we employed a corrupted Gaussian pairwise potential
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(a) Teddy,
Truncated linear

(b) Venus,
Truncated quadratic

(c) Tsukuba,
Cauchy function

Figure 4.4: Disparity maps obtained with IRGC+expansion (see Section 4.6.1). The corre-
sponding ground-truth is shown above each disparity map.

(with parameters α = 0.75 and β = 50) on the Tsukuba stereo pair, and the results
are shown in Table 4.5.

4.6.2 Image Inpainting

Image inpainting tackles the problem of filling in the missing pixel values of an im-
age, while simultaneously denoising the observed pixel values. In our experiments,
as in Chapter 3, we used the Penguin and House images employed in [Szeliski et al.,
2008]. Due to memory limitation, however, we down-sampled the labels from 256 to
128 for Penguin and from 256 to 64 for House. We used the same unary potential
as in [Szeliski et al., 2008], i.e., fi(xi) = (Ii − xi)

2 if the intensity Ii is observed, and
fi(xi) = 0 otherwise. As pairwise potentials, we employed the truncated quadratic
cost θij(xi, xj) = γij min

(
(xi − xj)

2, κ2). For Penguin, γij = 20 and κ = 10, and for
House γij = 5 and κ = 15. The final energies and execution times are summarized
in Table 4.6, with the inpainted images shown in Figure 4.6. Furthermore, in Fig-
ure 4.5d, we show the energy as a function of time for the different algorithms. Note
that, for both images, our IRGC+expansion method outperforms other graph-cut-
based algorithms and performs similarly to TRWS+expansion.

4.6.2.1 Tackling Large Scale Problems

Since the MEMF algorithm (see Chapter 3) can simply replace standard max-flow
in Ishikawa-type graphs, we replaced the BK method with our MEMF procedure in
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Algorithm
Tsukuba

E[103] T[s]
αβ-swap 568.3 10

α-expansionQ 555.2 10
TRWS 550.0 20

TRWS+expansion 548.9 24
IRGC 614.3 55

IRGC+expansion 549.3 40

Table 4.5: Comparison of the minimum energies (E) and execution times (T) on Tsukuba with
a corrupted Gaussian prior (see Section 4.6.1). While IRGC was trapped in a local minimum,
IRGC+expansion found a lower energy than TRWS.

Algorithm
House Penguin

E[103] T[s] E[103] T[s]
αβ-swap 2488.9 14 4562.8 10

α-expansionQ 2510.0 531 4486.4 18
Multi-label swap 2399.9 1457 4520.6 395

TRWS 2400.1 113 4269.5 138
TRWS+expansion 2400.0 116 4230.7 141

IRGC 2399.9 155 4696.9 1045
IRGC+expansion 2399.9 108 4238.9 222

Table 4.6: Comparison of minimum energies (E) and execution times (T) for the trun-
cated quadratic prior on two inpainting problems (see Section 4.6.2). On House, IRGC and
multi-label swap also achieved the same lowest energy, but the latter was roughly 15 times
slower than IRGC+expansion. On Penguin, while IRGC was trapped in a local minimum,
IRGC+expansion was able to find a lower energy than TRWS and yield an energy similar to
TRWS+expansion.

the IRGC algorithm7. This lets us tackle much larger problems. In particular, we can
now compute inpainting results using all 256 labels, as opposed to the down-sampled
label sets. The results of the IRGC+expansion algorithm, with the BK method and
with MEMF are summarized in Table 4.7.

4.6.3 Summary

To evaluate the quality of the minimum energies, we followed the strategy of [Szeliski
et al., 2008], which makes use of the lower bound found by TRWS. This quality
measure is computed as

Q =
E− Eb

Eb
100% , (4.28)

7In fact, the MEMF algorithm is developed after this work and hence, the BK method is used to
obtain the min-cut solution of the Ishikawa graph.
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Figure 4.5: Energy vs time (seconds) plots for the algorithms for (a) - (c) some stereo prob-
lems (see Section 4.6.1) and (d) an inpainting problem (see Section 4.6.2). The plots are
zoomed-in to show the finer details. IRGC+expansion algorithm outperformed all the other
algorithms and found the lowest energy within 2 – 5 iterations. IRGC found a lower energy
than α-expansion for Map.

where Eb is the largest lower bound of TRWS and E is the minimum energy found by
an algorithm. In Table 4.8, we compare the resulting values of our algorithms with
TRWS, which, from the previous surveys [Szeliski et al., 2008; Kappes et al., 2015] was
found to be the best-performing baseline. Note that our IRGC+expansion algorithm
yields a better quality measure than TRWS on average. TRWS+expansion yields
a slightly better average quality measure than IRGC+expansion, namely 0.1873%.
Note, however, that our algorithm was 1.5 – 8 times faster than TRWS+expansion on
stereo problems, except for the corrupted Gaussian prior.

4.6.4 IRGC Analysis

To study the behavior of our algorithm for different choices of θ(·) (i.e., pairwise
prior) and κ (i.e., parameter of the prior), we employed the Tsukuba pair for stereo
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(a) Input (b) αβ-swap (c) α-expQ (d) Multi-swap

(e) Ground-truth (f) TRWS (g) IRGC (h) IRGC+exp.

Figure 4.6: Inpainted images for Penguin (see Section 4.6.2). Note that multi-label swap
was not able to completely inpaint the missing pixels. IRGC+expansion produced smoother
results than QPBOP-based α-expansion (see the bottom of the penguin) while preserving the
finer details compared to TRWS (see the neck of the penguin). See Table 4.6 for the energy
values.

correspondence and the Penguin image for inpainting. We chose the truncated linear,
the truncated quadratic and the Cauchy function for θ and three different κ values
for each prior. The results are summarized in Tables 4.9 and 4.10.

In summary, the behavior observed in the previous sections holds: Our IRGC+expansion
algorithm is able to find the lowest energy, or virtually the same energy as the best-
performing method, irrespective of the employed prior and of the value of κ. A
more detailed analysis shows that, when the pairwise potential is the truncated lin-
ear or the truncated quadratic, both IRGC and multi-label swap are susceptible to
be trapped in local minima if the truncating value κ is small. For large values of κ,
both the algorithms perform better and find minimum energies closer to the best-
performing methods. In addition, for the Cauchy pairwise potential, IRGC behaves
very similarly to IRGC+expansion for all values of κ.
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Problem Memory [MB] Time [s]
Name ` κ BK MEMF BK MEMF
Penguin 128 10 4471 332 224 2566
House 64 15 8877 498 106 409
Penguin 256 20 *17143 663 - 17748
House 256 60 *137248 1986 - 19681

Table 4.7: Memory consumption and running time comparison of IRGC+expansion with
either the BK method or our MEMF algorithm as subroutine (see Section 4.6.2.1). Here, the
regularizer is the truncated quadratic function with truncation value κ2. A “*” indicates
a memory estimate. Compared to the BK method, MEMF is only 4 – 11 times slower but
requires 13 – 18 times less memory, which makes it applicable to much larger MRFs.

Problem TRWS IRGC IRGC+exp.
Teddy 0.3040% 1.6289% 0.2102%
Map 0.0511% 0.7387% 0.1728%

Sawtooth 0.6452% 0.9621% 0.2616%
Venus 0.9096% 0.3498% 0.2625%
Cones 0.1551% 0.0065% 0.0074%

Tsukuba 0.0910% 0.4678% 0.1679%
Tsu. cor. Gaussian 0.3926% 12.1226% 0.2736%

House 0.0154% 0.0058% 0.0058%
Penguin 1.5556% 11.7218% 0.8259%
Average 0.4577% 3.1116% 0.2431%

Table 4.8: Quality of the minimum energies according to Eq. (4.28) (see Section 4.6.3).
IRGC+expansion clearly yields better quality energies than TRWS on average.

4.7 Discussion

We have introduced an Iteratively Reweighted Graph-Cut algorithm that can mini-
mize multi-label MRF energies with arbitrary data terms and non-convex priors. We
have shown that, while the basic algorithm sometimes gets trapped in local minima,
our hybrid version consistently outperforms (or performs virtually as well as) state-
of-the-art MRF energy minimization techniques. We, therefore, believe our algorithm
constitutes the first move-making algorithm to effectively tackle MRFs with robust
non-convex priors.

Note that our algorithm has the flexibility in subroutine algorithm choices. For
instance, for the hybrid version, fusion moves [Lempitsky et al., 2010] or any other
move-making algorithm can be used instead of α-expansion. This could potentially
improve the solution quality of the hybrid version of our algorithm. On the other
hand, instead of the Ishikawa algorithm, the surrogate energy can be optimized ap-
proximately using the convex expansion technique of [Carr and Hartley, 2009] (see
Section 2.3.3.2 for an overview). This would improve the running time and mem-
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Algorithm
κ = 2 κ = 3 κ = 6

E T[s] E T[s] E T[s]

Tr
.l

in
ea

r

αβ-swap 404,073 5.7 465,658 7.6 550,770 7.2
α-expansion 403,886 4.4 465,123 3.6 548,783 3.8

Multi-label swap 572,519 10.1 581,673 16.5 550,084 38.0
TRWS 402,593 23.7 464,184 23.1 548,764 21.7
IRGC 432,727 11.1 492,037 10.7 552,532 12.1

IRGC+expansion 403,997 6.6 465,105 6.9 548,669 10.8

Tr
.q

ua
dr

at
ic

αβ-swap 537,628 7.7 684,198 11.6 709,384 15.9
α-expansionQ 524,563 9.4 640,186 9.7 701,684 15.9

Multi-label swap 657,389 39.7 724,209 59.9 619,579 134.5
TRWS 519,565 23.1 612,864 21.3 620,231 19.0
IRGC 609,013 58.7 619,363 29.4 619,176 30.4

IRGC+expansion 521,812 20.0 609,513 22.9 619,176 21.9

C
au

ch
y

αβ-swap 409,072 14.1 541,955 16.2 612,809 18.5
α-expansionQ 403,293 14.5 444,085 20.8 489,803 48.0

TRWS 395,786 20.9 418,871 19.4 430,886 18.4
IRGC 397,276 29.7 418,629 26.0 430,597 26.8

IRGC+expansion 396,090 23.0 418,629 23.1 430,597 20.2

Table 4.9: Comparison of the minimum energies (E) and execution times (T) for Tsukuba with
different values of κ (see Section 4.6.4). IRGC+expansion found the lowest energy or virtually
the same energy as TRWS. For the truncated linear prior, IRGC+expansion was 2 – 5 times
faster than TRWS. For the truncated quadratic and Cauchy priors, IRGC outperformed other
graph-cut-based algorithms in all most all the cases.
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Algorithm
κ = 4 κ = 10 κ = 15

E T[s] E T[s] E T[s]

Tr
.l

in
ea

r

αβ-swap 1,822,240 13.4 2,544,290 16.9 2,766,680 16.1
α-expansion 1,798,950 8.2 2,544,210 6.3 2,765,380 6.3

Multi-label swap 2,110,930 12.9 2,587,730 36.1 2,782,300 76.6
TRWS 1,797,470 151.1 2,537,430 151.2 2,761,240 150.6
IRGC 1,977,010 44.5 2,574,190 46.5 2,786,550 55.2

IRGC+expansion 1,803,150 43.7 2,542,980 33.6 2,764,810 28.1

Tr
.q

ua
dr

at
ic

αβ-swap 2,929,130 27.2 4,562,820 40.1 5,336,120 76.3
α-expansionQ 2,889,260 18.4 4,486,430 40.6 5,411,470 73.8

Multi-label swap 3,184,930 70.2 4,520,570 446.1 5,511,780 1336.5
TRWS 2,847,580 156.4 4,269,540 155.8 4,878,610 156.0
IRGC 3,145,380 512.3 4,696,940 1660.0 5,508,910 282.1

IRGC+expansion 2,861,400 177.0 4,238,860 353.3 4,868,400 325.9

C
au

ch
y

αβ-swap 3,237,880 53.7 4,319,210 103.0 4,644,580 104.6
α-expansionQ 3,212,320 56.3 4,248,640 109.1 4,632,250 140.0

TRWS 3,148,650 150.0 4,086,660 150.3 4,364,480 150.1
IRGC 3,152,870 673.0 4,084,930 1248.0 4,364,470 1313.9

IRGC+expansion 3,151,270 232.7 4,087,540 296.3 4,367,270 248.3

Table 4.10: Comparison of the minimum energies (E) and execution times (T) for Penguin
with different values of κ (see Section 4.6.4). IRGC+expansion found the lowest energy
or virtually the same energy as TRWS. For the truncated linear prior, IRGC+expansion
was 4 – 5 times faster than TRWS. For the Cauchy prior, both IRGC and IRGC+expansion
outperformed other graph-cut-based algorithms but IRGC+expansion was faster to converge.
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ory usage while compromising on the solution quality. Such an algorithm would
be useful in resource-scarce environments, such as embedded systems or mobile de-
vices. Furthermore, one may replace the Ishikawa algorithm with the primal-dual
approach of [Pock et al., 2008; Mollenhoff et al., 2016]. This would further extend
the applicability of IRGC to continuous label spaces and enables the use of Graphics
Processing Unit (GPU) to parallelize the algorithm.

Finally, as discussed in the chapter, IRGC really is a special case of an iteratively
reweighted approach to MRFs and even continuous energy minimization. Therefore,
we believe, our approach can be extended to other types of MRF problems and we
intend to study useful extensions in the future.

In the next chapter, we address fully connected CRFs and present an efficient
linear programming relaxation-based algorithm. This algorithm is shown to be the
first efficient and effective minimization of the dense CRF energy function.
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Chapter 5

Efficient Linear Programming for
Dense CRFs

So far, we have discussed an optimal max-flow algorithm and an approximate move-
making algorithm for sparsely connected MRFs. In this chapter, we present an ef-
ficient LP relaxation-based algorithm for fully connected CRFs1. Specifically, we
present a block-coordinate descent algorithm to minimize the LP relaxation of a
dense CRF with Gaussian pairwise potentials. We show that each iteration of our
algorithm is linear in the number of pixels and labels. To this end, we also discuss
a modification to the permutohedral lattice based filtering method [Adams et al.,
2010], which enables us to perform approximate Gaussian filtering with ordering
constraints in linear time. This chapter is based on our work [Ajanthan et al., 2017a]
and the extended version is available in [Ajanthan et al., 2017b]. The work presented
in this chapter was conducted under the supervision of Prof. Philip Torr and As.Prof Pawan
Kumar, during my visit at the Torr Vision Group at the University of Oxford, from 4th July
2016 to 4th December 2016.

5.1 Introduction

In the past few years, the dense Conditional Random Field (CRF) with Gaussian
pairwise potentials has become popular for multi-class image-based semantic seg-
mentation. At the origin of this popularity lies the use of an efficient filtering
method [Adams et al., 2010], which was shown to lead to a linear time mean-field
inference strategy [Krähenbühl Philipp, 2011] (see Section 2.3.5 for a brief review on
mean-field). Recently, this filtering method was exploited to minimize the dense CRF
energy using other, typically more effective, continuous relaxation methods [Desmai-
son et al., 2016a]. Among the relaxations considered in [Desmaison et al., 2016a], the
Linear Programming (LP) relaxation provides strong theoretical guarantees on the
quality of the solution [Kleinberg and Tardos, 2002; Kumar et al., 2009].

Note that the LP relaxation-based algorithms discussed in Section 2.3.4 exploit
the sparsity of the CRF via the tree decomposition technique. In the fully connected

1As mentioned in Section 2.1.1, from the optimization perspective, both MRF and CRF models are
identical.
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case, they would yield quadratic complexity in the number of pixels per iteration.
Clearly, this would lead to prohibitively large running time. In [Desmaison et al.,
2016a], the LP was minimized via projected subgradient descent. While relying on
the filtering method, computing the subgradient was shown to be linearithmic in the
number of pixels, but not linear. Moreover, even with the use of a line search strategy,
the algorithm required a large number of iterations to converge, making it inefficient.

We introduce an iterative LP minimization algorithm for a dense CRF with Gaus-
sian pairwise potentials which has linear time complexity per iteration. To this end,
instead of relying on a standard subgradient technique, we propose to make use of
the proximal method [Parikh and Boyd, 2014]. The resulting proximal problem has a
smooth dual, which can be efficiently optimized using block-coordinate descent. We
show that each block of variables can be optimized efficiently. Specifically, for one
block, the problem decomposes into significantly smaller subproblems, each of which
is defined over a single pixel. For the other block, the problem can be optimized via
the Frank-Wolfe algorithm [Frank and Wolfe, 1956; Lacoste-Julien et al., 2012] (often
referred to as conditional gradient descent). We show that the conditional gradient re-
quired by this algorithm can be computed efficiently. In particular, we modify the
filtering method of [Adams et al., 2010] such that the conditional gradient2 can be
computed in a time linear in the number of pixels and labels. Besides this linear com-
plexity, our approach has two additional benefits. First, it can be initialized with the
solution of a faster, less accurate algorithm, such as mean-field [Krähenbühl Philipp,
2011] or the Difference of Convex (DC) relaxation of [Desmaison et al., 2016a], thus
speeding up convergence. Second, the optimal step size of our iterative procedure
can be obtained analytically, thus preventing the need to rely on an expensive line
search procedure.

We demonstrate the effectiveness of our algorithm on the MSRC and Pascal VOC
2010 [Everingham et al., 2010] segmentation datasets. The experiments evidence that
our algorithm is significantly faster than the state-of-the-art LP minimization tech-
nique of [Desmaison et al., 2016a]. Furthermore, it yields assignments whose energies
are much lower than those obtained by other competing methods [Desmaison et al.,
2016a; Krähenbühl Philipp, 2011]. Altogether, our framework constitutes the first ef-
ficient and effective minimization algorithm for dense CRFs with Gaussian pairwise
potentials. Our code is available at https://github.com/oval-group/DenseCRF.

5.2 Preliminaries

Let us first provide some background on the dense CRF model and its LP relaxation.
Then, we briefly review two convex optimization techniques which would be useful
to explain our algorithm.

2Due to the use of the filtering method, only an approximate conditional gradient can be com-
puted. However, this approximate conditional gradient is empirically shown to be collinear to the exact
conditional gradient for a wide range of values [Desmaison et al., 2016b].

https://github.com/oval-group/DenseCRF
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5.2.1 Dense CRF Energy Function

Let us recall the energy function associated with a pairwise MRF (2.4),

E(x) = ∑
i∈V

θi(xi) + ∑
(i,j)∈E

θij(xi, xj) , (5.1)

where xi ∈ L with |L| = `. Here, V = {1, . . . , n} is the set of vertices and E is the
set of undirected edges in the underlying MRF graph. For a dense CRF, the set E
encodes the fully connected graph, i.e.,

E = {(i, j) | i, j ∈ V , i 6= j} . (5.2)

By substituting for V and E , the energy associated with a pairwise dense CRF can be
written as

E(x) =
n

∑
i=1

θi(xi) +
n

∑
i=1

n

∑
j=1
j 6=i

θij(xi, xj) , (5.3)

where θi and θij denote the unary potentials and pairwise potentials, respectively. The
unary potentials define the data cost and the pairwise potentials the smoothness cost.
Furthermore, we denote the vector of unary potentials as θu = {θi:λ | i ∈ V , λ ∈ L}.

5.2.2 Gaussian Pairwise Potentials

Similarly to [Desmaison et al., 2016a; Krähenbühl Philipp, 2011], we consider Gaus-
sian pairwise potentials, which have the following form:

θij(xi, xj) = θ(xi, xj)∑
c

w(c) k
(

f(c)i , f(c)j

)
, (5.4)

k(fi, fj) = exp

(
−‖fi − fj‖2

2

)
.

Here, θ(xi, xj) is referred to as the label compatibility function and the mixture of Gaus-
sian kernels3 as the pixel compatibility function. The non-negative weights w(c) define
the mixture coefficients, and f(c)i ∈ IRd(c)

encodes features associated to the random
variable Xi, where d(c) is the feature dimension. For semantic segmentation, each
pixel in an image corresponds to a random variable. In practice, as in [Desmaison
et al., 2016a; Krähenbühl Philipp, 2011], we then use the position and RGB values of
a pixel as features, and assume the label compatibility function to be the Potts model,
i.e.,

θ(xi, xj) = 1[xi 6= xj] =

{
1 if xi 6= xj
0 if xi = xj .

(5.5)

3Note that, in this definition, we assume that the features fi and fj have already been normalized by
the filter standard deviation σ. Hence σ is not explicitly written.
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These potentials have proven useful to obtain fine grained labellings in segmentation
tasks [Krähenbühl Philipp, 2011].

5.2.3 Integer Programming Formulation

In the multi-label graph representation (see Eq. (2.27)), a labelling is represented
by defining indicator variables xi:λ ∈ {0, 1}, where xi:λ = 1 if and only if xi = λ.
Using this notation, the energy minimization problem can be written as the following
Integer Program (IP):

min
x

E(x) = ∑
i

∑
λ

θi:λ xi:λ + ∑
i,j 6=i

∑
λ,µ

θij:λµ xi:λ xj:µ , (5.6)

s.t. ∑
λ

xi:λ = 1 ∀ i ∈ V ,

xi:λ ∈ {0, 1} ∀ i ∈ V , ∀ λ ∈ L .

Here, we use the shorthand θi:λ = θi(λ) and θij:λµ = θij(λ, µ). The first set of con-
straints ensure that each random variable is assigned exactly one label. Note that the
value of the objective function is equal to the energy of the labelling encoded by x.

5.2.4 Linear Programming Relaxation

By relaxing the binary constraints of the indicator variables in (5.6) and using the
fact that the label compatibility function is the Potts model, the linear programming
relaxation [Kleinberg and Tardos, 2002] of (5.6) is defined as

min
y

Ẽ(y) = ∑
i

∑
λ

θi:λ yi:λ + ∑
i,j 6=i

∑
λ

Kij
|yi:λ − yj:µ|

2
, (5.7)

s.t. y ∈ S =

{
y ∑λ yi:λ = 1, i ∈ V

yi:λ ≥ 0, i ∈ V , λ ∈ L

}
,

where Kij = ∑c w(c) k
(

f(c)i , f(c)j

)
. Here S denotes the set of real labellings (see Defini-

tion 2.3.5). For integer labellings, the LP objective Ẽ(·) has the same value as the IP
objective E(·).

The above relaxation is the same as the standard LP relaxation4 [Chekuri et al.,
2004; Werner, 2007] for the Potts model and it provides an integrality gap of 2. The
result in [Manokaran et al., 2008] means that it is unlikely (unless the Unique Games
Conjecture is false) that a better relaxation can be designed for this problem. Using
standard solvers to minimize this LP would require the introduction of O(n2) vari-
ables (see Eq. (5.20)), making it intractable. Therefore the non-smooth objective of
Eq. (5.7) has to be optimized directly. This was handled using projected subgradient

4This is exactly the same as the linear programming over the local polytope discussed in Sec-
tion 2.3.4.2 for the case where the label compatibility is the Potts model.
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descent in [Desmaison et al., 2016a], which also turns out to be inefficient in prac-
tice. In this chapter, we introduce an efficient algorithm to tackle this problem while
maintaining linear scaling in both space and time complexity.

5.2.5 Proximal Minimization Algorithm

Proximal algorithms are well known in the convex optimization literature and many
popular algorithms, such as Alternating Direction Method of Multipliers (ADMM) [Boyd
et al., 2011] are special instances of them. Here, we give a brief overview, and we refer
the interested reader to [Parikh and Boyd, 2014].

Proximal algorithms rely on the use of the proximal operator, which is defined
below.

Definition 5.2.1. Let f : IRN → IR∪ {∞} be a closed proper convex function5. Then, the
proximal operator proxη f : IRN → IRN of f with parameter η > 0 is defined as

proxη f (v) = argmin
u

f (u) +
1

2η
‖u− v‖2 , (5.8)

where ‖ · ‖ is the standard Euclidean norm.

In a proximal minimization algorithm, at each iteration r, the proximal operator
is applied, i.e.,

ur+1 = proxη f (u
r) , (5.9)

where ur denotes the estimate of u at iteration r. From this update equation, it is
evident that the proximal algorithm guarantees monotonic decrease in the function
value. In addition to that, it converges to the minimum of the function f .

Theorem 5.2.1. The point u∗ minimizes f if and only if

u∗ = proxη f (u
∗) . (5.10)

Proof. This can be proven by applying the first order convexity condition of f . See [Parikh
and Boyd, 2014].

Accelerated Version. Note that the basic proximal algorithm can be accelerated by
including an extrapolation step in the algorithm. For a simple version, the update
equation takes the following form,

ũr = ur + ωr(ur − ur−1) , (5.11)

ur+1 = proxη f (ũ
r) ,

where one simple choice of ωr to guarantee convergence is ωr = r/(r + 3) [Parikh
and Boyd, 2014].

5A function is closed, proper and convex, if its epigraph epi( f ) = {(u, t) ∈ IRN × IR | f(u) ≤ t} is a
nonempty closed convex set [Parikh and Boyd, 2014].
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Figure 5.1: An iteration of the Frank-Wolfe algorithm illustrated using a 3D example. Image
from [Lacoste-Julien et al., 2012]. Here, ut is the estimate of u at iteration t, s is the condi-
tional gradient and ρ(ut) denotes the duality gap. Furthermore, the green arrow illustrates
the Frank-Wolfe update (5.15). (Best viewed in color)

In this chapter, we discuss how the proximal algorithm can be utilized to design
an efficient block-coordinate algorithm for the LP relaxation of a dense CRF energy
function.

5.2.6 The Frank-Wolfe Algorithm

The Frank-Wolfe algorithm [Frank and Wolfe, 1956] is an iterative algorithm to opti-
mize a constrained convex optimization problem of the form,

min
u∈D

f (u) , (5.12)

where f : IRN → IR is a convex and continuously differentiable function and the do-
main D ⊂ IRN is convex and compact6. This algorithm is also known as the conditional
gradient method. At each iteration, the algorithm computes the conditional gradi-
ent, by minimizing the first order Taylor approximation of the function f around ut,
where ut is the estimate at iteration t. Hence, the conditional gradient can be written
as

s = argmin
ŝ∈D

f̃ (ŝ) , (5.13)

= argmin
ŝ∈D

f (ut) +
〈
ŝ− ut,∇ f (ut)

〉
,

= argmin
ŝ∈D

〈
ŝ,∇ f (ut)

〉
.

6A topological space X is called compact if every open cover has a finite subcover. Furthermore, a
set D ⊂ IRN is compact if and only if, it is closed and bounded [Kelley, 1975].
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Once the conditional gradient is computed, the step size δ can be obtained using line
search,

δ = argmin
δ̂∈[0,1]

f (δ̂ s + (1− δ̂)ut) . (5.14)

In fact, in cases where the optimal step size is difficult to compute, one can use
the step size δ = 2/(t + 2), which guarantees convergence [Frank and Wolfe, 1956;
Lacoste-Julien et al., 2012]. Now, the update equation takes the following form,

ut+1 = δ s + (1− δ)ut . (5.15)

From this, it is clear that the algorithm guarantees monotonic decrease of the function
value. Furthermore, due to the convexity of f , at each iteration of the Frank-Wolfe
algorithm a linearization duality gap7 is available. In particular, the duality gap is
defined as

ρ(ut) = f (ut)− f̃ (s) , (5.16)

= max
ŝ∈D

〈
ut − ŝ,∇ f (ut)

〉
.

The property of the duality gap is characterized by the following Lemma.

Lemma 5.2.1. Let ρ(ut) be the duality gap defined in Eq. (5.16) and u∗ be the point where
the minimum of f is attained. Then,

ρ(ut) ≥ f (ut)− f (u∗) . (5.17)

Proof. Due to the convexity of f ,

f̃ (ŝ) = f (ut) +
〈
ŝ− ut,∇ f (ut)

〉
≤ f (ŝ) , (5.18)

for all ŝ ∈ D. Now, by minimizing over ŝ ∈ D in both sides and rearranging the
terms, the desired result is obtained.

See Figure 5.1 for an illustration of this lemma. Hence, the duality gap ρ(ut) pro-
vides a stopping criterion, i.e., for a chosen tolerance ε > 0, if ρ(ut) ≤ ε, the algorithm
can be terminated. The complete algorithm is summarized in Algorithm 5.1.

The Frank-Wolfe algorithm is a crucial component of our LP minimization al-
gorithm, in the sense that one block of variables are optimized by it. The use of
Frank-Wolfe ensures linear space complexity of our algorithm. In addition, by modi-
fying the efficient filtering method [Adams et al., 2010], we show that the conditional
gradient can be computed in a time linear in the number of pixels and labels. Hence,
overall, our algorithm maintains linear scaling in both space and time complexity.

7In fact the gap defined in Eq. (5.16) is a special case of Fenchel duality gap [Lacoste-Julien et al.,
2012] and hence the name “duality gap”.
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Algorithm 5.1 The Frank-Wolfe Algorithm [Frank and Wolfe, 1956]

Require: u0 ∈ D and tolerance ε
for t← 0 . . . T do

s← argmin
ŝ∈D

〈
ŝ,∇ f (ut)

〉
. Conditional gradient

δ = 2
t+2 or optimize δ by line search . Step size

ut+1 ← (1− δ)ut + δ s . Update
if ρ(ut) ≤ ε then . Stopping condition

break
end if

end for

5.3 Proximal Minimization for LP Relaxation

Our goal is to design an efficient minimization strategy for the LP relaxation in (5.7).
To this end, we propose to use the proximal minimization algorithm (see Section 5.2.5).
This guarantees monotonic decrease in the objective value, enabling us to leverage
faster, less accurate methods for initialization. Furthermore, the additional quadratic
regularization term makes the dual problem smooth, enabling the use of more so-
phisticated optimization methods. In the remainder of this chapter, we detail this
approach and show that each iteration has linear time complexity. In practice, our
algorithm converges in a small number of iterations, thereby making the overall ap-
proach computationally efficient.

Note that the LP objective function Ẽ(y) can be shown to be a closed proper
convex function. Now, given the current estimate of the solution yr ∈ S , the proximal
update equation can be written as

min
y

Ẽ(y) +
1

2η
‖y− yr‖2 , (5.19)

s.t. y ∈ S ,

where η sets the strength of the proximal term.

Note that (5.19) consists of piecewise linear terms and a quadratic regularization
term. Specifically, the piecewise linear term comes from the pairwise term |yi:λ −
yj:λ| in (5.7) that can be reformulated as max{yi:λ − yj:λ, yj:λ − yi:λ}. The proximal
term ‖y− yr‖2 provides the quadratic regularization. In this section, we introduce a
new algorithm that is tailored to this problem. In particular, we optimally solve the
Lagrange dual of (5.19) in a block-wise fashion.
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5.3.1 Dual Formulation

Let us first write the proximal problem (5.19) in the standard form by introducing
auxiliary variables zij:λ.

min
y,z ∑

i
∑
λ

θi:λ yi:λ + ∑
i,j 6=i

∑
λ

Kij

2
zij:λ +

1
2η
‖y− yr‖2 , (5.20a)

s.t. zij:λ ≥ yi:λ − yj:λ ∀ i, j 6= i ∀ λ ∈ L , (5.20b)

zij:λ ≥ yj:λ − yi:λ ∀ i, j 6= i ∀ λ ∈ L , (5.20c)

∑
λ

yi:λ = 1 ∀ i ∈ V , (5.20d)

yi:λ ≥ 0 ∀ i ∈ V ∀ λ ∈ L . (5.20e)

We introduce three blocks of dual variables. Namely, α = {α1
ij:λ, α2

ij:λ | i, j 6= i, λ ∈ L}
for the constraints in Eqs. (5.20b) and (5.20c), β = {βi | i ∈ V} for Eq. (5.20d) and
γ = {γi:λ | i ∈ V , λ ∈ L} for Eq. (5.20e), respectively. The vector α has p = 2n(n− 1)`
elements. Here, we introduce two matrices that will be useful to write the dual
problem compactly.

Definition 5.3.1. Let A ∈ IRn`×p and B ∈ IRn`×n be two matrices such that

(Aα)i:λ = −∑
j 6=i

(
α1

ij:λ − α2
ij:λ + α2

ji:λ − α1
ji:λ

)
, (5.21)

(Bβ)i:λ = βi .

We can now state our first proposition.

Proposition 5.3.1. Given matrices A ∈ IRn`×p and B ∈ IRn`×n and dual variables
(α, β, γ).

1. The Lagrange dual of (5.20) takes the following form:

min
α,β,γ

g(α, β, γ) =
η

2
‖Aα + Bβ + γ− θu‖2 + 〈Aα + Bβ + γ− θu, yr〉 − 〈1, β〉 ,

(5.22)

s.t. γi:λ ≥ 0 ∀ i ∈ V ∀ λ ∈ L ,

α ∈ C =

{
α

α1
ij:λ + α2

ij:λ =
Kij
2 , ∀ i, j 6= i, ∀ λ ∈ L

α1
ij:λ, α2

ij:λ ≥ 0, ∀ i, j 6= i, ∀ λ ∈ L

}
.

2. The primal variables y satisfy

y = η (Aα + Bβ + γ− θu) + yr . (5.23)

Let us first analyze the properties of matrices A and B and then turn to the
derivation of the dual.
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Proposition 5.3.2. Let ω ∈ IRn`. Then, for all i 6= j and λ ∈ L,(
ATω

)
ij:λ1

= ωj:λ −ωi:λ , (5.24)(
ATω

)
ij:λ2

= ωi:λ −ωj:λ .

Here, the index ij : λ1 denotes the element corresponding to α1
ij:λ.

Proof. This can be easily proven by inspecting the matrix A.

Proposition 5.3.3. The matrix B ∈ IRn`×n defined in Eq. (5.21) satisfies the following
properties:

1. Let ω ∈ IRn`. Then,
(

BTω
)

i = ∑λ∈L ωi:λ for all i ∈ V .

2. BTB = `I, where I ∈ IRn×n is the identity matrix.

3. BBT is a block diagonal matrix, with each block
(

BBT)
i = 1 for all i ∈ V , where

1 ∈ IR`×` is the matrix of all ones.

Proof. Note that, from Eq. (5.21), the matrix B simply repeats the elements βi for `
times. In particular, for ` = 3, the matrix B has the following form:

B =



1 0 · · · · · · · · · 0
1

...
...

1 0 · · · · · · · · ·
...

0 1
...... 1
...... 1
...... 0
......

... 0...

... 1...

... 1
0 · · · · · · · · · 0 1



. (5.25)

Therefore, multiplication by BT amounts to summing over the labels. From this, the
other properties can be proven easily.

Now we prove Proposition 5.3.1.

Proof. The Lagrangian associated with the primal problem (5.20) can be written
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as [Boyd and Vandenberghe, 2009]:

max
α,β,γ

min
y,z

L(α, β, γ, y, z) = ∑
i

∑
λ

θi:λ yi:λ + ∑
i,j 6=i

∑
λ

Kij

2
zij:λ +

1
2η ∑

i
∑
λ

(yi:λ − yr
i:λ)

2

(5.26)

+ ∑
i,j 6=i

∑
λ

α1
ij:λ
(
yi:λ − yj:λ − zij:λ

)
+ ∑

i,j 6=i
∑
λ

α2
ij:λ
(
yj:λ − yi:λ − zij:λ

)
+ ∑

i
βi

(
1−∑

λ

yi:λ

)
−∑

i
∑
λ

γi:λ yi:λ ,

s.t. α1
ij:λ, α2

ij:λ ≥ 0 ∀ i, j 6= i ∀ λ ∈ L ,

γi:λ ≥ 0 ∀ i ∈ V ∀ λ ∈ L .

Note that the dual problem is obtained by minimizing the Lagrangian over the primal
variables (y, z). With respect to z, the Lagrangian is linear and when∇zL(α, β, γ, y, z) 6=
0, the minimization in z yields −∞. This situation is not useful as the dual function is
unbounded. Therefore we restrict ourselves to the case where ∇zL(α, β, γ, y, z) = 0.
By differentiating with respect to z and setting the derivatives to zero, we obtain

α1
ij:λ + α2

ij:λ =
Kij

2
∀ i, j 6= i ∀ λ ∈ L . (5.27)

The minimum of the Lagrangian with respect to y is attained when∇yL(α, β, γ, y, z) =
0. Before differentiating with respect to y, let us rewrite the Lagrangian using
Eq. (5.27) and reorder the terms:

L(α, β, γ, y, z) = ∑
i

∑
λ

(θi:λ − βi − γi:λ) yi:λ +
1

2η ∑
i

∑
λ

(yi:λ − yr
i:λ)

2 (5.28)

+ ∑
i,j 6=i

∑
λ

(
α1

ij:λ − α2
ij:λ

)
yi:λ + ∑

i,j 6=i
∑
λ

(
α2

ji:λ − α1
ji:λ

)
yi:λ + ∑

i
βi .

Now, by differentiating with respect to y and setting the derivatives to zero, we get

1
η
(yi:λ − yr

i:λ) = −∑
j 6=i

(
α1

ij:λ − α2
ij:λ + α2

ji:λ − α1
ji:λ

)
+ βi + γi:λ − θi:λ ∀ i ∈ V ∀ λ ∈ L .

(5.29)

Using Eq. (5.21), the above equation can be written in vector form as

1
η
(y− yr) = Aα + Bβ + γ− θu . (5.30)

This proves Eq. (5.23). Now, using Eqs. (5.27) and (5.30), the dual problem can be
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Algorithm 5.2 Proximal Minimization of LP (PROX-LP)

Require: Initial solution y0 ∈ S and the dual objective g
for r ← 0 . . . R do

Aα0 ← 0, β0 ← 0, γ0 ← 0 . Feasible initialization
for t← 0 . . . T do(

βt, γt)← argmin
β,γ

g
(
αt, β, γ

)
. Section 5.3.2.1

ỹt ← η
(

Aαt + Bβt + γt − θu
)
+ yr . Current (infeasible) primal solution

Ast ← conditional gradient of g, computed using ỹt . Section 5.3.2.2
δ← optimal step size given

(
st, αt, ỹt) . Section 5.3.2.2

Aαt+1 ← (1− δ)Aαt + δAst . Frank-Wolfe update on α
end for
yr+1 ← PS

(
ỹt) . Project the primal solution to the feasible set S

end for

written as

min
α,β,γ

g(α, β, γ) =
η

2
‖Aα + Bβ + γ− θu‖2 + 〈Aα + Bβ + γ− θu, yr〉 − 〈1, β〉 , (5.31)

s.t. γi:λ ≥ 0 ∀ i ∈ V ∀ λ ∈ L ,

α ∈ C =
{

α
α1

ij:λ + α2
ij:λ =

Kij
2 , ∀ i, j 6= i, ∀ λ ∈ L

α1
ij:λ, α2

ij:λ ≥ 0, ∀ i, j 6= i, ∀ λ ∈ L

}
.

Here, 1 denotes the vector of all ones of appropriate dimension. Note that we con-
verted our problem to a minimization one by changing the sign of all the terms. This
proves Eq. (5.22).

5.3.2 Algorithm

The dual problem (5.22), in its standard form, can only be tackled using projected
gradient descent. However, by separating the variables based on the type of the fea-
sible domains, we propose an efficient block-coordinate descent approach. Each of
these blocks are amenable to more sophisticated optimization, resulting in a compu-
tationally efficient algorithm. As the dual problem is strictly convex and smooth, the
optimal solution is still guaranteed8. For β and γ, the problem decomposes over the
pixels, as shown in Section 5.3.2.1, therefore making it efficient. The minimization
with respect to α is over a compact domain, which can be efficiently tackled using the
Frank-Wolfe algorithm (see Section 5.2.6). Our complete algorithm is summarized in
Algorithm 5.2. In the following sections, we discuss each step in more detail.

8Note that, as empirically shown in [Desmaison et al., 2016b], the conditional gradient computed by
our algorithm is, in fact, collinear to the exact conditional gradient for a wide range of image sizes and
filter standard deviations. Therefore, the update direction of our algorithm is correct but the step size
may not be optimal. Thus, we can expect that the approximation introduced by the filtering method
does not hinder the convergence our algorithm.
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5.3.2.1 Optimizing over β and γ

We first turn to the problem of optimizing over β and γ while αt is fixed. Since
the dual variable β is unconstrained, the minimum value of the dual objective g is
attained when ∇βg(αt, β, γ) = 0.

Proposition 5.3.4. If ∇βg(αt, β, γ) = 0, then β satisfy

β = BT (Aαt + γ− θu
)

/` . (5.32)

Proof. By differentiating the dual objective g with respect to β and setting the deriva-
tives to zero, we obtain the above equation. Note that, from Proposition 5.3.3,
BTyr = 1 since yr ∈ S (defined in Eq. (5.7)), and BTB = `I. Both these identities
are used to simplify the above equation.

Note that, now, β is a function of γ. We therefore substitute β in (5.22) and mini-
mize over γ. Interestingly, the resulting problem can be optimized independently for
each pixel, with each subproblem being an ` dimensional Quadratic Program (QP)
with non-negativity constraints, where ` is the number of labels.

Proposition 5.3.5. The optimization over γ decomposes over pixels, where, for a
pixel i, we have a QP of the form

min
γi

1
2

γT
i Qγi +

〈
γi, Q

(
(Aαt)i − θi

)
+ yr

i
〉

, (5.33)

s.t. γi ≥ 0 .

Here, γi denotes the vector {γi:λ | λ ∈ L} and Q = η (I − 1/`) ∈ IR`×`, with I the
identity matrix and 1 the matrix of all ones.

Let us first define a matrix D and analyze its properties. This will be useful to
prove Proposition 5.3.5.

Definition 5.3.2. Let D ∈ IRn`×n` be a matrix that satisfies

D = I − BBT

`
, (5.34)

where B is defined in Eq. (5.21).

Proposition 5.3.6. The matrix D satisfies the following properties:

1. D is block diagonal, with each block matrix Di = I − 1/`, where I ∈ IR`×` is
the identity matrix and 1 ∈ IR`×` is the matrix of all ones.

2. DTD = D .

Proof. From Proposition 5.3.3, the matrix BBT is block diagonal with each block(
BBT)

i = 1. Therefore D is block diagonal with each block matrix Di = I − 1/`.
Note that the block matrices Di are identical. The second property can be proven
using simple matrix algebra.
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Now we turn to the proof of Proposition 5.3.5.

Proof. By substituting β in the dual problem (5.22) with Eq. (5.32), the optimization
problem over γ takes the following form:

min
γ

g(αt, γ) =
η

2
‖D(Aαt + γ− θu)‖2 +

〈
D(Aαt + γ− θu), yr〉+ 1

`

〈
1, Aαt + γ− θu

〉
,

(5.35)

s.t. γ ≥ 0 ,

where D = I − BBT

` .

Note that, since yr ∈ S , from Proposition 5.3.3, BTyr = 1. Using this fact, the
identity DTD = D, and by removing the constant terms, the optimization problem
over γ can be simplified:

min
γ

g(αt, γ) =
η

2
γTDγ + 〈γ, ηD(Aαt − θu) + yr〉 , (5.36)

s.t. γ ≥ 0 .

Furthermore, since D is block diagonal from Proposition 5.3.6, we obtain

min
γ≥0

g(αt, γ) = ∑
i

min
γi≥0

η

2
γT

i Diγi + 〈γi, ηDi
(
(Aαt)i − θi

)
+ yr

i 〉 , (5.37)

where the notation γi denotes the vector {γi:λ | λ ∈ L} and θi = {θi:λ | λ ∈ L}. By
substituting Q = η Di, the QP associated with each pixel i can be written as

min
γi≥0

1
2

γT
i Qγi +

〈
γi, Q

(
(Aαt)i − θi

)
+ yr

i
〉

. (5.38)

Each of these ` dimensional quadratic programs are optimized using the iterative
algorithm of [Xiao and Chen, 2014]. Before we give the update equation, let us first
write our problem in the form used in [Xiao and Chen, 2014]. For a given i ∈ V , this
yields

min
γi≥0

1
2

γT
i Qγi − 〈γi, hi〉 , (5.39)

where

Q = η

(
I − 1

`

)
, (5.40)

hi = −Q
(
(Aαt)i − θi

)
− yr

i .
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Hence, at each iteration, the element-wise update equation has the following form:

γi:λ = γi:λ

[
2 (Q−γi)λ + h+i:λ + ε

(|Q|γi)λ + h−i:λ + ε

]
, (5.41)

where Q− = max(−Q, 0), |Q| = abs(Q), h+i:λ = max(hi:λ, 0) and h−i:λ = max(−hi:λ, 0)
and 0 < ε � 1. These max and abs operations are element-wise. We refer the
interested reader to [Xiao and Chen, 2014] for more detail on this update rule.

Note that, even though the matrix Q has `2 elements, the multiplication by Q can
be performed in O(`). In particular, the multiplication by Q can be decoupled into
a multiplication by the identity matrix and a matrix of all ones, both of which can
be performed in linear time. Similar observations can be made for the matrices Q−

and |Q|. Hence, the time complexity of the above update is O(`). Consequently,
the overall time complexity of optimizing over γ is O(n `). Once the optimal γ is
computed for a given αt, the corresponding optimal β is given by Eq. (5.32).

5.3.2.2 Optimizing over α

We now turn to the problem of optimizing over α given βt and γt. To this end, we
use the Frank-Wolfe algorithm (see Section 5.2.6), which has the advantage of being
projection free. Furthermore, for our specific problem, we show that the required
conditional gradient can be computed efficiently and the optimal step size can be
obtained analytically.

Recall that the Frank-Wolfe algorithm requires the feasible domain to be convex
and compact.

Lemma 5.3.1. The feasible domain C in Eq. (5.22) is convex and compact.

Proof. Since C is defined using linear inequalities it is convex. Note that the feasible
set C is separable, i.e., it can be written as C = ∏i, j 6=i, λ∈L Cij:λ, with

Cij:λ =
{
(α1

ij:λ, α2
ij:λ) | α1

ij:λ + α2
ij:λ = Kij/2, α1

ij:λ, α2
ij:λ ≥ 0

}
. (5.42)

Now, the set Cij:λ is a line satisfying α1
ij:λ + α2

ij:λ = Kij/2 on the positive quadrant of
IR2, which is compact. Hence, C is compact.

Conditional Gradient Computation. The conditional gradient with respect to α is
obtained by solving the following linearization problem

s = argmin
ŝ∈C

〈
ŝ,∇αg(αt, βt, γt)

〉
. (5.43)

Here, ∇αg(αt, βt, γt) denotes the gradient of the dual objective function with respect
to α evaluated at (αt, βt, γt).
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Proposition 5.3.7. The conditional gradient s satisfies

(As)i:λ = −∑
j

(
Kij1[ỹt

i:λ ≥ ỹt
j:λ]− Kij1[ỹt

i:λ ≤ ỹt
j:λ]
)

, (5.44)

where ỹt = η
(

Aαt + Bβt + γt − θu
)
+ yr using Eq. (5.23).

Proof. The conditional gradient with respect to α is obtained by solving the following
linearization problem:

s = argmin
ŝ∈C

〈
ŝ,∇αg(αt, βt, γt)

〉
, (5.45)

where
∇αg(αt, βt, γt) = AT ỹt , (5.46)

with ỹt = η
(

Aαt + Bβt + γt − θu
)
+ yr using Eq. (5.23). Note that ỹt may be primal

infeasible, i.e., ỹt /∈ S , however, yr ∈ S .

Note that, from Eq. (5.42), the feasible set C is separable. Therefore, the con-
ditional gradient can be computed separately, corresponding to each set Cij:λ. This
yields

min
ŝ1

ij:λ,ŝ2
ij:λ

ŝ1
ij:λ∇α1

ij:λ
g(αt, βt, γt) + ŝ2

ij:λ∇α2
ij:λ

g(αt, βt, γt) , (5.47)

s.t. ŝ1
ij:λ + ŝ2

ij:λ = Kij/2 ,

ŝ1
ij:λ, ŝ2

ij:λ ≥ 0 ,

where, using Proposition 5.3.2, the gradients can be written as:

∇α1
ij:λ

g(αt, βt, γt) = ỹt
j:λ − ỹt

i:λ , (5.48)

∇α2
ij:λ

g(αt, βt, γt) = ỹt
i:λ − ỹt

j:λ .

Hence, the minimum is attained at:

s1
ij:λ =

{
Kij/2 if ỹt

i:λ ≥ ỹt
j:λ

0 otherwise ,
(5.49)

s2
ij:λ =

{
Kij/2 if ỹt

i:λ ≤ ỹt
j:λ

0 otherwise .
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Now, from Eq. (5.21), As takes the following form:

(As)i:λ = −∑
j 6=i

(
Kij

2
1[ỹt

i:λ ≥ ỹt
j:λ]−

Kij

2
1[ỹt

i:λ ≤ ỹt
j:λ] +

Kji

2
1[ỹt

j:λ ≤ ỹt
i:λ]−

Kji

2
1[ỹt

j:λ ≥ ỹt
i:λ]

)
,

(5.50)

= −∑
j

(
Kij1[ỹt

i:λ ≥ ỹt
j:λ]− Kij1[ỹt

i:λ ≤ ỹt
j:λ]
)

.

Here, we used the symmetry of the kernel matrix K to obtain this result. Note that
the second equation is a summation over j ∈ V . This is true due to the identity
Kii1[ỹt

i:λ ≥ ỹt
i:λ]− Kii1[ỹt

i:λ ≤ ỹt
i:λ] = 0 when j = i.

Note that Eq. (5.44) has the same form as the LP subgradient (Eq. (20) in [Des-
maison et al., 2016a]). This is not a surprising result. In fact, it has been shown that,
for certain problems, there exists a duality relationship between subgradients and
conditional gradients [Bach, 2015]. To compute this subgradient, the state-of-the-art
algorithm proposed in [Desmaison et al., 2016a] has a time complexity linearithmic
in the number of pixels. Unfortunately, since this constitutes a critical step of both
our algorithm and that of [Desmaison et al., 2016a], such a linearithmic cost greatly
affects their efficiency. In Section 5.4, however, we show that this complexity can be
reduced to linear, thus effectively leading to a speedup of an order of magnitude in
practice.

Optimal Step Size. One of the main difficulties of using an iterative algorithm,
whether subgradient or conditional gradient descent, is that its performance depends
critically on the choice of the step size. Here, we can analytically compute the optimal
step size that results in the maximum decrease in the objective for the given descent
direction.

Proposition 5.3.8. The optimal step size δ satisfies

δ = P[0,1]

(
〈Aαt − Ast, ỹt〉
η‖Aαt − Ast‖2

)
. (5.51)

Here, P[0,1] denotes the projection to the interval [0, 1], that is, clipping the value to
lie in [0, 1].

Proof. The optimal step size δ gives the maximum decrease in the objective function g
given the descent direction st. This can be formulated as the following optimization
problem:

min
δ

η

2

∥∥Aαt + δ
(

Ast − Aαt)+ Bβt + γt − θu
∥∥2

(5.52)

+
〈

Aαt + δ
(

Ast − Aαt)+ Bβt + γt − θu), yr〉− 〈1, β〉 ,

s.t. δ ∈ [0, 1] .
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Note that the above function is optimized over the scalar variable δ and the minimum
is attained when the derivative is zero. Hence, setting the derivative to zero, we have

0 = η
〈
δ
(

Ast − Aαt)+ Aαt + Bβt + γt − θu, Ast − Aαt〉+ 〈yr, Ast − Aαt〉 , (5.53)

δ =
〈Aαt − Ast, η

(
Aαt + Bβt + γt − θu

)
+ yr〉

η‖Aαt − Ast‖2 ,

δ =
〈Aαt − Ast, ỹt〉
η‖Aαt − Ast‖2 .

In fact, if the optimal δ is out of the interval [0, 1], the value is simply truncated to be
in [0, 1].

Memory Efficiency. For a dense CRF, the dual variable α requires O(n2 `) storage,
which becomes infeasible since n is the number of pixels in an image. Note, however,
that α always appears in the product α̃ = Aα in Algorithm 5.2. Therefore, we only
store the variable α̃, which reduces the storage complexity to O(n `).

5.3.2.3 Summary

To summarize, our method has four desirable qualities of an efficient iterative al-
gorithm. First, it can benefit from an initial solution obtained by a faster but less
accurate algorithm, such as mean-field or DC relaxation. Second, with our choice
of a quadratic proximal term, the dual of the proximal problem can be efficiently
optimized in a block-wise fashion. Specifically, the dual variables β and γ are com-
puted efficiently by minimizing one small QP (of dimension the number of labels)
for each pixel independently. The remaining dual variable α is optimized using the
Frank-Wolfe algorithm, where the conditional gradient is computed in linear time,
and the optimal step size is obtained analytically. Overall, the time complexity of one
iteration of our algorithm is O(n `). To the best of our knowledge, this constitutes
the first LP minimization algorithm for dense CRFs that has linear time iterations.
We denote this algorithm as PROX-LP.

5.4 Fast Conditional Gradient Computation

The algorithm described in the previous section assumes that the conditional gradi-
ent (Eq. (5.44)) can be computed efficiently. Note that Eq. (5.44) contains two terms
that are similar up to sign and order of the label constraint in the indicator function.
To simplify the discussion, let us focus on the first term and on a particular label i,
which we will not explicitly write in the remainder of this section. The second term
in Eq. (5.44) and the other labels can be handled in the same manner. With these
simplifications, we need to efficiently compute an expression of the form

∀ i ∈ V , u′i = ∑
j

k(fi, fj) uj 1[yi ≥ yj] , (5.54)
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with yi, yj ∈ [0, 1] and fi, fj ∈ IRd for all i, j ∈ V . Note that, in Eq. (5.44), the value uj
was assumed to be 1, but here we consider the general case where uj ∈ IR.

The usual way of speeding up computations involving such Gaussian kernels
is by using the efficient filtering method [Adams et al., 2010]. This approximate
method has proven accurate enough for similar applications [Desmaison et al., 2016a;
Krähenbühl Philipp, 2011]. In our case, due to the ordering constraint 1[yi ≥ yj], the
symmetry is broken and the direct application of the filtering method is impossible.
In [Desmaison et al., 2016a], the authors tackled this problem using a divide-and-
conquer strategy, which lead to a time complexity of O(d2n log(n)). In practice, this
remains a prohibitively high run time, particularly since gradient computations are
performed many times over the course of the algorithm. Here, we introduce a more
efficient method.

Specifically, we show that the term in Eq. (5.54) can be computed in O(Hdn)
time (where H is a small constant defined in Section 5.4.2), at the cost of additional
storage. In practice, this leads to a speedup of one order of magnitude. Below, we
first briefly review the original filtering algorithm and then explain our modified
algorithm that efficiently handles the ordering constraints.

5.4.1 Original Filtering Method

In this section, we assume that the reader is familiar with the permutohedral lattice
based filtering method [Adams et al., 2010] and only a brief overview is provided.
We refer the interested reader to the original paper [Adams et al., 2010] and the
thesis [Adams, 2011] for more detail. Furthermore, empirical evaluation on the ap-
proximation error introduced by this filtering method in the context of dense CRFs
can be found in [Desmaison et al., 2016b]. In short, the approximation introduces
a constant multiplicative factor for a wide range of image sizes and filter standard
deviations.

In [Adams et al., 2010], each pixel i ∈ V is associated with a tuple (fi, ui), which
we call a feature point. The elements of this tuple are the feature fi ∈ IRd and the value
ui ∈ IR. At the beginning of the algorithm, the feature points are embedded in a d-
dimensional hyperplane tessellated by the permutohedral lattice (see Figure 5.2). The
vertices of this permutohedral lattice are called lattice points, denoted by P and each
lattice point l is associated with a scalar value ūl . Furthermore, the neighbouring
feature points of a lattice point l is denoted by N(l) and the neighbouring lattice
points of a feature point i is denoted by N̄(i). These neighbourhoods are explained
in Figure 5.2. In addition, the barycentric weight9 between the lattice point l and
feature point j is denoted with wl j. Finally, the set of feature point scores is denoted
by Y = {yj | j ∈ V}, their set of values is denoted by U = {uj | j ∈ V} and the set of
lattice point values is denoted by Ū = {ūl | l ∈ P}.

9The barycentric weights are based on the barycentric coordinate system introduced in [Hille, 2005].
This is a coordinate system in which the location of a point of a simplex (a triangle, tetrahedron, etc.) is
specified as the center of mass, or barycenter, of usually unequal masses placed at its vertices. Barycen-
tric interpolation was shown to be exponentially cheaper than multi-linear interpolation [Adams et al.,
2010].
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Figure 5.2: A 2-dimensional hyperplane tessellated by the permutohedral lattice. The feature
points are denoted with squares and the lattice points with circles. The neighbourhood of the
center lattice point is shaded and, for a feature point, the neighbouring lattice points are the
vertices of the enclosing triangle.

Once the permutohedral lattice is constructed, the algorithm performs three main
steps: splatting, blurring and slicing. During splatting, for each lattice point, the val-
ues of the neighbouring feature points are accumulated using barycentric interpo-
lation. Next, during blurring, the values of the lattice points are convolved with a
one dimensional truncated Gaussian kernel along each feature dimension separately.
Finally, during slicing, the resulting values of the lattice points are propagated back
to the feature points using the same barycentric weights. These steps are explained
graphically in the top row of Figure 5.3. The pseudocode of the algorithm is given in
Algorithm 5.3. The time complexity of this algorithm is O(dn) [Adams et al., 2010;
Krähenbühl Philipp, 2011], and the complexity of the permutohedral lattice creation
O(d2n). Since the approach in [Desmaison et al., 2016a] creates multiple lattices at
every iteration, the overall complexity of this approach is O(d2n log(n)).

Note that, in this original algorithm, there is no notion of score yi associated
with each pixel. In particular, during splatting, the values ui are accumulated to the
neighbouring lattice points without considering their scores. Therefore, this algo-
rithm cannot be directly applied to handle our ordering constraint 1[yi ≥ yj].

5.4.2 Modified Filtering Method

We now introduce a filtering-based algorithm that can handle ordering constraints.
To this end, we uniformly discretize the continuous interval [0, 1] into H different
discrete bins, or levels. Note that each pixel, or feature point, belongs to exactly
one of these bins, according to its corresponding score. In particular, each bin h ∈
{0, . . . , H− 1} is associated with an interval which is identified as

[
h

H−1 , h+1
H−1

)
. Given

the score yj of the feature point j, its bin/level can be identified as

hj =
⌊
yj (H − 1)

⌋
, (5.55)
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Algorithm 5.3 Original Filtering Method [Adams et al., 2010]

Require: Set of lattice points P and the set of feature point values U
U ′ ← 0 Ū ← 0 Ū ′ ← 0 . Initialization
for each l ∈ P do . Splatting

for each j ∈ N(l) do
ūl ← ūl + wl j uj

end for
end for
Ū ′ ← k⊗ Ū . Blurring
for each i ∈ V do . Slicing

for each l ∈ N̄(i) do
u′i ← u′i + wli ū′l

end for
end for

where b·c denotes the standard floor function. Note that the last bin (with bin id
H − 1) is associated with the interval [1, ·). Since yj ≤ 1, this bin contains the feature
points whose scores are exactly 1. We then propose to instantiate H permutohedral
lattices, one for each level h ∈ {0, . . . , H− 1}. In other words, at each level h, there is
a lattice point l, whose value we denote by ūl:h.

To handle the ordering constraints, we then modify the splatting step in the fol-
lowing manner. A feature point belonging to bin q is splat to the permutohedral
lattices corresponding to levels q ≤ h < H. Blurring is then performed indepen-
dently in each individual permutohedral lattice. This guarantees that a feature point
will only influence the values of the feature points that belong to the same level or
higher ones. In other words, a feature point j influences the value of a feature point
i only if yi ≥ yj. Finally, during the slicing step, the value of a feature point be-
longing to level q is recovered from the qth permutohedral lattice. Our algorithm is
depicted graphically in the bottom row of Figure 5.3. Its pseudocode is provided in
Algorithm 5.4. In this algorithm, we denote the set of values corresponding to all the
lattice points at level h as Ūh = {ul:h | l ∈ P}.

Note that, while discussed for constraints of the form 1[yi ≥ yj], this algorithm
can easily be adapted to handle 1[yi ≤ yj] constraints, which are required for the
second term in Eq. (5.44). In particular, one needs to change the interval identified
by the bin h to:

(
h−1
H−1 , h

H−1

]
. Using this fact, one can easily derive the splatting and

slicing equations for the 1[yi ≤ yj] constraint.
Overall, our modified filtering method has a time complexity of O(Hdn) and

a space complexity of O(Hdn). Note that the complexity of the lattice creation is
still O(d2n) and can be reused for each of the H instances. Moreover, as opposed
to the method in [Desmaison et al., 2016a], this operation is performed only once,
during the initialization step. In practice, we were able to choose H as small as 10,
thus achieving a substantial speedup compared to the divide-and-conquer strategy
of [Desmaison et al., 2016a]. By discretizing the interval [0, 1], we add another level
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(a) Splat (b) Blur (c) Slice

Figure 5.3: Top row: Original filtering method. The barycentric interpolation is denoted by
an arrow and k here is the truncated Gaussian kernel. During splatting, for each lattice point,
the values of the neighbouring feature points are accumulated using barycentric interpolation.
Next, the lattice points are blurred with k along each dimension. Finally, the values of the
lattice points are given back to the feature points using the same barycentric weights. Bottom
row: Our modified filtering method. Here, H = 3, and the figure therefore illustrates 3
lattices. We write the bin number of each feature point next to the point. Note that, at the
splatting step, the value of a feature point is accumulated to its neighbouring lattice points
only if it is above or equal to the feature point level. Then, blurring is performed at each level
independently. Finally, the resulting values are recovered from the lattice points at the feature
point level.

of approximation to the overall algorithm. However, this approximation can be elim-
inated by using a dynamic data structure, which we briefly explain below.

5.4.2.1 Adaptive Version

Here, we briefly explain the adaptive version of our modified algorithm, which re-
places the fixed discretization with a dynamic data structure. Effectively, discretiza-
tion boils down to storing a vector of length H at each lattice point. Instead of such a
fixed-length vector, one can use a dynamic data structure that grows with the num-
ber of different scores encountered at each lattice point in the splatting and blurring
steps. In the worst case, i.e., when all the neighbouring feature points have different
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Algorithm 5.4 Modified Filtering Method

Require: Lattice points P , feature values U , discrete levels H and scores Y
U ′ ← 0 Ū ← 0 Ū ′ ← 0 . Initialization
for each l ∈ P do . Splatting

for each j ∈ N(l) do
hj ←

⌊
yj (H − 1)

⌋
for each h ∈ {hj . . . H − 1} do . Splat at the feature point level and above

ūl:h ← ūl:h + wl j uj
end for

end for
end for
for each h ∈ {0 . . . H − 1} do . Blurring at each level independently
Ū ′h ← k⊗ Ūh

end for
for each i ∈ V do . Slicing

hi ← byi (H − 1)c
for each l ∈ N̄(i) do

u′i ← u′i + wli ū′l:hi
. Slice at the feature point level

end for
end for

scores, the maximum number of values to store at a lattice point is

H = max
l∈P
|N2(l)| , (5.56)

where |N2(l)| denotes the the number of feature points in the union of neighbour-
hoods of the lattice point l and its neighbouring lattice points (the vertices of the
shaded hexagon in Figure 5.2). In our experiments, we observed that |N2(l)| is usu-
ally less than 100, with an average around 10. Empirically, however, we found this
dynamic version to be slightly slower than the static one. We conjecture that this is
due to the static version benefiting from better compiler optimization. Furthermore,
both the versions obtained results with similar accuracy and therefore we used the
static one for all our experiments.

5.5 Related Work

We review the past work on three different aspects of our work in order to highlight
our contributions.

5.5.1 Dense CRF

The fully-connected CRF has become increasingly popular for semantic segmenta-
tion. It is particularly effective at preventing oversmoothing, thus providing better
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accuracy at the boundaries of objects. As a matter of fact, in a complementary direc-
tion, many methods have now proposed to combine dense CRFs with convolutional
neural networks [Chen et al., 2014; Schwing and Urtasun, 2015; Zheng et al., 2015] to
achieve state-of-the-art performance on segmentation benchmarks.

The main challenge that had previously prevented the use of dense CRFs is their
computational cost at inference, which, naively, is O(n2) per iteration. In the case
of Gaussian pairwise potential, the efficient filtering method of [Adams et al., 2010]
proven to be key to the tractability of inference in the dense CRF. While an ap-
proximate method, the accuracy of the computation proven sufficient for practical
purposes. This was first observed in [Krähenbühl Philipp, 2011] for the specific case
of mean-field inference. More recently, several continuous relaxations, such as QP,
DC and LP, were also shown to be applicable to minimizing the dense CRF en-
ergy by exploiting this filtering procedure in various ways [Desmaison et al., 2016a].
Unfortunately, while tractable, minimizing the LP relaxation, which is known to pro-
vide the best approximation to the original labelling problem, remained too slow in
practice [Desmaison et al., 2016a]. Our algorithm is faster both theoretically and em-
pirically. Furthermore, and as evidenced by our experiments, it yields lower energy
values than any existing dense CRF inference strategy.

5.5.2 LP Relaxation

There are two ways to relax the integer program (5.6) to a linear program, depend-
ing on the label compatibility function: 1) the standard LP relaxation [Chekuri et al.,
2004; Werner, 2007]; and 2) the LP relaxation specialized to the Potts model [Klein-
berg and Tardos, 2002]. There are many notable works on minimizing the standard
LP relaxation on sparse CRFs. This includes the algorithms that directly make use the
dual of this LP [Kolmogorov, 2006; Komodakis et al., 2011; Wainwright et al., 2005]
(see Section 2.3.4 for a review) and those based on a proximal minimization frame-
work [Meshi et al., 2015; Ravikumar et al., 2008]. Unfortunately, all of the above
algorithms exploit the sparsity of the problem, and they would yield an O(n2) cost
per iteration in the fully-connected case. In this work, we focus on the Potts model
based LP relaxation for dense CRFs and provide an algorithm whose iterations have
time complexity O(n). Even though we focus on the Potts model, as pointed out
in [Desmaison et al., 2016a], this LP relaxation can be extended to general label com-
patibility functions using a hierarchical Potts model [Kumar and Koller, 2009].

5.5.3 Frank-Wolfe

The optimization problem of structural support vector machines (SVM) has a form
similar to our proximal problem. The Frank-Wolfe algorithm [Frank and Wolfe, 1956]
was shown to provide an effective and efficient solution to such a problem via block-
coordinate optimization [Lacoste-Julien et al., 2012]. Several works have recently
focused on improving the performance of this algorithm [Osokin et al., 2016; Shah
et al., 2015] and extended its application domain [Krishnan et al., 2015]. Our work
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draws inspiration from this structural SVM literature, and makes use of the Frank-
Wolfe algorithm to solve a subtask of our overall LP minimization method. Efficiency,
however, could only be achieved thanks to our modification of the efficient filtering
procedure to handle ordering constraints.

To the best of our knowledge, our approach constitutes the first LP minimization
algorithm for dense CRFs to have linear time iterations. Our experiments demon-
strate the importance of this result on both speed and labelling quality. Being fast, our
algorithm can be incorporated in any end-to-end learning framework, such as [Zheng
et al., 2015]. We therefore believe that it will have a significant impact on future se-
mantic segmentation results, and potentially in other application domains.

5.6 Experiments

In this section, we first discuss two variants that further speedup our algorithm and
some implementation details. We then turn to the empirical results.

5.6.1 Accelerated Variants

Empirically we observed that our algorithm can be accelerated by restricting the
optimization procedure to affect only relevant subsets of labels and pixels. These
subsets can be identified from an intermediate solution of PROX-LP (Algorithm 5.2).
In particular, we remove the label λ from the optimization if yi:λ < 0.01 for all pixels
i. In other words, the score of a label λ is insignificant for all the pixels. We denote
this version as PROX-LP`. Similarly, we optimize over a pixel only if it is uncertain
in choosing a label. Here, a pixel i is called uncertain if maxλ yi:λ < 0.95. In other
words, no label has a score higher than 0.95. The intuition behind this strategy is
that, after a few iterations of PROX-LP`, most of the pixels are labelled correctly, and
we only need to fine tune the few remaining ones. In practice, we limit this restricted
set to 10% of the total number of pixels. We denote this accelerated algorithm as
PROX-LPacc. As shown in our experiments, PROX-LPacc yields a significant speedup
at virtually no loss in the quality of the results.

5.6.2 Implementation Details

In practice, we initialize our algorithm with the solution of the best continuous relax-
ation algorithm, which is called DCneg in [Desmaison et al., 2016a]. The parameters
of our algorithm, such as the proximal regularization constant η and the stopping
criterion, are chosen manually. A small value of η leads to easier minimization of
the proximal problem, but also yields smaller steps at each proximal iteration. We
found η = 0.1 to work well in all our experiments. We fixed the maximum number
of proximal steps (R in Algorithm 5.2) to 10, and each proximal step is optimized for
a maximum of 5 Frank-Wolfe iterations (T in Algorithm 5.2). In all our experiments
the number of levels H is fixed to 10.
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Dataset Algorithm w(1) σ1 w(2) σ2:s σ2:c

MSRC
MF 7.467846 1.000000 4.028773 35.865959 11.209644
DCneg 2.247081 3.535267 1.699011 31.232626 7.949970

Pascal
MF 100.000000 1.000000 74.877398 50.000000 5.454272
DCneg 0.500000 3.071772 0.960811 49.785678 1.000000

Table 5.1: Parameters tuned for MF and DCneg on the MSRC and Pascal validation sets
using Spearmint [Snoek et al., 2012] (see Section 5.6.3).

5.6.3 Segmentation Results

We evaluated our algorithm on the MSRC and Pascal VOC 2010 [Everingham et al.,
2010] segmentation datasets, and compare it against mean-field inference (MF) [Krähen-
bühl Philipp, 2011], the best performing continuous relaxation method of [Desmaison
et al., 2016a] (DCneg) and the subgradient-based LP minimization method of [Des-
maison et al., 2016a] (SG-LP). Note that, in [Desmaison et al., 2016a], the LP was
initialized with the DCneg solution and optimized for 5 iterations. Furthermore, the
LP optimization was performed on a subset of labels identified by the DCneg solution
in a similar manner to the one discussed in Section 5.6.1. We refer to this algorithm as
SG-LP`. For all the baselines, we employed the respective authors’ implementations
that were obtained from the web or through personal communication. Furthermore,
for all the algorithms, the integral labelling is computed from the fractional solution
using the argmax rounding scheme.

For both datasets, we used the same splits and unary potentials as in [Krähen-
bühl Philipp, 2011]. The pairwise potentials were defined using two kernels: a spatial
kernel and a bilateral one [Krähenbühl Philipp, 2011]. Our pixel compatibility func-
tion can be written as

Kab = w(1) exp
(
−|pa − pb|2

σ1

)
+ w(2) exp

(
−|pa − pb|2

σ2:s
− |Ia − Ib|2

σ2:c

)
, (5.57)

where pa denotes the (x, y) position of pixel a measured from top left and Ia de-
notes the (r, g, b) values of pixel a. Note that there are 5 learnable parameters:
w(1), σ1, w(2), σ2:s, σ2:c. For each method, these kernel parameters were cross validated
on validation data using Spearmint [Snoek et al., 2012] (with a budget of 2 days). To
be able to compare energy values, we then evaluated all methods with the same pa-
rameters. In other words, for each dataset, each method was run several times with
different parameter values. The final parameter values for MF and DCneg are given
in Table 5.1. Note that, on MSRC, cross-validation was performed on the less accu-
rate ground truth provided with the original dataset. Nevertheless, we evaluated all
methods on the accurate ground truth annotations provided by [Krähenbühl Philipp,
2011].
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5.6.3.1 Results with the Parameters Tuned for DCneg

The results for the parameters tuned for DCneg on the MSRC and Pascal datasets are
given in Table 5.2. Here MF5 denotes the mean-field algorithm run for 5 iterations.
In Figure 5.4, we show the assignment energy as a function of time for an image in
MSRC (the tree image in Figure 5.5) and for an image in Pascal (the sheep image in
Figure 5.5). Furthermore, we provide some of the segmentation results in Figure 5.5.
Since the resulting segmentations of all versions of our algorithm are visually in-
distinguishable, only the results for the fully accelerated version (PROX-LPacc) are
shown.

In summary, PROX-LP` obtains the lowest integral energy in both datasets. Fur-
thermore, our fully accelerated version is the fastest LP minimization algorithm and
always outperforms the baselines by a great margin in terms of energy. From Fig-
ure 5.5, we can see that PROX-LPacc marks most of the crucial pixels (e.g., object
boundaries) as uncertain, and optimizes over them efficiently and effectively. Note
that, on top of being fast, PROX-LPacc obtains the highest accuracy in MSRC for the
parameters tuned for DCneg.

5.6.3.2 Results with the Parameters Tuned for MF

To ensure consistent behaviour across different energy parameters, we ran the same
experiments for the parameters tuned for MF. In this setting, all versions of our algo-
rithm again yield significantly lower energies than the baselines. For this parameter
setting, the respective timing plots and segmentation results are given in Figs. 5.6
and 5.7, and the quantitative results are summarized in Table 5.3.

Interestingly, for the parameters tuned for MF, even though our algorithm obtains
much lower energies, MF yields the best segmentation accuracy. In fact, one can
argue that the parameters tuned for MF do not model the segmentation problem
accurately, but were tuned such that the inaccurate MF inference yields good results.
Note that, in the Pascal dataset, when tuned for MF, the Gaussian mixture coefficients
are very high (see Table 5.1). In such a setting, DCneg ended up classifying all pixel
in most images as background. In fact, SG-LP` was able to improve over DCneg in
only 1% of the images, whereas all our versions improved over DCneg in roughly 25%
of the images. Furthermore, our accelerated versions could not get any advantage
over the standard version and resulted in similar run times. Note that, in most of the
images, the uncertain pixels are in fact the entire image, as shown in Figure 5.7.
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Figure 5.4: Assignment energy as a function of time with the parameters tuned for DCneg
for an image in (left) MSRC and (right) Pascal (see Section 5.6.3.1). A zoomed-in version is
shown next to each plot. Except MF, all other algorithms are initialized with DCneg. Note that
PROX-LP clearly outperforms SG-LP` by obtaining much lower energies in fewer iterations.
Furthermore, the accelerated versions of our algorithm obtain roughly the same energy as
PROX-LP but significantly faster.
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O

X
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P a
cc

Avg. E
(×103)

Avg. T
(s) Acc. IoU

M
SR

C

MF5 - 0 0 0 0 0 0 8078.0 0.2 79.33 52.30
MF 96 - 0 0 0 0 0 8062.4 0.5 79.35 52.32
DCneg 96 96 - 0 0 0 0 3539.6 1.3 83.01 57.92
SG-LP` 96 96 90 - 3 1 1 3335.6 13.6 83.15 58.09
PROX-LP 96 96 94 92 - 13 45 1274.4 23.5 83.99 59.66
PROX-LP` 96 96 95 94 81 - 61 1189.8 6.3 83.94 59.50
PROX-LPacc 96 96 95 94 49 31 - 1340.0 3.7 84.16 59.65

Pa
sc

al

MF5 - 13 0 0 0 0 0 1220.8 0.8 79.13 27.53
MF 2 - 0 0 0 0 0 1220.8 0.7 79.13 27.53
DCneg 99 99 - - 0 0 0 629.5 3.7 80.43 28.60
SG-LP` 99 99 95 - 5 12 12 617.1 84.4 80.49 28.68
PROX-LP 99 99 95 84 - 32 50 507.7 106.7 80.63 28.53
PROX-LP` 99 99 86 86 64 - 43 502.1 22.1 80.65 28.29
PROX-LPacc 99 99 86 86 46 39 - 507.7 14.7 80.58 28.45

Table 5.2: Results on the MSRC and Pascal datasets with the parameters tuned for DCneg
(see Section 5.6.3.1). We show: the percentage of images where the row method strictly
outperforms the column one on the final integral energy, the average integral energy over
the test set, the average run time, the segmentation accuracy and the intersection over union
score. Note that all versions of our algorithm obtain much lower energies than the baselines.
Interestingly, while our fully accelerated version does slightly worse in terms of energy, it is
the best in terms of the segmentation accuracy in MSRC.
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(a) Image (b) MF (c) DCneg (d) SG-LP` (e) Uncert.
(DCneg)

(f) Uncert.
(ours)

(g) PROX-
LPacc

(h) Ground
truth

Figure 5.5: Results with the parameters tuned for DCneg for images in (top six rows)
MSRC and (bottom two rows) Pascal (see Section 5.6.3.1). The uncertain pixels identified
by DCneg and PROX-LPacc are marked in white. Note that all versions of our algorithm obtain
visually good segmentations similar to that of PROX-LPacc (not shown). In addition, even
though DCneg is less accurate (the percentatge of uncertain pixels for DCneg is usually less
than 1%) in predicting uncertain pixels, our algorithm marks most of the crucial pixels (object
boundaries and shadows) as uncertain. Furthermore, in the MSRC images, the improvement
of PROX-LPacc over the baselines is clearly visible and the final segmentation is virtually the
same as the accurate ground truth.
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Figure 5.6: Assignment energy as a function of time with the parameters tuned for MF for
an image in (left) MSRC and (right) Pascal (see Section 5.6.3.2). A zoomed-in version is
shown next to each plot. Except for MF, all the algorithms were initialized with DCneg. For
the MSRC image, PROX-LP clearly outperforms SG-LP` by obtaining much lower energies
in fewer iterations, and the accelerated versions of our algorithm obtain roughly the same
energy as PROX-LP but significantly faster. For the Pascal image, however, no LP algorithm
is able to improve over DCneg. Note that, in the Pascal dataset, for the MF parameters, DCneg
ended up classifying all pixels in most images as background (which yields low energy values)
and no LP algorithm is able to improve over it.
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Avg. E
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Avg. T
(s) Acc. IoU

M
SR

C

MF5 - 0 0 0 0 0 0 2366.6 0.2 81.14 54.60
MF 95 - 18 15 2 1 2 1053.6 13.0 83.86 59.75
DCneg 95 77 - 0 0 0 0 812.7 2.8 83.50 59.67
SG-LP` 95 80 48 - 2 0 1 800.1 37.3 83.51 59.68
PROX-LP 95 93 95 93 - 35 46 265.6 27.3 83.01 58.74
PROX-LP` 95 94 94 94 59 - 43 261.2 13.9 82.98 58.62
PROX-LPacc 95 93 93 93 49 46 - 295.9 7.9 83.03 58.97

Pa
sc

al

MF5 - - 1 1 0 0 0 40779.8 0.8 80.42 28.66
MF 93 - 3 3 0 0 1 20354.9 21.7 80.95 28.86
DCneg 93 87 - 0 0 0 0 2476.2 39.1 77.77 14.93
SG-LP` 93 87 1 - 0 0 0 2474.1 414.7 77.77 14.92
PROX-LP 94 90 24 24 - 4 9 1475.6 81.0 78.04 15.79
PROX-LP` 94 90 24 24 5 - 9 1458.9 82.7 78.04 15.79
PROX-LPacc 94 89 28 27 18 18 - 1623.7 83.9 77.86 15.18

Table 5.3: Results on the MSRC and Pascal datasets with the parameters tuned for MF
(see Section 5.6.3.2). We show: the percentage of images where the row method strictly
outperforms the column one on the final integral energy, the average integral energy over
the test set, the average run time, the segmentation accuracy and the intersection over union
score. Note that all versions of our algorithm obtain much lower energies than the baselines.
However, as expected, lower energy does not correspond to better segmentation accuracy,
mainly due to the less accurate energy parameters. Furthermore, the accelerated versions of
our algorithm are similar in run time and obtain similar energies compared to PROX-LP.
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(a) Image (b) MF (c) DCneg (d) SG-LP` (e) Uncert.
(DCneg)

(f) Uncert.
(ours)

(g) PROX-
LPacc

(h) Ground
truth

Figure 5.7: Results with the parameters tuned for MF for two images in (top two rows)
MSRC and (bottom two rows) Pascal (see Section 5.6.3.2). The uncertain pixels identified
by DCneg and PROX-LPacc are marked in white. Note that, in MSRC, PROX-LPacc obtain
visually good segmentations similar to MF (or better). In Pascal, the segmentation results are
poor except for MF, even though we obtain much lower energies. We argue that, in this case,
the energy parameters do not model the segmentation problem accurately.

5.6.3.3 Summary

We have evaluated all the algorithms using two different parameter settings. There-
fore, we summarize the best segmentation accuracy obtained by each algorithm and
the corresponding parameter setting in Table 5.4. Note that, on MSRC, the best pa-
rameter setting for DCneg corresponds to the parameters tuned for MF. This is a
strange result but can be explained by the fact that, as mentioned in the main pa-
per, cross-validation was performed using the less accurate ground truth provided
with the original dataset, but evaluation using the accurate ground truth annotations
provided by [Krähenbühl Philipp, 2011].

Furthermore, in contrast to MSRC, the segmentation results of our algorithm on
the Pascal dataset are not the state-of-the-art, even with the parameters tuned for
DCneg. This may be explained by the fact, that due to the limited cross-validation,
the energy parameters obtained for the Pascal dataset are not accurate. Therefore,
even though our algorithm obtained lower energies, that was not reflected in the
segmentation accuracy.
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Algorithm
MSRC Pascal

Parameters Avg. T (s) Acc. Parameters Avg. T (s) Acc.
MF5 MF 0.2 81.14 MF 0.8 80.42
MF MF 13.0 83.86 MF 21.7 80.95
DCneg MF 2.8 83.50 DCneg 3.7 80.43
SG-LP` MF 37.3 83.51 DCneg 84.4 80.49
PROX-LP DCneg 23.5 83.99 DCneg 106.7 80.63
PROX-LP` DCneg 6.3 83.94 DCneg 22.1 80.65
PROX-LPacc DCneg 3.7 84.16 DCneg 14.7 80.58

Table 5.4: Best segmentation results of each algorithm with their respective parameters, the
average time on the test set and the segmentation accuracy (see Section 5.6.3.3). In MSRC, the
best segmentation accuracy is obtained by PROX-LPacc and in Pascal it is by MF. Note that,
on MSRC, the best parameter setting for DCneg corresponds to the parameters tuned for MF.
This is due to the fact that cross-validation was performed on the less accurate ground truth
but evaluation on the accurate ground truth annotations provided by [Krähenbühl Philipp,
2011]. Furthermore, the low segmentation performance of our algorithm on the Pascal dataset
is may be due to less accurate energy parameters resulted from limited cross-validation.

Our observation that a lower energy does not necessarily result in improved seg-
mentation is an important one (similar behaviour was observed in [Desmaison et al.,
2016a; Wang et al., 2015]). Indeed, this lack of correlation between the dense CRF
energy and the segmentation accuracy highlights the importance of performing a
more thorough analysis of the dense CRF model. Developing methods that fix this
discrepancy is an interesting direction of future research, which would be aided by
our LP relaxation solver. For example, an end-to-end training regime that utilizes
our LP relaxation could provide a significant boost in segmentation accuracy.

5.6.4 PROX-LP Analysis

In this section we empirically analyze the properties of our algorithm by providing
statistics of more images and also analyze the effect of the proximal regularization
constant (η in Eq. (5.19)).

5.6.4.1 Statistics of More Images

To verify consistent behaviour of our algorithm across the whole dataset, we plot
the assignment energy as a function of time for more images on MSRC dataset. See
Fig 5.8. For this experiment, the parameters tuned for DCneg were used. In summary,
PROX-LP clearly outperforms SG-LP` by obtaining much lower energies in fewer
iterations and the accelerated versions obtain roughly the same energy as PROX-LP
but significantly faster. In short, the same behaviour as in Figure 5.4 is observed.
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Figure 5.8: Assignment energy as a function of time with the parameters tuned for DCneg
for some images in (cow, building, person and car images shown in Figure 5.5) MSRC (see
Section 5.6.4.1). Note that PROX-LP clearly outperforms SG-LP` by obtaining much lower
energies in fewer iterations. Furthermore, the accelerated versions of our algorithm obtain
roughly the same energy as PROX-LP but significantly faster. In short, the same behaviour
as in Figure 5.4 is observed.

5.6.4.2 Effect of the Proximal Regularization Constant

We plot the assignment energy as a function of time for an image in MSRC (the same
image used to generate Figure 5.4) by varying the proximal regularization constant
η. Here, we used the parameters tuned for DCneg. The plot is shown in Figure 5.9.
In summary, for a wide range of η, PROX-LP obtains similar energies with approxi-
mately the same run time.

5.6.5 Modified Filtering Method

We then compare our modified filtering method, described in Section 5.4, with the
divide-and-conquer strategy of [Desmaison et al., 2016a]. To this end, we evaluated
both algorithms on one of the Pascal VOC test images (the sheep image in Figure 5.5),
but varying the image size, the number of labels and the Gaussian kernel standard
deviation. Note that, to generate a plot for one variable, the other variables are fixed
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Figure 5.9: Assignment energy as a function of time for an image in MSRC, for different
values of η (see Section 5.6.4.2). The zoomed plot is shown on the right. Note that, for
η = 0.1, 0.01, 0.001, PROX-LP obtains similar energies in approximately the same run time.

to their respective standard values. The standard value for the number of pixels
is 187500, for the number of labels 21, and for the standard deviation 1. For this
experiment, the conditional gradients were computed from a random primal solution
ỹt. In top two rows of Figure 5.10, we show the speedup of our modified filtering
approach over the one of [Desmaison et al., 2016a] as a function of the number of
pixels, labels and filter standard deviation. The timings were averaged over 10 runs,
and we observed only negligible timing variations between the different runs.

In summary, our modified filtering method is 10− 65 times faster than the state-
of-the-art algorithm of [Desmaison et al., 2016a]. Furthermore, note that all versions
of our algorithm operate in the region where the speedup is around 45− 65.

Similar plots for an MSRC image (the tree image in Figure 5.5) are shown in
bottom two rows of Figure 5.10. In this case, speedup is around 15− 32, with around
23− 32 in the operating region of all versions of our algorithm.

5.7 Discussion

We have introduced the first LP minimization algorithm for dense CRFs with Gaus-
sian pairwise potentials whose iterations are linear in the number of pixels and labels.
Thanks to the efficiency of our algorithm and to the tightness of the LP relaxation,
our approach yields much lower energy values than state-of-the-art dense CRF in-
ference methods. Furthermore, our experiments have demonstrated that, with the
right set of energy parameters, highly accurate segmentation results can be obtained
with our algorithm. The speed and effective energy minimization of our algorithm
make it a perfect candidate to be incorporated into an end-to-end learning frame-
work, such as [Zheng et al., 2015]. This, we believe, will be key to further improving
the accuracy of deep semantic segmentation architectures.

Note that, as discussed in the chapter, lower energy does not necessarily result
in improved segmentation. This lack of correlation between the dense CRF energy
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and the segmentation accuracy is due to inaccurate energy parameters. Developing
methods that fix this discrepancy is an interesting direction for future research, which
would be aided by our LP relaxation solver. For example, as mentioned above, an
end-to-end training regime that utilizes our LP relaxation could provide a significant
boost in segmentation accuracy.

Furthermore, with simple heuristics, our PROX-LPacc algorithm converges sig-
nificantly faster than the standard PROX-LP method without compromising on the
solution quality. It would be interesting to think about additional heuristics that can
further improve the convergence rates.

Currently, our algorithm can only handle fully connected CRFs where the label
compatibility function is the Potts model. As mentioned in the chapter, our algo-
rithm can be extended to general label compatibility functions using a hierarchical
Potts model [Kumar and Koller, 2009]. When extending to more general label com-
patibility functions, the main challenge is to maintain linear time complexity per
iteration. This would be an important extension of our LP minimization algorithm.

On the other hand, our modification to the permutohedral lattice based filtering
method has wide applicability beyond what is discussed in this chapter. For in-
stance, similarly to [Zhang et al., 2015], marginal inference on the dense CRF model
can be performed and whose iterations can be made linear using our modified fil-
tering method. In addition to this, we intend to explore possible applications of our
modified filtering method in future.

In the next chapter, we summarize the contributions of the thesis and discuss
possible extensions.
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Figure 5.10: Speedup of our modified filtering method over the divide-and-conquer strategy
of [Desmaison et al., 2016a] on an image in (top two rows) Pascal and (bottom two rows)
MSRC (see Section 5.6.5). First and third rows correspond to spatial kernel (d = 2) and
second and fourth rows correspond to bilateral kernel (d = 5). Note that our speedup grows
with the number of pixels (except when d = 2 on MSRC, for which it is approximately con-
stant) and is approximately constant with respect to the number of labels and filter standard
deviation.



Chapter 6

Conclusion

So far, we have described an exact max-flow algorithm and two approximate algo-
rithms for MRF optimization with applications to computer vision. In this chapter,
we summarize the contributions presented in this thesis and discuss possible future
extensions.

6.1 Contributions

In this thesis, we have introduced three new algorithms for MRF optimization target-
ing computer vision applications, that are either more efficient (in terms of running
time and/or memory usage) or more effective (in terms of solution quality), than the
state-of-the-art methods. We summarize the contributions in each chapter below.

Chapter 3. In this chapter, we have introduced a variant of the max-flow algorithm
(called MEMF) that can minimize multi-label submodular MRF energies optimally,
while requiring much less storage. Specifically, our max-flow algorithm stores only
two `-dimensional vectors, called exit-flows (where ` is the number of labels) per
variable pair instead of the 2 `2 edge capacities of the standard max-flow algorithm.
Consequently, we reduced the memory requirement of the max-flow algorithm by
O(`) for Ishikawa type graphs, while not compromising on optimality. As a result,
our approach lets us optimally solve much larger problems on a standard computer.

Furthermore, we proved the worst case time complexity of our algorithm by fol-
lowing the proof of the standard Edmonds-Karp algorithm. While requiring O(`)
less memory, the polynomial time version of MEMF was shown to be O(`) times
slower than Edmonds-Karp in the worst case. Later, we have shown that our MEMF
algorithm actually solves the optimal message passing problem (i.e., the dual of the
LP relaxation of the discrete MRF) when the MRF is multi-label submodular. This
allowed us to draw the equivalence between the set of exit-flows and the set of mes-
sages.

Finally, our experiments have shown that our algorithm is an order of magnitude
faster than state-of-the-art methods. We, therefore, believe that our algorithm con-
stitutes the method of choice to minimize Ishikawa type graphs when the complete
graph cannot be stored in memory.

141
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Chapter 4. In this chapter, we have introduced a move-making algorithm (called
IRGC) for multi-label MRFs with robust non-convex priors. In particular, our al-
gorithm iteratively approximates the original MRF energy with an appropriately
weighted surrogate energy that is easier to minimize. We have shown that, under
suitable conditions on the non-convex priors, and as long as the weighted surrogate
energy can be decreased, our approach guarantees that the true energy decreases at
each iteration. To this end, we considered the scenario where the weighted surrogate
energy is multi-label submodular and showed that our algorithm then lets us handle
of a large variety of non-convex priors. In addition to the basic version, we have
presented a hybrid optimization strategy that combines IRGC with α-expansion.

Furthermore, we have shown that our IRGC algorithm is a special instance of
the well known majorization-minimization framework. However, to the best of our
knowledge, this is the first time such a technique is transposed to the MRF optimiza-
tion scenario.

Finally, our experiments have shown that, while the basic algorithm sometimes
gets trapped in local minima, our hybrid version consistently outperforms (or per-
forms virtually as well as) state-of-the-art MRF energy minimization techniques. We,
therefore, believe our algorithm constitutes the first move-making algorithm to effec-
tively tackle MRFs with robust non-convex priors.

Chapter 5. In this chapter, we have introduced an efficient LP minimization al-
gorithm (called PROX-LP) for dense CRFs with Gaussian pairwise potentials. In
particular, we have developed a proximal minimization framework, where the dual
of each proximal problem is optimized via block-coordinate descent. We have shown
that each block of variables can be optimized in a time linear in the number of pixel
and labels. Specifically, for one block, the problem decomposes into significantly
smaller subproblems, each of which is defined over a single pixel. For the other
block, the problem is optimized via conditional gradient descent. This had two ad-
vantages: 1) the conditional gradient can be computed in a time linear in the number
of pixels and labels; and 2) the optimal step size can be computed analytically. To the
best of our knowledge, this constitutes the first LP minimization algorithm for dense
CRFs that has linear time iterations. Thanks to the efficiency of our algorithm and to
the tightness of the LP relaxation, our approach yielded much lower energy values
than state-of-the-art dense CRF inference methods.

Furthermore, to efficiently compute the conditional gradient required by our al-
gorithm, we needed to perform approximate Gaussian filtering with ordering con-
straints. To accomplish this in linear time, we modified the permutohedral lat-
tice based filtering method to handle ordering constraints. This modified filtering
method has wide applicability beyond what is discussed in this thesis.

Finally, our experiments have demonstrated that, with the right set of energy pa-
rameters, highly accurate segmentation results can be obtained with our algorithm.
The speed and effective energy minimization of our algorithm make it a perfect can-
didate to be incorporated into an end-to-end learning framework. This, we believe,
will be key to further improving the accuracy of deep semantic segmentation archi-
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tectures.

6.2 Future Directions

We now discuss some possible future directions which can extend the practical and
theoretical implications of our work presented in this thesis.

MEMF

• Even though our MEMF algorithm converges in approximately the same time
as that of the BK method, it is 4− 7 times slower than the EIBFS algorithm. Note
that the EIBFS algorithm is an improved version of the BK method which com-
bines push-relabel techniques with the augmenting path based BK algorithm
(see [Goldberg et al., 2015]). Due to the similarity of MEMF to the BK method,
we believe that MEMF can also be accelerated in a similar fashion. This would
not only make MEMF significantly faster but also improve its worst case time
complexity.

• The equivalence of MEMF with min-sum message passing indicates interesting
future directions. For instance, MEMF can be used to obtain min-marginals
similarly to [Kohli and Torr, 2008]. Furthermore, MEMF can be combined with
a message-passing algorithm, such as TRWS to obtain a hybrid algorithm. Po-
tentially, such an algorithm can be designed in a way that, it has desirable
characteristics of both algorithms, i.e., good at approximating the true energy
(similar to TRWS) while being fast to converge (similar to max-flow).

IRGC

• Since the IRGC algorithm has the flexibility in subroutine algorithm choices, it
would be interesting to study useful such choices.

– For the hybrid version, fusion moves or any other move-making algorithm
can be used instead of α-expansion. This could potentially improve the
solution quality of the hybrid version of our algorithm.

– Instead of the Ishikawa algorithm, the surrogate energy can be optimized
approximately using the convex expansion technique of [Carr and Hartley,
2009] (see Section 2.3.3.2 for an overview). This would improve the run-
ning time and memory usage while compromising on the solution quality.
This would be useful in resource-scarce environments, such as embedded
systems or mobile devices.

– One may replace the Ishikawa algorithm with the primal-dual approach
of [Pock et al., 2008; Mollenhoff et al., 2016]. This would further extend
the applicability of IRGC to continuous label spaces and enables the use
of Graphics Processing Unit (GPU) to parallelize the algorithm.



144 Conclusion

• As discussed in Chapter 4, IRGC really is a special case of an iteratively reweighted
approach to MRFs and even continuous energy minimization. Therefore, we
believe, our approach can be extended to other types of MRF problems and it
would be interesting to study useful such extensions.

PROX-LP

• As discussed in the chapter, lower energy does not necessarily result in im-
proved segmentation. This lack of correlation between the dense CRF energy
and the segmentation accuracy is due to inaccurate energy parameters. Devel-
oping methods that fix this discrepancy is an interesting direction for future
research, which would be aided by our LP relaxation solver. For example, as
mentioned earlier, an end-to-end training regime that utilizes our LP relaxation
could provide a significant boost in segmentation accuracy.

• By using simple heuristics, our PROX-LPacc algorithm converges significantly
faster than the standard PROX-LP method without compromising on the so-
lution quality. It would be interesting to think about additional heuristics that
can further improve the convergence rates.

• Currently, our algorithm can only handle fully connected CRFs where the la-
bel compatibility function is the Potts model. As mentioned in Chapter 5, our
algorithm can be extended to general label compatibility functions using a hi-
erarchical Potts model [Kumar and Koller, 2009]. When extending to more
general label compatibility functions, the main challenge is to maintain linear
time complexity per iteration. This would be an important extension of our LP
minimization algorithm.

• As mentioned earlier, our modified filtering method has wide applicability be-
yond what is shown in this thesis. For instance, similarly to [Zhang et al., 2015],
marginal inference on the dense CRF model can be performed and whose it-
erations can be made linear using our modified filtering method. But its ap-
plication is not limited to this and it would be interesting to explore possible
applications of our modified filtering method.



Bibliography

Adams, A.; Baek, J.; and Davis, M. A., Fast high-dimensional filtering using the
permutohedral lattice. Computer Graphics Forum, (2010). (cited on pages 7, 105,
106, 111, 123, 124, 125, and 128)

Adams, A. B., 2011. High-dimensional gaussian filtering for computational photography.
Stanford University. (cited on page 123)

Aftab, K. and Hartley, R., Convergence of iteratively re-weighted least squares to
robust M-estimators. WACV, (2015). (cited on pages 83 and 93)

Aftab, K.; Hartley, R.; and Trumpf, J., Generalized Weiszfeld algorithms for Lq

optimization. PAMI, (2015). (cited on page 93)

Ajanthan, T.; Desmaison, A.; Bunel, R.; Salzmann, M.; Torr, P. H. S.; and Kumar,
M. P., Efficient linear programming for dense CRFs. CVPR, (2017). (cited on pages
7 and 105)

Ajanthan, T.; Desmaison, A.; Bunel, R.; Salzmann, M.; Torr, P. H. S.; and Kumar,
M. P., Efficient linear programming for dense CRFs. arXiv preprint arXiv:1611.09718,
(2017). (cited on pages 7 and 105)

Ajanthan, T.; Hartley, R.; and Salzmann, M., Memory efficient max-flow for
multi-label submodular MRFs. CVPR, (2016). (cited on pages 7, 47, and 61)

Ajanthan, T.; Hartley, R.; and Salzmann, M., Memory efficient max-flow for
multi-label submodular MRFs. arXiv preprint arXiv:1702.05888, (2017). (cited on
pages 7 and 47)

Ajanthan, T.; Hartley, R.; Salzmann, M.; and Li, H., Iteratively reweighted graph
cut for multi-label MRFs with non-convex priors. CVPR, (2015). (cited on pages 7
and 81)

Andres, B.; Beier, T.; and Kappes, J. H., OpenGM: A C++ library for discrete graph-
ical models. arXiv preprint arXiv:1206.0111, (2012). (cited on page 73)

Bach, F., Duality between subgradient and conditional gradient methods. SIAM
Journal on Optimization, (2015). (cited on page 121)

Bertsekas, D. P., 1999. Nonlinear programming. Athena Scientific Belmont. (cited on
pages 13 and 42)

145



146 BIBLIOGRAPHY

Besag, J., Spatial interaction and the statistical analysis of lattice systems. Journal of
the Royal Statistical Society, (1974). (cited on page 10)

Birchfield, S. and Tomasi, C., A pixel dissimilarity measure that is insensitive to
image sampling. PAMI, (1998). (cited on pages 73 and 95)

Boros, E. and Hammer, P. L., Pseudo-boolean optimization. Discrete applied mathe-
matics, (2002). (cited on pages 15, 18, 20, 32, 52, 93, and 94)

Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; and Eckstein, J., Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R© in Machine Learning, (2011). (cited on page 109)

Boyd, S. and Vandenberghe, L., 2009. Convex optimization. Cambridge university
press. (cited on pages 13, 22, 33, 34, 36, and 115)

Boykov, Y. and Kolmogorov, V., An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. PAMI, (2004). (cited on pages 14,
20, 48, 50, 60, 67, 72, 73, 93, and 94)

Boykov, Y.; Veksler, O.; and Zabih, R., Fast approximate energy minimization via
graph cuts. PAMI, (2001). (cited on pages 5, 13, 14, 27, 31, 81, 82, 92, and 94)

Boykov, Y. Y. and Jolly, M.-P., Interactive graph cuts for optimal boundary & region
segmentation of objects in ND images. ICCV, (2001). (cited on page 14)

Carr, P. and Hartley, R., Solving multilabel graph cut problems with multilabel
swap. DICTA, (2009). (cited on pages 30, 100, and 143)

Chandran, B. G. and Hochbaum, D. S., A computational study of the pseudoflow
and push-relabel algorithms for the maximum flow problem. Operations research,
(2009). (cited on pages 20 and 72)

Chekuri, C.; Khanna, S.; Naor, J.; and Zosin, L., A linear programming formula-
tion and approximation algorithms for the metric labeling problem. SIAM Journal
on Discrete Mathematics, (2004). (cited on pages 5, 13, 108, and 128)

Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and Yuille, A. L., Semantic
image segmentation with deep convolutional nets and fully connected CRFs. ICLR,
(2014). (cited on page 128)

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C., 2001. Introduction to
algorithms. MIT press. (cited on page 57)

Dahlhaus, E.; Johnson, D. S.; Papadimitriou, C. H.; Seymour, P. D.; and Yan-
nakakis, M., The complexity of multiway cuts. ACM symposium on Theory of com-
puting, (1992). (cited on page 13)

Dantzig, G., 2016. Linear programming and extensions. Princeton university press.
(cited on page 34)



BIBLIOGRAPHY 147

Delong, A. and Boykov, Y., A scalable graph-cut algorithm for ND grids. CVPR,
(2008). (cited on page 72)

Desmaison, A.; Bunel, R.; Kohli, P.; Torr, P. H.; and Kumar, M. P., Efficient con-
tinuous relaxations for dense CRF. ECCV, (2016). (cited on pages 5, 105, 106, 107,
109, 121, 123, 124, 125, 128, 129, 130, 136, 137, 138, and 140)

Desmaison, A.; Bunel, R.; Kohli, P.; Torr, P. H.; and Kumar, M. P., Efficient con-
tinuous relaxations for dense CRF - Supplementary material. ECCV, (2016). (cited
on pages 106, 116, and 123)

Edmonds, J. and Karp, R. M., Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM, (1972). (cited on pages 20 and 54)

Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.; and Zisserman, A., The
pascal visual object classes (VOC) challenge. IJCV, (2010). (cited on pages 3, 106,
and 130)

Felzenszwalb, P. F. and Huttenlocher, D. P., Efficient belief propagation for early
vision. IJCV, (2006). (cited on page 93)

Ford, L. and Fulkerson, D. R., 1962. Flows in networks. Princeton University Press.
(cited on pages 14, 15, 17, 18, 20, 47, 49, and 72)

Frank, M. and Wolfe, P., An algorithm for quadratic programming. Naval research
logistics quarterly, (1956). (cited on pages 106, 110, 111, 112, and 128)

Fujishige, S., 2005. Submodular functions and optimization. Elsevier. (cited on page
15)

Geiger, A.; Lenz, P.; Stiller, C.; and Urtasun, R., Vision meets robotics: The KITTI
dataset. The International Journal of Robotics Research, (2013). (cited on page 73)

Globerson, A. and Jaakkola, T. S., Fixing max-product: Convergent message pass-
ing algorithms for MAP LP-relaxations. NIPS, (2008). (cited on page 44)

Goemans, M. X. and Williamson, D. P., Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, (1995). (cited on page 13)

Goldberg, A. V.; Hed, S.; Kaplan, H.; Kohli, P.; Tarjan, R. E.; and Werneck,
R. F., Faster and more dynamic maximum flow by incremental breadth-first search.
Springer. (cited on pages 20, 73, 78, 94, and 143)

Goldberg, A. V.; Hed, S.; Kaplan, H.; Tarjan, R. E.; and Werneck, R. F., Maximum
flows by incremental breadth-first search. Springer. (cited on page 72)

Goldberg, A. V. and Tarjan, R. E., A new approach to the maximum-flow problem.
Journal of the ACM, (1988). (cited on pages 20 and 72)



148 BIBLIOGRAPHY

Grimmett, G. R., A theorem about random fields. Bulletin of the London Mathematical
Society, (1973). (cited on page 10)

Hartley, R. and Zisserman, A., 2003. Multiple view geometry in computer vision.
Cambridge University Press. (cited on pages 2, 90, and 91)

Hille, E., 2005. Analytic function theory. American Mathematical Society. (cited on
page 123)

Hochbaum, D. S., An efficient algorithm for image segmentation, Markov random
fields and related problems. Journal of the ACM, (2001). (cited on page 72)

Huber, P. J., Robust estimation of a location parameter. The Annals of Mathematical
Statistics, (1964). (cited on page 26)

Hunter, D. R. and Lange, K., A tutorial on MM algorithms. The American Statistician,
(2004). (cited on page 85)

Ishikawa, H., Exact optimization for Markov random fields with convex priors.
PAMI, (2003). (cited on pages 5, 14, 21, 22, 26, 47, 48, 72, 81, 82, and 87)
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