
Supplementary material for Learning to Adapt for Stereo

Alessio Tonioni∗1, Oscar Rahnama†2,4, Thomas Joy†2, Luigi Di Stefano1, Thalaiyasingam Ajanthan∗3,
and Philip H. S. Torr2

1University of Bologna 2University of Oxford 3Australian National University 4FiveAI

In Sec. 1 we provide additional implementation details
concerning the loss used for unsupervised online adapta-
tion, the confidence network and the training procedure of
the disparity estimation network. Later in Sec. 2 we give
more experimental results on various components of our
method that further confirm the findings of the main paper.

1. Implementation Details
1.1. Unsupervised Online Adaptation Loss

To perform unsupervised online adaptation we use a
modified version of the re-projection loss described in [3].
Denoting with (il, ir) an RGB stereo image pair with res-
olution W × H , which is also normalized such that each
pixel lies in the range [0, 1]. We use this pair as an input for
the disparity estimation network which produces a disparity
map yl aligned with il as an output.

To compute the unsupervised adaptation loss, first, we
use the scaled right input image (ir) and the disparity map
(yl) to generate a re-projected left input image (̃il) through
differentiable bilinear sampling [3]. The error εij computed
for any given pixel at coordinates (i, j) is measured as a
weighted sum of SSIM [7] (measured over 3 × 3 patches
centred on (i, j)) together with an element-wise L1 distance
between real and reprojected pixels. Thus, the pixel error
εij can be formally expressed as:

εij = α
1− SSIM

(
ilij , ĩ

l
ij

)
2

+ (1− α)
∥∥ilij − ĩlij∥∥ . (6)

We denote with α = 0.85 the weight of the linear combina-
tion of the two losses. The final loss optimized to perform
online adaptation is the mean re-projection error across all
the pixels of the whole image.

1.2. Confidence Network Architecture

We implement the confidence estimation network as a
three layer 2D convolutional neural network without pool-
∗Work done while at University of Oxford.
†Second two authors contributed equally.

ing. Each of these layers uses 3 × 3 kernels and a stride of
1. The first and second layers have 32 and 64 filters, respec-
tively, and both make use of leaky ReLU activations as well
as batch normalization. The final layer has a single channel
output and uses the sigmoid function as activation.

We use the re-projection errors (estimated according to
Eq. 6) as an input to our confidence network. Before be-
ing fed into the confidence network, this re-projected error
map is first downsampled to a quarter of its original size to
reduce memory consumption and increase inference speed.
With this, the network then outputs a confidence map with
the same reduced dimensions which we then upscale back
to full resolution using bilinear interpolation.

1.3. Training Details

All our systems are entirely implemented in TensorFlow.
The pre-training of Dispnet is performed for 1200K steps on
F3D from random initialization using Adam optimizer with
an initial learning rate of 0.0001. The learning rate follow-
ing the authors’ guidelines is halved at 600K steps and then
again at 1000K steps. The network is trained by minimizing
a weighted sum of the multiple losses computed at differ-
ent output resolutions. We refer the interested reader to [4]
for additional details on the scheduling of the weights asso-
ciated with loss at different resolutions across the training
process.

Fine tuning of both the baselines and our methods is per-
formed for 40K steps on the training dataset with the hyper-
parameters that are detailed in the main paper. For these fine
tunings the loss functions are computed only for prediction
at full resolution.

2. Additional Results
2.1. Synthetic to Synthetic Experiments

We extend the experiment performed in Sec. 5.2.2 in
the main paper by swapping the role of the two synthetic
datasets and report the results in Tab. 3. Here we perform
training of different methods on Synthia [5] and test the

1



Method Training Set Ad. Unsupervised Ad. Supervised
D1-all (%) EPE D1-all (%) EPE

(a) SL+Ad - 16.63 2.56 10.56 1.50

(b) SL+Ad Synthia 12.53 1.71 5.36 0.87
(c) L2A+Ad Synthia 10.79 1.48 5.09 0.85
(d) L2A+WAd Synthia 9.98 1.45 7 7

Table 3. Comparison of the different methods when training on Synthia and evaluating on sequences from Carla. Similar to our previous
results in Tab. 2, the best performing training method is L2A+WAd. We also provide results when a L1 based supervised adaptation loss
is used at test time. Best results are in bold.

Method Train on Carla Train on Synthia
D1-All (%) EPE D1-All (%) EPE

L2A+Ad 22.69 3.08 10.79 1.48
FOL2A+Ad 23.14 3.12 10.81 1.49

Table 4. Comparison between our full framework and a first-order
approximation of it. All the models are trained on one of the two
synthetic datasets and tested on the other, by performing unsuper-
vised online adaptation.

models performing online adaptation on sequences from
Carla. We report results for both unsupervised and super-
vised online adaptation for the base model trained on F3D
(row (a)), the model fine-tuned according to an L1 regres-
sion loss (row (b)), and our learning to adapt framework
with and without the confidence network (row (d) and (c)
respectively).

As in the main paper, our L2A+Ad formulation provides
an increase in performance over SL+Ad for both unsuper-
vised and supervised adaptation. Moreover, the introduc-
tion of our confidence weighted adaptation (row (d)) pro-
vides an additional small increase in performance for un-
supervised adaptation. In this scenario, however, the gap
between the different methods appears to be smaller.

2.2. First-Order Approximation

In MAML [2], the use of two nested optimization loops
introduces the need for second-order derivatives during the
back-propagation phase through gradient computations of
the inner loop. Naturally, the computation of second-order
derivative comes at a significant computational cost that
slows down the training process considerably. To alleviate
this issue, the authors of MAML [2] propose a first-order
approximation that ignores the costly back-propagation
through the gradient computation steps and leads to simi-
lar performance at a more affordable computational cost.

Our learning to adapt formulation, described in Sec. 3.1
of the main paper, also uses two nested optimizations, and
therefore may benefit from the same kind of approximation.
This approximated version can be easily implemented in

our framework exactly as in MAML by omitting the com-
putation of the costly second order derivatives during the
back propagation. This approximated method is referred to
as FOL2A.

To measure the impact of the first order approximation
on the final performance of the network we trained two ad-
ditional Dispnet using FOL2A on a synthetic dataset (Carla
or Synthia) and measured the performance on the other (i.e.,
we followed the paradigm used for the synthetic to synthetic
tests) . In Tab. 4 we compare the performance achieved by
the networks trained with FOL2A and the corresponding
models trained without approximations (i.e., using L2A).
On both training datasets, the approximated methods per-
form similarly to the complete ones, with performance al-
most equal when trained on Synthia. Hence, if one wishes
to save on computational resources, this first order approxi-
mation approach may be employed.

Unfortunately, weighted adaptation (using the confi-
dence network) is not possible with the first-order approx-
imation as the confidence network is trained using the gra-
dients computed through the adaptation step (inner loop)
and these gradients are ignored in the first-order approxi-
mation. Therefore, for the sake of fairness, when compar-
ing between the different variants of our method across all
the tests, we have always used the version that relies on the
computation of the second-order derivatives.

2.3. Qualitative Results on the Confidence Network

In Fig. 6, we show additional qualitative examples of
our predicted confidence masks on a challenging sequence
from the KITTI dataset. We wish to point out that, in our
learning-to-adapt framework, despite the confidence net-
work only being trained on synthetic data, it demonstrates
good generalization ability to real images. In almost all
examples, the confidence network is able to mask out re-
projection errors due to occlusions (usually on the left side
of objects in the foreground) or reflective surfaces (e.g., the
car on the left in the second row). In some examples, we
note that certain points in the background are masked. This
slightly unexpected behavior may hint to the presence of
noise within the confidence prediction process. Future work



will be dedicated to improve the quality of these confidence
estimations by incorporating geometric constraints.

2.4. Qualitative Results on Cityscapes

We show on Fig. 7 some additional qualitative results
obtained on the Cityscapes[1] dataset. We show three dif-
ferent disparity prediction obtained using Dispnet as dis-
parity estimation network and three different adaptation
strategies; from left to right: no adaptation (SL), online
adaptation as in [6] (SL+Ad) and our proposed frame-
work (L2A+WAd). The number of adaptation steps per-
formed increase by roughly 25 together with the row con-
sidered. The visualization clearly shows how both adapta-
tion strategies (+Ad. methods) are able to address most of
the nuisances in the prediction of SL, i.e. those produced
by a method without adaptation. The differences between
SL+Ad and L2A+WAd are quite evident in the first row,
i.e. after few step of adaptation, but became quite subtle by
the last row. Nevertheless, L2A+WAd is always able to ob-
tain sharper and cleaner prediction.

References
[1] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for se-
mantic urban scene understanding. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2016. 3

[2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research, pages
1126–1135, International Convention Centre, Sydney, Aus-
tralia, 06–11 Aug 2017. PMLR. 2

[3] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow.
Unsupervised monocular depth estimation with left-right con-
sistency. In CVPR, volume 2, page 7, 2017. 1

[4] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity, op-
tical flow, and scene flow estimation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2016. 1

[5] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M. Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016. 1

[6] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia,
and Luigi Di Stefano. Real-time self-adaptive deep stereo. In
The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019. 3

[7] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to

structural sunsupervised learning ofimilarity. IEEE transac-
tions on image processing, 13(4):600–612, 2004. 1



Left RGB Disparity predicted ε W W � ε

Figure 6. Visualization of our confidence estimations. From left to right: left rgb frame from a stereo pair, disparity predicted by Dispnet,
reprojection error obtained as described in Sec. 1.1, confidence mask predicted by our network, weighted re-projection error used for online
adaptation. On the last three columns bright colors indicate high values.



Left RGB SL SL+Ad L2A+WAd

Figure 7. Qualitative results on the Cityscapes dataset. From left to right: left rgb frame from a stereo pair, disparities predicted by Dispnet
using as method SL, SL+Ad and L2A+WAd respectivelly. On the last three columns bright colors marks high disparity values. The
number of adaptation steps performed increase together with the rows.


