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For the sake of completeness, we first give more details on the KL-divergence approx-
imation using Fisher information matrix (Sec. 2.3). In particular, we give the proof of
KL approximation, DKL(pθ‖pθ+∆θ) ≈ 1

2∆θ
>Fθ∆θ, discuss the difference between

the true Fisher and the empirical Fisher1, and explain why the Fisher goes to zero at a
minimum. Later, in Sec. B.1, we provide a comparison with GEM [4] and show that
RWalk significantly outperforms it. Note that, comparison with GEM is not available in
the main paper. Additionally, we discuss the sensitivity of different models to the reg-
ularization hyperparameter (λ) in Sec. B.2. Finally, we conclude in Sec. B.3 with the
details of the architecture and task-based analysis of the network used for CIFAR-100
dataset. We note that with additional experiments and further analysis in this supple-
mentary the conclusions of the main paper hold.

A Approximate KL divergence using Fisher Information Matrix

A.1 Proof of Approximate KL divergence

Lemma 1. Assuming∆θ → 0, the second-order Taylor approximation of KL-divergence
can be written [1,5] as:

DKL(pθ‖pθ+∆θ) ≈
1

2
∆θ>Fθ∆θ , (1)

where Fθ is the empirical Fisher at θ.

Proof. The KL divergence is defined as:

DKL(pθ(z)‖pθ+∆θ(z)) = Ez [log pθ(z)− log pθ+∆θ(z)] . (2)

Note that we use the shorthands pθ(z) = pθ(y|x) and Ez[·] = Ex∼D,y∼pθ(y|x)[·]. We
denote partial derivatives as column vectors. Let us first write the second order Taylor
series expansion of log pθ+∆θ(z) at θ:

log pθ+∆θ ≈ log pθ +∆θ>
∂ log pθ
∂θ

+
1

2
∆θ>

∂2 log pθ
∂θ2

∆θ . (3)

? Joint first authors
1 By Fisher, we always mean the empirical Fisher.
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Now, by substituting this in Eq. (2), the KL divergence can be approximated as:

DKL(pθ‖pθ+∆θ) ≈ Ez[log pθ]− Ez[log pθ] (4a)

−∆θ> Ez

[
∂ log pθ
∂θ

]
− 1

2
∆θ> Ez

[
∂2 log pθ
∂θ2

]
∆θ ,

=
1

2
∆θ> Ez

[
−∂

2 log pθ
∂θ2

]
∆θ see Eq. (5) ,

=
1

2
∆θ>H̄∆θ see Eq. (6b) . (4b)

In Eq. (4a), since the expectation is taken such that, x ∼ D,y ∼ pθ(y|x), the first order
partial derivatives cancel out, i.e.,

Ez

[
∂ log pθ(z)

∂θ

]
= Ex∼D

[∑
y

pθ(y|x)
∂ log pθ(y|x)

∂θ

]
, (5)

= Ex∼D

[∑
y

pθ(y|x)
1

pθ(y|x)

∂pθ(y|x)

∂θ

]
,

= Ex∼D

[
∂

∂θ

∑
y

pθ(y|x)

]
,

= Ex∼D[0] = 0 .

Note that this holds for the continuous case as well, where assuming sufficient smooth-
ness and the fact that limits of integration are constants (0 to 1), the Leibniz’s rule would
allow us to interchange the differentiation and integration operators.

Additionally, in Eq. (4b), the expected value of negative of the Hessian can be shown
to be equal to the true Fisher matrix (F̃ ) by using Information Matrix Equality.

Ez

[
−∂

2 log pθ(z)

∂θ2

]
= −Ez

[
1

pθ(z)

∂2pθ(z)

∂θ2

]
(6a)

+ Ez

[(
∂ log pθ(z)

∂θ

)(
∂ log pθ(z)

∂θ

)>]
,

= −Ez

[
1

pθ(z)

∂2pθ(z)

∂θ2

]
+ F̃θ . (6b)

– By the definition of KL-divergence, the expectation in the above equation is taken
such that, x ∼ D,y ∼ pθ(y|x). This cancels out the first term by following a
similar argument as in Eq. (5). Hence, in this case, the expected value of negative
of the Hessian equals true Fisher matrix (F̃ ).

– However, if in Eq. (6b), the expectation is taken such that, (x,y) ∼ D, the first
term does not go to zero, and F̃θ becomes the empirical Fisher matrix (Fθ).

– Additionally, at the optimum, since the model distribution approaches the true data
distribution, hence even sampling from dataset i.e., (x,y) ∼ D will make the first
term to approach zero, and H̄ ≈ Fθ.
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With the approximation that H̄ ≈ F̃θ ≈ Fθ, the proof is complete.

Note that, as we will argue in Section A.2 the true Fisher matrix is expensive to
compute as it requires multiple backward passes, hence, instead, as widely used in lit-
erature [1,5], we employ empirical Fisher to approximate the KL-divergence.

A.2 Empirical vs True Fisher

Loss gradient Let q be any reference distribution and p (parametrized by θ) be the
model distribution obtained after applying softmax on the class scores (s). The cross-
entropy loss between q and p can be written as: `(θ) = −

∑
j qj log pj . The gradients

of the loss with respect to the class scores are:

∂`(θ)

∂sj
= pj − qj . (7)

By chain rule, the loss gradients w.r.t. the model parameters are ∂`(θ)
∂θ = ∂`(θ)

∂s
∂s
∂θ .

Empirical Fisher In case of an empirical Fisher, the expectation is taken such that
(x,y) ∼ D. Since every input x has only one ground truth label, this makes q a Dirac
delta distribution . Then, Eq. (7) becomes:

∂`(θ)

∂sj
=

{
pj − 1, if ‘j’ is the ground truth label ,
pj , otherwise .

Since at any optimum the loss-gradient approaches to zero, thus, Fisher being the
expected loss-gradient covariance matrix would also approach to a zero matrix.

True Fisher In case of true Fisher, given x, the expectation is taken such that y is
sampled from the model distributions pθ(y|x). In case of multi-class classification, at
a given θ, the model distribution learned by a neural network is actually a conditional
multinoulli distribution defined as pθ(y|x) =

∏K
j=1 p

[y=j]
θ,j , where pθ,j is the soft-max

probability of the j-th class,K are the total number of classes, y is the one-hot encoding
of length K, and [·] is Iverson bracket. At a good optimum, the model distribution
pθ(y|x) becomes peaky around the ground truth label, implying pθ,t � pθ,j ,∀j 6= t
where t is the ground-truth label. Thus, given input x, the model distribution pθ(y|x)
approach the ground-truth output distribution. This makes the true and empirical Fisher
behave in a very similar manner. Note, in order to compute the expectation over the
model distribution, the true Fisher requires multiple backward passes. This makes it
prohibitively expensive to compute and the standard solution is to resort to the empirical
Fisher instead [1,5].
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Table 1: Following GEM, all the results on ResNets are in the multi-head evaluation
setting. Note that, the total number of samples are from all the tasks combined.

Methods Total Number of Samples Ak (%)
iCaRL 5120 50.8
GEM 5120 65.4

RWalk (Ours) 5000 70.1

B Additional Experiments and Analysis

B.1 Comparison with GEM [4] on ResNets

In this section we show experiments with ResNet18 [2] on CIFAR-100 dataset. In Tab. 1
we report the results where we compare our method with iCaRL [6] and Gradient
Episodic Memory (GEM) [4]. Both of these methods use ResNet18 as an underly-
ing architecture. Following GEM-setup, we split the CIFAR-100 dataset in 20 tasks
where each task consists of 5 consecutive classes, such that ∪20k=1y

k = {{0− 4}, {5−
9}, . . . , {95 − 99}}. Note, following GEM, all the algorithms are evaluated in multi-
head setting (refer Sec. 2.1 of the main paper). We refer GEM [4] to report the accura-
cies of iCaRL and GEM. From the Tab. 1, it can be seen that RWalk outperforms both
the methods by a significant margin.

B.2 Effect of Regularization Hyperparameter (λ)

In Tab. 2 we analyse the sensitivity of different methods to the regularization hyperpa-
rameter (λ). As evident, RWalk is less sensitive to λ compared to EWC 2 [3] and PI [7].
This is because of the normalization of the Fisher and Path-based importance scores in
RWalk. For example, as we vary λ by a factor of 1× 105 on MNIST, the forgetting and
intransigence measures changed by −0.06 and 0.14 on EWC [3], and −0.07 and 0.13
on PI [7], respectively. On the other hand, the change in RWalk, as can be seen in the
Tab. 2, is 0 for both the measures. On CIFAR-100 a similar trend is observed in Tab. 2.

B.3 CIFAR Architecture and Task-Level Analysis

In Tab. 3 we report the detailed architecture of the convolutional network used in the in-
cremental CIFAR-100 experiments (Sec. 6). Note that, in contrast to PI [7], we use only
one fully-connected layer (denoted as ‘FC’ in the table). For each task k, the weights in
the last layer of the network is dynamically added. Additionally, in Fig 1, we present a
similar task-level analysis on CIFAR-100 as done for MNIST (Fig. 2 in the main paper).
Note that, for all the experiments ‘α’ in Eq. (6) is set to 0.9 and ‘∆t’ in Eq. (7) is 10
and 50 for MNIST and CIFAR, respectively.

2 By EWC we always mean its faster version EWC++.
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Table 2: Comparison of different methods on MNIST and CIFAR-100 as the regular-
ization strength (λ) is varied. With Forgetting and Intransigence we also provide the
change (∆) in the corresponding measures, where the first row in each method is taken
as the reference. As discussed in Sec. 4.1 in the main paper, RWalk is less sensitive to λ
compared to EWC and PI, making it more appealing for incremental learning.

Methods MNIST CIFAR

λ A5(%) F5(∆) I5(∆) λ A10(%) F10(∆) I10(∆)

EWC

75 80.3 0.19 (0) 0.1 (0) 3.0 28.9 0.38 (0) -0.17 (0)
75× 103 79.2 0.15 (-0.04) 0.21 (0.11) 300 34.1 0.28 (-0.1) -0.07 (0.1)
75× 105 79.1 0.13 (-0.06) 0.24 (0.14) 3× 105 33.7 0.27 (-0.11) -0.03 (0.14)

PI

0.1 79.3 0.23 (0) 0.05 (0) 0.1 34.7 0.27 (0) -0.07 (0)
100 80.3 0.15 (-0.08) 0.22 (0.17) 10 34.3 0.26 (-0.01) -0.04 (0.03)

10000 78.5 0.16 (-0.07) 0.18 (0.13) 1× 104 33.7 0.27 (0) -0.06 (0.01)

RWalk (Ours)
0.1 82.6 0.16 (0) 0.12 (0) 0.1 34.5 0.28 (0) -0.06 (0)
100 81.6 0.16 (0) 0.14 (0.02) 10 33.2 0.28 (0) -0.06 (0)

10000 81.6 0.16 (0) 0.12 (0) 1× 104 34.2 0.28 (0) -0.05 (0.01)

Table 3: CNN architecture for incremental CIFAR-100 used for Vanilla, EWC, PI, iCaRl,
RWalk in the main paper. Here, ‘n’ denotes the number of classes in each task.

Operation Kernel Stride Filters Dropout Nonlin.
3x32x32 input

Conv 3× 3 1× 1 32 ReLU
Conv 3× 3 1× 1 32 ReLU

MaxPool 2× 2 0.5
Conv 3× 3 1× 1 64 ReLU
Conv 3× 3 1× 1 64 ReLU

MaxPool 2× 2 0.5

Task 1: FC n

· · · : FC n

Task k: FC n
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