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Abstract

We propose a deep generative model of humans in natu-
ral images which keeps 2D pose separated from other latent
factors of variation, such as background scene and cloth-
ing. In contrast to methods that learn generative models of
low-dimensional representations, e.g., segmentation masks
and 2D skeletons, our single-stage end-to-end conditional-
VAEGAN learns directly on the image space. The flexibil-
ity of this approach allows the sampling of people with in-
dependent variations of pose and appearance. Moreover,
it enables the reconstruction of images conditioned on a
given posture, allowing, for instance, pose-transfer from
one person to another. We validate our method on the Hu-
man3.6M dataset and achieve state-of-the-art results on the
ChictopiaPlus benchmark. Our model, named Conditional-
DGPose, outperforms the closest related work in the liter-
ature. It generates more realistic and accurate images re-
garding both, body posture and image quality, learning the
underlying factors of pose and appearance variation.

1. Introduction
The analysis of visual data containing humans is a cen-

tral problem in computer vision. In this context, the body
posture plays a major role in the process of understanding
humans in images and videos [12, 18, 41]. Modelling and
learning how natural images of people in particular postures
are generated is an important and challenging task. It has
many applications, such as, generation of synthetic images
and reenactment of body movements in videos [1].

Over the last years, great attention has been given to dis-
criminative models of human pose, specially for 2D pose
estimation [3, 4, 27, 35, 40]. Meanwhile, generative mod-
els have attracted considerably less interest. This fact may
be partially explained by the relatively higher complexity of
the latter, mainly due to the large number of random vari-
ables involved in the process, as well as the frequently in-
tractable probability distributions over them.

Lately, however, the general research interest for gener-

ative models has increased, greatly driven by deep learning
methods, such as Variational Autoncoders (VAEs) [17, 30]
and Generative Adversarial Networks (GANs) [7]. These
approaches have introduced strategies to tackle inference
and stochastic learning in the context of intractable prob-
abilistic computations and large datasets.

Generative models for human pose defined over low-
dimensional pose-spaces are well-known from the litera-
ture [6, 28, 33]. Also in more recent works with deep gen-
erative models, in particular with VAEs, low-dimensional
spaces are adopted, e.g., pose-spaces [37] or segmentation
masks [20]. Once such generative models are learned, a
common approach is to use image-to-image translation [11]
to map the representations to natural images. These multi-
stage training and testing processes often reduce the accu-
racy and control over image generations w.r.t. appearance
and body posture [20]. In other cases, as in [25], it pre-
vents sampling, which is a core characteristic and desirable
capability of generative models.

To overcome the aforementioned limitations of related
works, we learn a deep generative model of natural images,
directly on the high-dimensional image space. We explicitly
represent the body pose and other latent factors of variation
(or just visual appearance) as separated and independent
random variables in a unified single-stage end-to-end prob-
abilistic model. In this way, we can generate samples from
our generative probability distribution by manipulating ei-
ther pose or appearance directly and independently. Our
conditional-VAEGAN architecture, a principled variational
method for approximate Bayesian inference, allows us to
have a structured and interpretable latent space, by means
of a conditional-VAE framework [32], associated with a dis-
criminator module [19], which takes advantage of the high
quality image generations from GANs.

To our knowledge, our approach is the first deep gener-
ative model capable of generating realistic natural images
of people in a unified probabilistic framework, while keep-
ing the body posture and appearance as explicitly separated
and interpretable variables. The advantage of that is three-



fold, as it allows: i) to change the posture of a person in
an image, given a conditioning pose (pose-transfer); ii) the
sampling from the generative distribution with independent
control over pose and visual appearance; iii) the direct and
more accurate control over appearance and pose by means
of a unified single-stage end-to-end model.

We have validated our method qualitatively on the Hu-
man3.6M dataset [10]. Such experiments demonstrate that
our model generates realistic images with direct, accurate
and independent manipulation of pose and appearance, suc-
cessfully performing image reconstruction, pose-transfer
and sampling with a single network. Moreover, our ap-
proach achieves state-of-the-art results on the ChictopiaPlus
benchmark, outperforming the closest related work in the
literature, the ClothNet-Body network [20], and showing
that our model generates more realistic and accurate images
w.r.t. both, body posture and image quality, while it learns
the underlying latent factors of pose and appearance varia-
tion.

2. Related Work
Deep Generative Models. VAEs [17, 30] and GANs [7]

have both received great attention in the last years. Both
of these deep learning methods are capable of tackling in-
ference and stochastic learning in the context of intractable
probabilistic distribution and large datasets. Due to their
popularity, several variants of them have been proposed
in the literature [19, 26, 38]. In particular, Larsen et
al. [19] propose the association of VAEs’ capability of
explicitly modelling latent probability distributions, with
GANs’ high-quality image generations. Another useful
variant of VAEs for conditional generative models are the
conditional-VAEs (CVAEs), proposed and applied to image
segmentation by Sohn et al. [32]. Additionally, conditional-
VAEGANs (CVAEGANs) were employed by Bao et al. [2]
for image inpainting and data augmentation.

Recently, other authors [5, 16, 31] have shown how
VAEs can be used to learn structured disentangled repre-
sentations in the latent space by enforcing partial supervi-
sion for a subset of latent variables. Different from previous
works, our method is the first to employ a CVAEGAN with
a structured, interpretable and disentangled latent space for
generating people in natural images.

Deep Generative Models of Humans. Despite the great
interest in human pose estimation in the past years, gener-
ative models have been far less investigated compared to
discriminative approaches. The closest related approach
to ours is [20], which presents a generative model based
on CVAEs for clothes of segmented people conditioned
on pose. However, their generative model works on low-
dimensional segmentation masks and an image-to-image
translation network [11] is used to render natural images.
The segmentation masks (sketches) are generated either

with a VAE (ClothNet-full) or with a CVAE (ClothNet-
body). The simultaneous, direct and accurate manipulation
of pose and appearance is limited because it is done by two
separate networks in a two-stages process. In contrast, we
learn the generative model directly on the real images us-
ing only pose as a conditioner and without the need of body
parts’ segmentation.

Another related work is the image-to-image translation
model proposed by Ma et al. [25]. It uses the U-Net-like
model from [29] and no VAE nor CVAE are employed. As
in [20], [25] is trained in two stages, as the authors acknowl-
edge that it is difficult for a complete end-to-end framework
to cope with both correct poses and appearances simultane-
ously. However, training is done using pairs of images from
the same person in different poses, views and scales, since
the approach is designed strictly for pose-transfer. Differ-
ently, the Conditional-DGPose accomplishes pose-transfer
as a by-product of our formulation. Moreover, it can be
performed between images from different people, since it
keeps pose and appearance as disentangled random vari-
ables. This relevant difference in our CVAEGAN modelling
makes our method more general than the ones aforemen-
tioned. For instance, it also allows the direct sampling of
natural images conditioned on a given pose. In [20], sam-
ples of segmentation masks (sketches) can be generated and
rendered as natural images with the image-to-image model
(portray module) from [11]. In the image-to-image transla-
tion from [25], sampling is not possible at all.

Furthermore, in [37] a hybrid VAEGAN architecture is
introduced for forecasting future poses in a video. Here, a
low-dimensional pose representation is learned using a VAE
and once the future poses are predicted, they are mapped to
images using a GAN generator. We use a discriminator in
our training to improve the quality of the generated images,
following [19]. However, this does not effect our genera-
tive probabilistic distribution and neither does it compro-
mise our capability of sampling from it. Finally, consid-
ering GAN based generative models, [36] presents a GAN
network that can learn motion and content in two separate
latent spaces in an unsupervised manner. However, it does
not allow an explicit manipulation over the human pose.

3. Deep Variational Autoencoders
In this section, we briefly review variational autoen-

conders and their relevant variations on which our gener-
ative model of people in natural images is based. We refer
to [17, 30, 32, 19] for further details.

Variational Autoencoders. VAEs [17, 30] are a class
of deep generative models that simultaneously train both a
probabilistic encoder and a decoder, given a training set D
with elements x ∈ D. The main idea is that an encoding z is
considered as a latent variable, and the objective is to maxi-
mize the likelihood p(x) =

∫
pθ(x|z) p(z) dz. The decoder
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Figure 1: Structure of recognition (top row) and generative (bottom row)
models for VAE and CVAE. Here, z denotes the unobserved latent vari-
ables and y denotes the conditioning variables.

(referred to as the generative network) defines the condi-
tional probability pθ(x|z) and the prior over z is assumed
to be the standard normal distribution.

In a high dimensional space, finding the decoder param-
eters θ that maximize the likelihood is intractable. To tackle
this, VAEs use a variational method that approximates the
posterior distribution pθ(z|x) using an encoder (referred to
as the inference or the recognition network) qφ(z|x). This
approximate posterior is assumed to be a Gaussian whose
parameters are the output of a neural network parametrized
by φ. Under these assumptions, the generative and the infer-
ence networks are trained jointly by performing stochastic
gradient ascent on the Evidence Lower Bound (ELBO),

log pθ(x) ≥ LVAE(φ, θ;x) (1)
= Eqφ(z|x) [log pθ(x|z)]−KL [qφ(z|x)‖p(z)] .

Here, the first term denotes the expectation over the approx-
imate posterior distribution, which measures the decoder
accuracy (or reconstruction error), while the KL-divergence
term encourages the approximate posterior to be close to the
prior p(z). Computing the expectation in Eq. (1) involves
sampling which can be circumvented using a reprametriza-
tion trick [17]. Furthermore, since the approximate poste-
rior qφ(z|x) and the prior p(z) are both Gaussian distribu-
tions, the KL-divergence can be computed in closed form.
The structures of the generative and the recognition mod-
els in a standard VAE are shown in Fig. 1a. At test time,
only the generative network (decoder) is retained and one
can easily generate samples by sampling a latent variable
z ∼ N (0, I) and passing it through the decoder. For more
details, we refer the reader to [17].

Conditional Variational Autoencoders. CVAEs [32]
are a simple extension of the standard VAEs that allow more
flexibility in the generative process. In a CVAE, both the
input data x and the latent variable z are conditioned on y.
It means that both, the encoder and the decoder, are now
conditioned on y, i.e. the corresponding distributions can
be written as qφ(z|x,y) and pθ(x|z,y). In this case the

objective function can be written as,

log pθ(x|y) ≥ LCVAE(φ, θ;x,y) (2)
= Eqφ(z|x,y) [log pθ(x|z,y)]

−KL [qφ(z|x,y)‖pθ(z|y)] .

Note that the KL-divergence is between qφ(z|x,y) and
pθ(z|y), where both the distributions are now conditioned
on y. See Fig. 1b for the generative and recognition models
of a CVAE. In this work, our CVAE is conditioned on pose,
as detailed in the subsequent section.

Conditional-VAEGANs. Note that by the factorisation
of the generative model, VAEs necessitate the specification
of an explicit likelihood function pθ(x|z), which can often
be difficult. GANs on the other hand attempt to sidestep
this requirement by learning a surrogate to the likelihood
function. Here, the generative model pθ(x, z), viewed as a
mappingG : z 7→ x, is setup in a two-player minimax game
with a “discriminator” D : x 7→ {0, 1}, whose goal is to
correctly identify if a data point x came from the generative
model pθ(x, z) or from the true data distribution p(x). Such
objective is defined as

LGAN(D,G) = Ep(x) [logD(x)]

+Epθ(z) [log(1−D(G(z)))] . (3)

Crucially, learning a customised approximation to the like-
lihood can result in a much higher quality of generated data,
particularly for the visual domain [14]. Thus, bringing to-
gether these two different approaches, similarly to [2, 19],
our single objective combines both, the CVAE and the GAN
objectives, directly as

L = LCVAE + LGAN. (4)

4. Our Approach
Considering the previous section, in our Conditional-

DGPose model we define x to be a fully observable random
variable correspondent to a RGB image. The random vari-
able z is unobservable and it corresponds to all latent factors
that affect the generation of an image, except for the body
pose of the person in it. We may refer to z as appearance,
yet it is an over simplified definition. As to the body pose,
it is represented by the interpretable and fully observable
random variable y. Following, we detail our method.

4.1. Conditional-DGPose

We have extensively tested several variations of deep
architectures, culminating with the one shown in Fig. 2.
On the latter, all the probability distributions qφ(z|x,y),
pθ(x|z,y) and pθ(z|y), as well as the discriminator cor-
respond to deep CNN modules. Implementation details are
provided in Tab. 4, Sec. A (Appendix). In the rest of this



Figure 2: Conditional-DGPose architecture. Encoder and Decoder are conditioned on the pose y. The Prior module learns the Gaussian distribution
pθ(z|y), which is used to regularize the Gaussian distribution qφ(z|x,y) by the KL-divergence loss. The sampling of the appearance z, which is the
Decoder input, is done using the reparametrization trick [17]. The L1-norm and the Discriminator losses are computed over the reconstructed G(y, z) and
the original x images. G denotes Generator (see Eq.3).

section, we describe training and testing phases. However,
we start following detailing the adopted pose representa-
tion, as it sets the basis for understanding the other topics in
the section.

4.1.1 Pose Representation

It is not evident whether a sparse 2D vector representa-
tion would be capable of conveying the spatial informa-
tion required for reconstructing realistic natural images,
taking into account the human body pose. In fact, re-
lated work suggest the opposite [20, 25]. On the other
hand, the mapping of 2D joints positions to heatmaps has
shown to be very effective on several pose estimation ap-
proaches [3, 4, 27, 35, 40]. After experimental evaluation
(see Sec. 5.1), we have followed [4], such that our heatmap
representation consists of P body elements, in a way that
y ∈ RP×H×W , where H and W are the heatmaps’ height
and width, respectively. As illustrated in Fig. 3, P =
J + R + B, where J stands for joints, R for rigid parts and
B for body. Each body element p is represented using a
2D Gaussian around its centre µp = (ip, jp), with diagonal

covariance matrix Σp = Rp

[
σ2
p,i 0

0 σ2
p,j

]
R>p , computed as

follows:
Joints. Since joints have a limited spatial extent, they

are modelled as isotropic Gaussians that are centred at the
ground-truth joint location and have a small standard devi-
ation (e.g. σp,i = σp,j = 1.5 pixel for a 64× 64 heatmap).

Rigid Parts. The centre µp of a rigid part p is defined as
the mean point of the centres µk and µl of the joints it con-
nects. The Gaussian representing the rigid part is aligned
with the line connecting µk and µl. σp,i is proportional to
|µk − µl| and σp,j = κpσp,i, where κp is a part-specific
ratio, inspired by anthropometric measurements.

Body. The body centre is the mean of the annotated
joints. The principal component analysis (PCA) of the
joints’ positions gives the orientation of the body in the im-
age plane. σp,i and σp,j are proportional to the distance
between the extreme projections of the joint onto, respec-
tively, the principal and secondary axes of variation.

Figure 3: Pose representation. 24 heatmaps (14 from the annotated joints,
9 corresponding to rigid parts and 1 corresponding to the whole body).
Right, left and central body parts are represented by colours green, blue
and red, respectively, in the person-centric representation. Heatmaps of
the same kind are gathered and superimposed on a black background to
facilitate visualization.

4.1.2 Training

The recognition (encoder) and the generative (decoder) net-
works conditioned on pose y are defined by qφ(z|x,y) and
pθ(x|z,y), respectively. In practice, the Gaussian heatmap
labels (conditioning pose) are concatenated to the corre-
spondent input image x at the encoder’s 1st layer; and con-
catenated to z at the decoder’s 7th layer (see Tab. 4, Sec. A).
In both layers, the feature maps match the heatmaps dimen-
sions. This design option was particularly important for
the decoder, since the heatmaps effectively guided the at-
tention [21] of the network towards the position and area
of body parts, improving reconstructions. Additionally, the
heatmap labels y alone are the input for the prior module,
which learns the distribution pθ(z|y). Finally, the recon-
structed image denoted byG(y, z) and the training image x
are used as input of the discriminator module, which learns



to distinguish the real from the reconstructed images.
Following Sec. 3, the loss function L = LCVAE + LGAN

(Eq. 4) minimized during training is composed of: i) re-
construction loss L1-norm(x, G(y, z)), between the input
image x and the reconstruction G(y, z); ii) the closed-
form KL-divergence KL [qφ(z|x,y)‖pθ(z|y)], between the
recognition and the prior Gaussian distributions, respec-
tively, qφ(z|x,y) and pθ(z|y); and iii) the discriminator
cross-entropy loss LGAN (Eq. 3).

4.1.3 Testing

Due to the inherent versatility of generative models, our ar-
chitecture may be employed in different ways, according to
the intended task. Thus, the testing stage is divided into
reconstruction, pose-transfer and sampling.

Reconstruction and Pose-transfer. For these two proce-
dures, since x and y are given, neither the prior module nor
the discriminator are employed. For reconstruction, when
an image x and its corresponding pose y are given as input,
the reconstructed image G(y, z) is obtained as the decoder
output (see Fig. 5). On the other hand, for pose-transfer,
when x is used as input along with a different target pose
ytarget, the person in the reconstructed image will keep
the appearance of x, along with the body pose defined by
ytarget (see Fig. 6).

Sampling. Here, neither the encoder module nor the dis-
criminator are employed. Moreover, as expected, no RGB
image is given as input. Instead, only a conditioning pose
y is given as the input to the prior module, which defines
pθ(z|y). From this prior distribution, the latent appearance
z is sampled and used as input of the decoder network. In
this manner, for a given pose, different appearances can be
randomly generated from the learned model (see Fig. 7).

5. Experiments and Discussion
We evaluate our Conditional-DGPose architecture on

two datasets, the Human3.6M [10] and the Chictopi-
aPlus [20]. The following parameters were commonly
adopted through all experiments: Adam optimizer [15] with
learning rate equal to 10−4; weight decay of 5× 10−4; net-
work weights initialized randomly for fully-connected lay-
ers and with robust initialization [8] for convolutional and
transposed-convolutional layers. We crop an image area
keeping the person of interest in the central position. Images
were normalized to present zero-mean and unit-variance
and no other form of data augmentation or preprocessing
was employed. Implementation was done using the Caffe
framework [13] and the experiments ran in a NVIDIA Ti-
tan X. Following we describe in detail the evaluations per-
formed with each one of the datasets.

5.1. Human3.6M

The Human3.6M dataset [10] contains 3.6 million im-
ages acquired by recording 5 female and 6 male actors per-
forming a diverse set of motions and poses corresponding
to 15 activities, under 4 different viewpoints. We follow the
standard protocol and use sequences of two actors as our
test set, while the rest of the data is used for training. A
subset of 14 (out of 32) body joints represented by their 2D
image coordinates is adopted as ground-truth data, while
minor body parts are neglected (e.g. fingers). Due to the
high frequency of the video acquisition (50Hz), out of im-
ages from all 4 cameras, we subsample frames in time, pro-
ducing subsets for training and test, with 317,989 and 1,280
images, respectively. The images, with original resolution
of 1000× 1000 pixels, are cropped to 64× 64 and grouped
in mini-batches of 64 samples.

The benchmark presents images in a controlled environ-
ment, thus its is adopted as an initial dataset for a qualitative
evaluation. We extensively tested different pose representa-
tions and architectures on this dataset. Such experiments
supported and guided our design options towards the use
of heatmaps instead of 2D pose vectors, since reconstruc-
tions were better in the former case, as shown in Fig. 4
and Tab. 1; as well as towards the use of residual blocks
in our encoders [23], which have improved our reconstruc-
tions. On the other hand, we have not observed benefits of
using residual blocks in the decoder.

Finally, as part of our initial qualitative evaluations, we
have tested our Conditional-DGPose on the three tasks men-
tioned in Sec. 4.1.3, namely reconstruction, pose-transfer
and sampling. Results are illustrated, respectively, in
Figs. 5, 6 and 7.

Figure 4: Reconstructed images, obtained with 2D vector versus heatmap
representations. Extended versions have rigid parts and body in addition
to the joints. We highlight the difficulty for capturing the spatial extend of
some body parts, particularly extremities far from the torso, when the vec-
tor representations are adopted. In this example, the use of joints’ heatmaps
is already sufficient to improve the reconstruction, however the extended
version (with rigid parts and body) makes the model more robust to more
complex poses.

5.2. ChictopiaPlus

The ChictopiaPlus dataset [20] is an extension of the
Chictopia dataset [22]. It augments the original per-pixel
annotations for body parts with pose annotation [9], 3D



Pose representation L1-Norm
Vector (14 joints) 14.52
Vector-Extended (28 joints) 13.91
Heatmaps (14 joints) 13.55
Heatmaps-Extended
x (14 joints + 9 rigid parts + whole body) 13.41

Table 1: Average reconstruction errors obtained with our architecture using
L1-norm on our Human3.6M test set.

Figure 5: Reconstruction. From left to right: original image (64 × 64),
original pose and reconstructed image. The pose is illustrated with a skele-
ton to facilitate visualization, even though we use the heatmap representa-
tion.

Figure 6: Pose-transfer. From left to right: original image (64 × 64),
target pose (from Fig. 5) and reconstructed image, in which the target pose
has been transfered yet keeping the appearance of the original image. The
target pose is used as a conditioner in the generation of the reconstructed
image. The pose is illustrated with a skeleton to facilitate visualization,
even though we use the heatmap representation.

shape [24] and facial segmentation. In contrast to the Hu-
man3.6M dataset, in which each actor wears always the
same outfit, it contains 23, 011 training, 2, 913 validation
and 2, 873 test images of segmented people (without back-
ground) dressed in a great variety of clothes. All the images
have resolution of 286× 286 pixels.

We employ this benchmark to compare our approach
with the closest related work in the literature, the ClothNet-
body by Lassner et al. [20]. In order to do so, we use the
trained models made publicly available by the ClothNet-
body authors. We perform quantitative and qualitative com-
parisons, detailed below, showing that we outperform [20]
w.r.t. image quality and body pose reconstructions.

Quantitative Results. Quantitative evaluation of gener-
ative models is inherently difficult [34] and usually a great
deal of emphasis is placed on qualitative evaluation of re-
constructed (generated) samples. Since our model explic-
itly represent appearance and body pose as separate vari-
ables, we evaluate the two independently with appropriate
metrics. Image quality is evaluated using the standard Peak
Signal-to-Noise Ratio (PSNR) and the Structural Similarity
Index (SSIM) [39] metrics. However, such metrics do not
explicitly evaluate the generated poses. Hence, we intro-

Figure 7: Sampling. Random samples of people given pose. As the two
axis show, pose and appearance can be independently manipulated. The
pose is illustrated with a skeleton to facilitate visualization, even though
we use the heatmap representation. Images have 64× 64 pixels.

duce the use of the Percentage of Correct Keypoints (PCK)
metric [42] for this purpose. The PCK computes the per-
centage of 2D joints correctly located by a pose estimator,
given the ground-truth and a normalized distance threshold
multiplied by the size of the person’s torso.

To employ the PCK in the evaluation of the recon-
structed poses, we use an off-the-shelf human pose estima-
tor [27], and initially estimate all poses in the original test
set. For our purpose, we assume that these estimations are
the ground-truth poses of the test set. Subsequently, we ap-
ply the same discriminative estimator over the correspond-
ing reconstructed images, generated by the generative mod-
els. Thus, we assume that any degradation in the PCK met-
ric is caused by imperfections on the reconstructed images,
since a PCK score of 100% would correspond to having all
the estimated joints, in the original and in the reconstructed
images, at the same locations, up to the distance threshold.
Related works do not evaluate the accuracy of the generated
poses directly but only the overall reconstruction quality ei-
ther by using standard SSIM [25] or the IoU based score,
which is specific to the setup of [20], based on reconstruc-
tion of segmentation masks. In summary, our PCK met-
ric evaluation measures reconstructions accuracy explicitly
considering the generated poses.

Regarding the PCK metric, our model reports 95.14% of
accuracy, with PCK score at 0.5, and outperforms [20] by
a large margin, which reports 70.89%, as shown is Fig. 8.
Moreover, our approach also outperforms [20] w.r.t. the im-



age quality, as can be seen in Tab. 2, which reports the
PSNR and the SSIM scores for both methods. The results
demonstrate good quality of reconstructions w.r.t. the hu-
man pose, suggesting that our Conditional-DGPose model
benefits from the single-stage end-to-end approach, in con-
trast to the multiple stages of training and testing in [20].
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Figure 8: ChictopiaPlus. The PCK scores over reconstructed images of
our Conditional-DGPose (blue) significantly outperforms the ClothNet-
body [20] (red). Detection rate represents the percentage of joints cor-
rected relocated in the reconstructed images.

PSNR SSIM
Conditional-DGPose (ours) 21.33 0.88

ClothNet-Body [20] 16.89 0.82

Table 2: Quantitative evaluation w.r.t. image quality. Our method outper-
forms [20] considering both metrics, the PSNR and the SSIM.

Qualitative results. In Fig. 9, we present qualitative
sampling results from our model to demonstrate that it gen-
erates realistic images with accurate poses. In addition to
that, in Fig. 10 (Sec. A), we compare images generated
by the Conditional-DGPose to the ones by the ClothNet-
body [20]. We note that, while both approaches are capable
of generating people in the required poses, our approach
performs better in terms of appearances, which are much
closer to the original in our case. Even though both meth-
ods were able to generate visually good images and poses,
the Conditional-DGPose was more accurate in capturing the
locations of the body parts, particularly regarding limbs’ ex-
tremities. This shows that even without the image-to-image
translation network our method was able to generate realis-
tic images.

(a) (b)
Figure 9: (a) Random samples from the Conditional-DGPose model for
a fixed pose (leftmost image). (b) Random samples from the ClothNet-
body [20] for a fixed pose (leftmost image), which are rendered as natural
images by an image-to-image translation network [11] over the segmenta-
tion masks sampling.

6. Conclusions
In this paper, we have introduced the Conditional-

DGPose, a conditional-VAEGAN deep generative model of
people in natural images. Our model is conditioned on 2D
human pose, allowing the disentangled representation of
body posture and other factors of variation in the images.
In contrast to other approaches in the literature, we model
the problem in the high-dimensional image space. This al-
lows us to generate image samples conditioned on human
pose, in opposition to other methods which can only sam-
ple in a low-dimensional space (e.g. pose vectors or seg-
mentation masks), relying on image-to-image translations
for mappings to the image space. We have evaluated sev-
eral design options and performed experiments specifically
in the context of human pose. In the adopted benchmarks,
by the generation of realistic images, our methodology has
shown the capability of learning the underlying factors that
jointly contribute to the generation of a human body in RGB
images. We have successfully validated our model on the
Human3.6M dataset and obtained state-of-the-art results in
the ChictopiaPlus benchmark, outperforming the closest re-
lated method in the literature, the ClothNet-body architec-
ture [20].

A. Appendix
Following, we show reconstructions on ChictopiaPlus

(Fig. 10) and provide implementation details (Tabs. 3
and 4). Input heatmaps’ channels correspond to: i) 14 joints
(head top, neck; right shoulder, elbow, wrist, hip, knee and
ankle; left shoulder, elbow, wrist, hip, knee and ankle; ii) 9
rigid parts (head; right upper arm, lower arm, upper leg and
lower leg; left upper arm, lower arm, upper leg, and lower
leg; iii) 1 body.

RESIDUAL Layer
Input: previous layer output
Layer Definition
1 CONV-(N512, K3, S1, P1), BN, ReLU
2 CONV-(N512, K3, S2, P1), BN
3 SUM(conv2 output, previous layer output)

Table 3: Architecture of the residual block employed in the Conditional-
DGPose encoder.



Figure 10: Reconstructions. In each row we have, respectively: original
image (256 × 256), Conditional-DGPose and ClothNet-body [20] recon-
structions. Notice, that the images generated by our model are much closer
to the originals in terms of appearance (colours). Moreover, in general, the
Conditional-DGPose captures the body parts’ locations more accurately,
which results in better quantitative results w.r.t. the pose reconstruction,
shown in Fig. 8. Limbs’ extremities are frequently lost in the ClothNet-
body [20] reconstructions. Best viewed if zoomed in digital version.

Encoder
Input: images(batch size=64, channels=3, height=64, width=64)
labels(batch size=64, channels=24, height=64, width=64);

Layer Definition
1 CONCAT(image, labels)
2 CONV-(N64, K7, S2, P1), LeakyReLU(0.01)
3 CONV-(N128, K3, S2, P1), BN, ReLU
4 CONV-(N256, K3, S2, P1), BN, ReLU
5 CONV-(N512, K3, S2, P1), BN, ReLU
6 CONV-(N512, K3, S2, P1), BN, ReLU
7 CONV-(N512, K3, S2, P1), BN, ReLU
8 RESIDUAL-(N512, K3, S1, P1)
9 RESIDUAL-(N512, K3, S1, P1)
10 RESIDUAL-(N512, K3, S1, P1)
11 RESIDUAL-(N512, K3, S1, P1), SIGMOID
µ FC-(N100)
σ FC-(N100)

Prior
Input: labels(batch size=64, channels=24, height=64, width=64)

Layer Definition
1 CONV-(N128, K4, S2, P1), LeakyReLU(0.2)
2 CONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
3 CONV-(N512, K4, S2, P1), BN, LeakyReLU(0.2)
4 CONV-(N1024, K4, S2, P1), BN, LeakyReLU(0.2)
5 CONV-(N100, K4, S1, P0), SIGMOID
µprior FC-(N100)
σprior FC-(N100)

Decoder
Input: sample(batch size=64, channels=100);

Layer Definition
1 RESHAPE(batch size=64, channels=100, height=1, width=1)

2 DECONV-(N512, K4, S1, P0), BN, LeakyReLU(0.2)
3 DECONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
4 DECONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
5 DECONV-(N64, K4, S2, P1), BN, LeakyReLU(0.2)
6 DECONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
7 CONCAT(deconv6 output, labels)
8 CONV-(N512, K5, S1, P2), BN, LeakyReLU(0.2)
9 CONV-(N256, K5, S1, P2), BN, LeakyReLU(0.2)
10 CONV-(N128, K5, S1, P2), BN, LeakyReLU(0.2)
11 CONV-(N128, K5, S1, P2), BN, LeakyReLU(0.2)
G(y, z) CONV-(N3, K5, S1, P2), TANH

Discriminator
Input: decoder output(batch size=64, channels=3, height=64, width=64);

images(batch size=64, channels=3, height=64, width=64)
Layer Definition
1 CONV-(N64, K4, S2, P1), LeakyReLU(0.2)
2 CONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
3 CONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
4 CONV-(N512, K4, S2, P1), BN, LeakyReLU(0.2)
5 CONV-(N1, K4, S1, P0), SIGMOID

Table 4: Conditional-DGPose architecture for 64 × 64 input images. We
use the following abbreviations: N for number of kernels/neurons, K for
kernel size, S for stride and P for zero padding. Concerning the lay-
ers, CONCAT means concatenation layer, CONV means convolutional
layer, BN means batch normalization layer with running average coef-
ficient β = 0.9 and learnable affine transformation, DECONV means
transpose convolutional layer, FC means fully connected layer, SUM cor-
responds to element-wise sum layer and RESIDUAL denotes a residual
block, detailed at Tab. 3. The additional layers can be clearly understood.
Finally, particular parameters for specific layers are defined between paren-
thesis after the layers’ names.
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