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Abstract. Deep generative modelling for human body analysis is an
emerging problem with many interesting applications. However, the la-
tent space learned by such models is typically not interpretable, result-
ing in less flexible models. In this work, we adopt a structured semi-
supervised approach and present a deep generative model for human
body analysis where the body pose and the visual appearance are disen-
tangled in the latent space. Such a disentanglement allows independent
manipulation of pose and appearance, and hence enables applications
such as pose-transfer without being explicitly trained for such a task. In
addition, our setting allows for semi-supervised pose estimation, relax-
ing the need for labelled data. We demonstrate the capabilities of our
generative model on the Human3.6M and on the DeepFashion datasets.

Keywords: Deep generative models · Variational autoencoders · Semi-
supervised learning · Human pose estimation · Analysis-by-synthesis.

1 Introduction

Human-body analysis has been a long-standing goal in computer vision, with
many applications in gaming, human-computer interaction, shopping and health-
care [1, 29, 30, 37]. Typically, most approaches to this problem have focused on
supervised learning of discriminative models [4–6, 41], to learn a mapping from
given visual input (images or videos) to a suitable abstract form (e.g. human
pose). While these approaches do exceptionally well on their prescribed task, as
evidenced by performance on pose estimation benchmarks, they fall short due
to: a) reliance on fully-labelled data, and b) the inability to generate novel data
from the abstractions.

The former is a fairly onerous requirement, particularly when dealing with
real-world visual data, as it requires many hours of human-annotator time and
effort to collect. Thus, being able to relax the reliance on labelled data is a highly
desirable goal. The latter addresses the ability to manipulate the abstractions
directly, with a view to generating novel visual data; e.g. moving the pose of an
arm results in generation of images or videos where that arm is correspondingly
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(a) Generating different appearances (c) Pose estimation and
pose-transfer

(b) Generating different poses (d) Direct manipulation

Fig. 1. Sampled results from our deep generative model for natural images of people.
(a) For a given pose (first image), we show some samples of appearance. (b) For a
given appearance (first image), samples of different poses. (c) For an estimated pose
(first image) and an estimated appearance (second image), we show a generated sample
combining the pose of the first image with the appearance of the second. (d) For a given
pose and appearance (first image), by the direct manipulation of pose, we can modify
the body size, while the appearance is kept the same.

displaced. Such generative modelling, in contrast to discriminative modelling, en-
ables an analysis-by-synthesis approach to human-body analysis, where one can
generate images of humans in combinations of poses and clothing unseen during
training. This has many potential applications. For instance, it can be used for
performance capture and reenactment of RGB videos, as already possible for
faces [34], and still incipient for human bodies. It can also be used to generate
images in a user specified pose to enhance datasets with minimal annotation ef-
fort. Such an approach is typically tackled using deep generative models (DGMs)
[9, 18, 27] – an extension of standard generative models that incorporate neural
networks as flexible function approximators. Such models are particularly effec-
tive in complex perceptual domains such as computer vision [19], language [25],
and robotics [40], effectively delegating bottom-up feature learning to neural net-
works, while simultaneously incorporating top-down probabilistic semantics into
the model. They solve both the deficiencies of discriminative approach discussed
above by a) employing unsupervised learning, thereby removing the need for
labels, and b) embracing a fully generative approach.

However, DGMs introduce a new problem – the learnt abstractions, or la-
tent variables, are not human-interpretable. This lack of interpretability is a by-
product of the unsupervised learning of representations from data. The learnt
latent variables, typically represented as some smooth high-dimensional mani-
fold, do not have consistent semantic meaning – different sub-spaces in this
manifold can encode arbitrary variations in the data. This is particularly un-
suitable for our purposes as we would like to view and manipulate the latent
variables, e.g. the body pose.

In order to ameliorate the aforementioned issue, while still eschewing reliance
on fully-labelled data, we rely on the structured semi-supervised variational au-
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toencoder (VAE) framework [17, 32]. Here, the model structure is assumed to be
partially specified, with consistent semantics imposed on some interpretable sub-
set of the latent variables (e.g. pose), and the rest is left to be non-interpretable,
although referred by us here as appearance. Weak (semi) supervision acts as a
means to constrain the pose latent variables to actually encode the pose. This
gives us the full complement of desirable features, allowing a) semi-supervised
learning, relaxing the need for labelled data, b) generative modelling through
stochastic computation graphs [28], and c) interpretable subset of latent vari-
ables defined through model structure.

In this work, we introduce a structured semi-supervised VAEGAN [20] ar-
chitecture, Semi-DGPose, in which we further extend previous structured semi-
supervised models [17, 32] with a discriminator-based loss function [9, 20]. We
show some results on human pose in Fig. 1. It is formulated in a principled,
unified probabilistic framework. To our knowledge, it is the first structured semi-
supervised deep generative model of people in natural images, directly learned
in the image space. In contrast to previous work [21, 23, 24, 31, 38], it directly
enables: i) semi-supervised pose estimation and ii) indirect pose-transfer across
domains without explicit training for such a task, both of which are tested and
verified by experimental evidence.

In summary, our main contributions are: i) a real-world application of struc-
tured semi-supervised deep generative model of natural images, separating pose
from appearance in the analysis of the human body; ii) a quantitative and qual-
itative evaluation of the generative capabilities of such model; and iii) a demon-
stration of its utility in performing semi-supervised pose estimation and indirect
pose-transfer.

2 Preliminaries
Deep generative models (DGMs) come in two broad flavours – Variational Au-
toencoders (VAEs) [18, 27], and Generative Adversarial Networks (GANs) [9]. In
both cases, the goal is to learn a generative model pθ(x, z) over data x and latent
variables z, with parameters θ. Typically the model parameters θ are represented
in the form of a neural network.

VAEs learn the parameters θ that maximise the marginal likelihood (or ev-
idence) of the model denoted as pθ(x) =

∫
pθ(x|z)pθ(z)dz. They introduce a

conditional probability density qφ(z|x) as an approximation to the unknown
and intractable model posterior pθ(z|x), employing the variational principle in
order to optimise a surrogate objective LVAE(φ, θ;x), called the evidence lower
bound (ELBO), as

log pθ(x) ≥ LVAE(φ, θ;x) = Eqφ(z|x)
[
log

pθ(x, z)

qφ(z|x)

]
. (1)

The conditional density qφ(z|x) is called the recognition or inference distribution,
with parameters φ also represented in the form of a neural network.

To enable structured semi-supervised learning, one can factor the latent vari-
ables into unstructured or non-interpretable variables z and structured or in-
terpretable variables y without loss of generality [17, 32]. For learning in this
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framework, the objective can be expressed as the combination of supervised
and unsupervised objectives. Let Du and Ds denote the unlabelled and la-
belled subset of the dataset D, and let the joint recognition network factorise
as qφ(y, z|x) = qφ(y|x)qφ(z|x,y). Then, the combined objective summed over
the entire dataset corresponds to

LSS(θ, φ;D) =
∑

xu∈Du

Lu(θ, φ;xu) + γ
∑

(xs,ys)∈Ds

Ls(θ, φ;xs,ys), (2)

where Lu and Ls are defined as

Lu(θ, φ;xu) = LVAE(θ, φ;xu), (3)

Ls(θ, φ;xs,ys) = Eqφ(z|xs,ys)
[
log

pθ(xs, z|ys)
qφ(z|xs,ys)

]
+ α log qφ(ys|xs). (4)

Here, the hyper-parameter γ (Eq. 2) controls the relative weight between the
supervised and unsupervised dataset sizes, and α (Eq. 4) controls the relative
weight between generative and discriminative learning.

Note that by the factorisation of the generative model, VAEs require the
specification of an explicit likelihood function pθ(x|z), which can often be dif-
ficult. GANs [9] on the other hand, attempt to sidestep this requirement by
learning a surrogate to the likelihood function, while avoiding the learning of a
recognition distribution. Here, the generative model pθ(x, z), viewed as a map-
ping G : z 7→ x, is setup in a two-player minimax game with a “discrimina-
tor” D : x 7→ {0, 1}, whose goal is to correctly identify if a data point x came
from the generative model pθ(x, z) or the true data distribution p(x). Such ob-
jective is defined as

LGAN(D,G) = Ep(x) [logD(x)] + Epθ(z) [1− logD(G(z))] . (5)

In fact, in our structured model, generation is defined as a function of pose and
appearance as G(y, z). Crucially, learning a customised approximation to the
likelihood can result in a much higher quality of generated data, particularly for
the visual domain [15].

A more recent family of DGMs, VAEGANs [20], bring together these two
different approaches into a single objective that combines both the VAE and
GAN objectives directly as

L = LVAE + LGAN. (6)

This marries better the likelihood learning with the inference-distribution learn-
ing, providing a more flexible family of models.

3 Semi-DGPose Network

Our structured semi-supervised VAEGAN model consists of two tasks: i) learn-
ing of a recognition network (Encoder) estimating pose y and appearance z from



A Semi-supervised Deep Generative Model for Human Body Analysis 5

Fig. 2. Semi-DGPose architecture. The Encoder receives x as input. The KL-
divergence losses between the Gaussian distribution qφ(y, z|x) and the weak Gaussian
priors p(y) and p(z) works as a regulariser for unsupervised training samples (see
Eq. 3). The sampling of appearance and pose is done using the reparametrization
trick [18] and propagated to the Decoder. For the supervised training (not shown above
for simplicity, see Eq. 4), a regression loss between the estimated pose and the pose
ground-truth label substitutes the KL-divergence over the pose distribution. In both,
supervised and unsupervised training, the low-dimensional pose vector y is mapped to
a heatmap representation by the Mapper module. The L1-norm and the Discriminator
losses are computed over the reconstructed G(y, z) and the original x images. G denotes
Generator (see Eq.5).

a given RGB image x and ii) learning of a generative network (Decoder) com-
bining pose and appearance to generate corresponding RGB images. Overview
of our model is shown in Fig. 2. In our model, Eq. 2 is used the aforementioned
tasks, while Eq. 5 learns to discriminate between real and generated images.
In contrast to the standard VAEGAN objective (Eq. 6), the structured semi-
supervised VAEGAN objective is given by

L = LSS + LGAN. (7)

Pose Representation and the Mapper Module. Pose can be represented
either using the 2D (x, y) positions of the joints themselves in vector form, or
using Gaussian heatmaps of the joints, which is a preferred variant successfully
used in many discriminative pose estimation approaches [2, 6, 26, 35, 41]. The
heatmaps y ∈ RP×H×W consists of P channels, each one corresponding to a
distinct body part, where H = 64 and W = 64 are the heatmaps’ height and
width, respectively. As the set of joints are sparse discrete points in the image,
we use heatmaps for J joints, R rigid parts and B = 1 whole body, such that
P = J + R + B (see Appendix A). It covers the entire area of the body in
the image, as in [2]. Our preliminary experiments showed that heatmaps led
to better quality results, in contrast to the vector-based representation. On the
other hand, a low-dimensional representation is more suitable and desirable as a
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latent variable, since human pose lies in a low-dimensional manifold embedded
in the high-dimensional image space [7, 8].

To cope with this mismatch, we introduce the Mapper module, which maps
2D pose-vectors to heatmaps. Ground-truth heatmaps are constructed from man-
ually annotated ground-truth 2D joints labels, by means of a simple weak an-
notation strategy described in [2]. The Mapper module is then trained to map
2D joints to heatmaps, minimizing the L2-norm between predicted and ground-
truth heatmaps. This module is trained separately with the same training hyper-
parameters used for our full architecture, described later in Sec. 4. In the training
of the full Semi-DGPose architecture, the Mapper module is integrated to it with
its weights fixed, since the mapping function has been learned already. As it is
illustrated in Fig. 2, the Mapper allows us to keep a low-dimensional repre-
sentation in the latent space, at the same time that a dense high-dimensional
“spatial” heatmap representation facilitates the generation of accurate images
by the Decoder. As it is fully differentiable, the module allows the gradients to be
backpropagated normally from the Decoder to the Encoder, when it is required
during the training of the full architecture.

We have extensively tested several architectures of our model. All of its mod-
ules are deep CNNs and their details are in Tabs. A2 and A1 (Sec. A, Appendix).

Training. The terms of Eq. 2 correspond to two training routines which are
alternately employed, according to the presence of ground-truth labels. In the
unsupervised case, when no label is available, it is similar to the standard VAE
(see Eq. 3). Specifically, given the image x, the Encoder estimates the poste-
rior distribution qφ(y, z|x), where both appearance z and pose y are assumed
to be independent given the image x. Then, pose and appearance are sam-
pled from the posterior, while the KL-divergences between the posterior and
the prior distributions, KL[qφ(y|x)|p(y)] and KL[qφ(z|x)|p(z)], are used as reg-
ularisers. The samples y and z are passed through the Decoder to generate a
reconstructed image. Finally, the unsupervised loss function minimized during
training is composed of the L1-norm reconstruction loss, the KL-divergences and
the cross-entropy Discriminator loss. In the supervised case, when the pose la-
bel is available, the KL-divergence between the posterior pose distribution and
the pose prior, KL[qφ(y|x)|p(y)], is replaced with a regression loss between the
estimated pose and the given label (see Eq. 5). Now, only the appearance z is
sampled from the posterior distribution and passed to the Decoder, along with
the ground-truth pose label. Finally, the supervised loss function minimized dur-
ing training is composed of the L1-norm reconstruction loss, the KL-divergence
over the appearance distribution, the regression loss over the pose vector and the
cross-entropy Discriminator loss. In this case, gradients are not backpropagated
from the Decoder to the Encoder, through the pose posterior distribution, since
pose was not estimated. In both unsupervised and supervised cases, the Mapper
module, which is trained offline, is used to map the 2D pose-vector in the latent
space to a dense heatmap representation, as illustrated in Fig. 2.
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Fig. 3. Reconstruction at test time.

Reconstruction. At test time,
only an image x is given as in-
put, and the reconstructed image
G(y, z) is obtained from the De-
coder. In the reconstruction pro-
cess, direct manipulation of the pose representation y allows image generations
with varying body pose and size while the appearance is kept the same (see
Fig. 8, Sec. 4.1).

Fig. 4. Indirect pose-
transfer at test time.

Indirect Pose-transfer. Our method allows us to
do indirect pose-transfer without explicit training for
such task. In this case, i) an image x1 is first passed
through the Encoder network, from which the target
pose y1 is kept. ii) In the second step, another image
x2 is propagated through the Encoder, from which the
appearance encoding z2 is kept. iii) Finally, z2 and
y1 are jointly propagated through the Decoder, and
an image x3 is reconstructed, containing a person in
the pose y1 estimated from the first image, but with
the appearance z2 defined by the second image. This
is a novel application that our approach enables; in
contrast to prior art, our network neither rely on any
external pose estimator nor on conditioning labels to
perform pose-transfer (see Fig. 13, Sec. 4.1).

Fig. 5. Sampling at test
time.

Sampling. When no image is given as input, we can
jointly or separately sample pose y and appearance
z from the posterior distribution. They may be sam-
pled at the same time or one may be kept fixed while
the other distribution is sampled. In all cases, the en-
codings are passed through the Decoder network to
generate a corresponding RGB image.

Fig. 6. Pose estimation at
test time.

Pose Estimation. One of the main differences be-
tween our approach and prior art is the ability of our
model to estimate human-body pose as well. In our
model, given an input image x, it is possible to per-
form pose estimation by regressing to the pose rep-
resentation vector y. In this case, the appearance en-
coding z is disregarded and the Decoder, Mapper and
Discriminator networks are not used.

4 Experiments and Discussion

In this section, we present the datasets, metrics and training hyper-parameters
used in our work. Finally, quantitative and qualitative results show the effective-
ness and novelty of our Semi-DGPose architecture.
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Human3.6M Dataset. Human3.6M [11] is a widely used benchmark for hu-
man body analysis. It contains 3.6 million images acquired by recording 5 female
and 6 male actors performing a diverse set of motions and poses corresponding
to 15 activities, under 4 different viewpoints. We followed the standard protocol
and used sequences of 2 out of 11 actors as our test set, while the rest of the data
was used for training. We use a subset of 14 (out of 32) body joints represented
by their (x, y) 2D image coordinates as our ground-truth data, neglecting mi-
nor body parts (e.g. fingers). Due to the high frequency of the video acquisition
(50Hz), there is a considerable level of practically redundant images. Thus, out
of images from all 4 cameras, we subsample frames in time, producing subsets for
training and test, with 317, 989 and 1, 280 images, respectively. All the images
have resolution of 1000× 1000 pixels.

DeepFashion Dataset The DeepFashion dataset (In-shop Clothes Retrieval
Benchmark) [22] consists of 52,712 images of people in a variety of clothing and
poses. We follow [23], using their joints’ annotations obtained with an off-the-
shelf pose estimator [5], and divide the dataset into training (44,950 images)
and test (6,560 images) subsets. Images with wrong pose estimations were sup-
pressed, with all original images having 256× 256 pixels. Note, we aim to learn
a complete generative model of people in natural images, which is significantly
more complex, compared to models focusing on a particular task, such as pose-
transfer. For this reason, we do not restrict our training set to pairs of images
of the same person and use individual images, in contrast to [23, 31].

Metrics. Since our model explicitly represents appearance and body pose as
separate variables, we evaluate its performance with respect to two different as-
pects: i) image quality of reconstructions, evaluated using the standard Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [39] met-
rics and ii) accuracy of pose estimation, obtained by the Semi-DGPose model,
measured using the Percentage of Correct Keypoints (PCK) metric [43], which
computes the percentage of 2D joints correctly located by a pose estimator, given
the ground-truth and a normalized distance threshold corresponding to the size
of the person’s torso.

Training Parameters. All models were trained with mini-batches consisting
of 64 images. We used the Adam optimizer [16] with initial learning rate set to
10−4. The weight decay regulariser was set to 5 × 10−4. Network weights were
initialized randomly for fully-connected layers and with robust initialization [10]
for convolutional and transposed-convolutional layers. Except when stated dif-
ferently, for all images and all models, we used a 64× 64 pixel crop, centring the
person of interest. We did not use any form of data augmentation or preprocess-
ing except for image normalisation to zero mean and unit variance. All models
were implemented in Caffe [14] and all experiments ran on an NVIDIA Titan X
GPU.

4.1 Semi-DGPose Results

Here we evaluate our Semi-DGPose model on the Human3.6M [11] and on the
DeepFashion [22] datasets. The Human3.6M is well-suited for pose estimation
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evaluation, since it has joints’ annotations obtained in studio by mean of an
accurate motion capture system. We show quantitative and qualitative results,
focusing particularly on pose estimation and on indirect pose transfer capabil-
ities, described later in this section. We show qualitative experiments on the
DeepFashion, comparing reconstructions with original images. Our experiments
and results show the effectiveness of the Semi-DGPose method.

Results on Human3.6M. To evaluate the efficacy of our model, we perform
a “relative” comparison. In other words, we first train our model with full su-
pervision (i.e. all data points are labelled) to evaluate performance in an ideal
case and then we train the model with other setups, using labels only for 75%,
50% and 25% data points. Such an evaluation allows us to decouple the efficacy
of the model itself and the semi-supervision to see how the gradual decrease in
the level of supervision affects the final performance of the method on the same
validation set. We first cross-validated the hyper-parameter α which weights the
regression loss (see Eq. 4, in Sec. 2) and found that α = 100 yields the best
results, as shown in Fig. 7b. Following [32], we keep γ = 1 in all experiments
(see Eq. 2, in Sec. 2). In Fig. 7a, we show reconstructed images along with the
heatmap pose representation. When pose representation is directly manipulated
during the reconstruction process, appearance can be kept the same while the
body pose can modified, as shown in Fig.8.
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Fig. 7. (a) Qualitative reconstructions with full supervision. (b) PCK scores for the
cross-validation adjustment of the regression loss weight α.

(a) (b) (c) (d) (e)

Fig. 8. Direct manipulation. Original image (a), followed by reconstructions in
which the person’s height was changed to a percentage of the original, as: (b) 80%, (c)
95%, (d) 105% and (e) 120%. The same procedure may be applied to produce different
changes in the body size and aspect ratio.

We evaluated it across different levels of supervision, with the PSNR and
SSIM metrics and show results in Fig. 9a. We also evaluated the pose estimation
accuracy of the Semi-DGPose model. It achieves 93.85% PCK score, normalized
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at 0.5, in the fully-supervised setup (100% of supervision over the training data).
This pose estimation accuracy is on par with the state-of-the-art pose estima-
tors on unconstrained images [42]. However, since the Human3.6M was captured
in a controlled environment, a standard (discriminative) pose estimator can be
expected to perform better. The overall PCK curves corresponding to each per-
centage of supervision in the training set is shown in Fig. 9b. Note that, even
with 25% supervision, our model still obtains 88.35% PCK score, normalized at
0.5, showing the effectiveness of the semi-supervised approach. Finally, we show
the pose estimation accuracy for different samples in Figure 10. In Fig. 11,

Level of supervision PSNR SSIM

100% 22.27 0.89

75% 21.36 0.86

50% 21.49 0.87

25% 20.06 0.83
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Fig. 9. Quantitative evaluations of Semi-DGPose on Human3.6M: (a) PSNR
and SSIM measures for different levels of supervision, (b) PCK scores for different
levels of supervision. Note that, even with 25% supervision, our Semi-DGPose obtains
88.35% PCK score, normalized at 0.5.

(a) PCK=92.9% (b) PCK=100.0% (c) PCK=96.4% (d) PCK=100.0%

Fig. 10. PCK scores for 100% of supervision, normalized at 0.5, for ground-truth (left)
and prediction (right) pairs, superimposed on the original images. Each pair correspond
to one of the 4 cameras from the Human3.6M dataset.

we show reconstructed images obtained with different levels of supervision. It
allows us to observe how image quality is affected when we gradually reduce
the availability of labels. Following that, we evaluate results on pose estimation
and on indirect pose transfer. Regarding semi-supervised pose estimation,
we complement the previous quantitative evaluation with the results shown in
Fig. 12. We highlight this distinctive capability of our Semi-DGPose generative
model. Again, we aimed to analyse how the gradual decrease of supervision in
the training set affects the quality of pose estimation on the test images. Con-
cerning indirect pose-transfer , as both latent variables corresponding to pose
and appearance can be inferred by the model’s Encoder (recognition network)
at test time, latent variables extracted from different images can be combined in
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a subsequent step, and employed together as inputs for the Decoder (generative
network). The result of that is a generated image combining appearance and
body pose, extracted from two different images. The process is done in three
phases, as illustrated in Fig. 13: i) the latent pose representation y1 is estimated
from the first input image through the Encoder; ii) the latent appearance rep-
resentation z2 is estimated from a second image, also through the Encoder, iii)
y1 and z2 are propagated through the Decoder, and a new image is generated,
combining body pose and appearance, respectively, from the first and second
encoded images. We evaluate qualitatively the effects of semi-supervision over
the indirect pose-transfer in Fig. 14.

(a) (b) (c) (d) (e) (f)

Fig. 11. Semi-DGPose reconstructions: (a) original image, and (b) heatmap pose
representation, followed by reconstructions with different levels of supervision: (c)
100%, (d) 75%, (e) 50%, (f) 25%.

(a) (b) (c) (d) (e)

Fig. 12. Pose estimation. Original image (a), followed by estimations, over the orig-
inal image, with: (b) 100%, (c) 75%, (d) 50% and (e) 25% of supervision.

(a)

(i)

(b)

(ii) (iii)

(c)

(ii) (iii)

(d)

(ii) (iii)

Fig. 13. Indirect pose transfer: (i) the latent target pose representation y1 is es-
timated (Encoder). The pairs (b), (c) and (d), show (ii) the image from which the
latent appearance z2 is estimated (Encoder); (iii) the output image generated as a
combination of y1 and z2 (Decoder). The person’s outfit in the output images (iii) is
approximated to the ones in images (ii), however restricted by the low diversity of out-
fits observed in Human3.6M training data. Backgrounds of images (ii) are reproduced
in the output images (iii) and all them differ from the one in image (i).

Results on DeepFashion. To show the generality of the Semi-DGPose model
we show in Fig. 15 reconstructed images on the DeepFashion dataset. The same
hyper-parameters described before were used in training. Related methods in the
literature [23, 31] focus only on pose-transfer, training on pairs of images from
the same person, which is a simpler task in comparison to ours. Such difference
prevents a direct fair comparison with these methods.
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(a) (b)

(c) (d)

Fig. 14. Indirect pose-transfers with different levels of supervision: (a) 100%; (b) 75%;
(c) 50%; (d) 25%.

5 Related Work
Generative modelling for human body analysis has a long history in computer
vision [13, 33]. However, in the past years, deep generative models have been
far less investigated compared to their discriminative counterparts [4–6, 41]. Re-
cently, Lassner et al. [21] presented a deep generative model based on a CVAE
conditioned on human pose which allowed generating images of segmented people
and their clothing. However, this model does not encode pose using raw image
data but only low dimensional (binary) segmentation masks and an “image-to-
image” transfer network [12] is used to generate realistic images. In contrast,
we learn the generative model directly on the raw image data without the need
of body parts segmentation. A closely related model is introduced in [3], but it
is again a conditional model which does not allow for pose estimation neither
semi-supervision. Difficulty of generating poses and detailed appearance simul-
taneously in an end-to-end fashion is admitted by Ma et al. [23]. In order to
tackle this issue, they proposed a two stage image-to-image translation model.
However, their model does not allow sampling, thus in its essence it is not a
generative model, which is again in contrast to our approach

In a concurrent work to ours, Siarohin et al. [31] improves approach of [23] by
making it single-stage and trainable end-to-end. While this approach is relatively
similar to ours, the key difference is that the human body joints (keypoints) are
given to the algorithm (detected by another off-the-shelf discriminative method)
while our method learns to encode them directly from the raw image data. Hence,
our model allows sampling of different poses independent of appearance. Finally,
Ma et al. [24] proposed a model for learning image embeddings of foreground,
background and pose variables encoded as interpretable variables. However, this
model has to rely on an off-the-shelf pose estimator to perform pose-transfer
but our model can perform pose estimation even in a semi-supervised setting in
addition to image generation. The existing approaches do not have the flexibility
to manipulate pose independently of appearance and they have to be explicitly
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Fig. 15. Semi-DGPose DeepFashion reconstructions with 100% of supervision
during training. Heatmaps are only shown as references, since the only input of the
Semi-DGPose is the original image. At test time, as pose is estimated in the latent
space, discrepancies between the original and reconstructed poses may be observed.
Reconstructed images have 64× 64 pixels. Best viewed if zoomed in digital version.

trained with pairs of images to allow pose transfer. This is in sharp contrast to
our approach, where we learn pose estimation and pose transfer is a by-product.

Apart from this, Walker et al. [38] proposed a hybrid VAEGAN architecture
for forecasting future poses in a video. Here, a low-dimensional pose represen-
tation is learned using a VAE and once the future poses are predicted, they are
mapped to images using a GAN generator. Following [20], we use a discriminator
in our training to improve the quality of the generated images, however, in con-
trast to [20], the latent space of our approach is interpretable which enables us
to sample different poses and appearance. Considering GAN based generative
models, Tulyakov et al. [36] presents a GAN network that learns motion and
content in two separate latent spaces in an unsupervised manner. However it
does not allow an explicit manipulation over the human pose.

6 Conclusions
In this paper we have presented a deep generative model for human pose analysis
in natural images. To this end, we have proposed a structured semi-supervised
VAEGAN approach. Our model allows independent manipulation of pose and
appearance and hence enables applications such as pose-transfer without being
explicitly trained for such a task. In addition to that, the semi-supervised setting
relaxes the need for labelled data. We have systematically evaluated our model
on the Human3.6M and DeepFashion datasets, showing applications such as
indirect pose-transfer and semi-supervised pose estimation.

A Semi-DGPose Architecture
The heatmaps correspond to: i) 14 joints (head top, neck, right{shoulder, elbow,
wrist, hip, knee, ankle}, left{shoulder, elbow, wrist, hip, knee, ankle}); ii) 9 rigid
parts (head, right{upper arm, lower arm, upper leg, lower leg}, left{upper arm,
lower arm, upper leg, lower leg}); iii) 1 whole body position. In the DeepFashion
dataset, extra facial keypoints are used [23].



14 R. de Bem, A. Ghosh, T. Ajanthan, O. Miksik, N. Siddharth and P. Torr

Table A1. Semi-DGPose architecture for 64× 64 input images. Abbreviations: N for
number of kernels/neurons, K for kernel size, S for stride and P for zero padding. CON-
CAT means concatenation layer, CONV means convolutional layer, BN means batch
normalization layer with running average coefficient β = 0.9 and learnable affine trans-
formation, DECONV means transpose convolutional layer, FC means fully connected
layer, SUM corresponds to element-wise sum layer and RESIDUAL denotes a residual
block (Tab. A2). The additional layers can be clearly understood.

Encoder
Input: images(batch size=64, channels=3, height=64, width=64)
Layer Definition
1 CONV-(N64, K7, S2, P1), LeakyReLU(0.01)
2 CONV-(N128, K3, S2, P1), BN, ReLU
3 CONV-(N256, K3, S2, P1), BN, ReLU
4-6 CONV-(N512, K3, S2, P1), BN, ReLU
7-9 RESIDUAL-(N512, K3, S1, P1)
10 RESIDUAL-(N512, K3, S1, P1), SIGMOID
µz FC-(N100)
σz FC-(N100)
µy FC-(N48)
σy FC-(N48)

Mapper
Input: pose vector(batch size=64, channels=48)
Layer Definition
1 RESHAPE(batch size=64, channels=48, height=1, width=1)
2 DECONV-(N512, K4, S1, P0), BN, LeakyReLU(0.2)
3 DECONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
4 DECONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
5 DECONV-(N64, K4, S2, P1), BN, LeakyReLU(0.2)
pose heatmaps DECONV-(N24, K4, S2, P1), SIGMOID

Decoder
Input: sample(batch size=64, channels=100);
pose heatmaps(batch size=64, channels=24, height=64, width=64);
Layer Definition
1 RESHAPE(batch size=64, channels=100, height=1, width=1)
2 DECONV-(N512, K4, S1, P0), BN, LeakyReLU(0.2)
3 DECONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
4 DECONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
5 DECONV-(N64, K4, S2, P1), BN, LeakyReLU(0.2)
6 DECONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
7 CONCAT(deconv6 output, pose heatmaps)
8 CONV-(N512, K5, S1, P2), BN, LeakyReLU(0.2)
9 CONV-(N256, K5, S1, P2), BN, LeakyReLU(0.2)
10-11 CONV-(N128, K5, S1, P2), BN, LeakyReLU(0.2)
G(y, z) CONV-(N3, K5, S1, P2), TANH

Discriminator
Input: decoder output(batch size=64, channels=3, height=64, width=64);
images(batch size=64, channels=3, height=64, width=64)
Layer Definition
1 CONV-(N64, K4, S2, P1), LeakyReLU(0.2)
2 CONV-(N128, K4, S2, P1), BN, LeakyReLU(0.2)
3 CONV-(N256, K4, S2, P1), BN, LeakyReLU(0.2)
4 CONV-(N512, K4, S2, P1), BN, LeakyReLU(0.2)
5 CONV-(N1, K4, S1, P0), SIGMOID

Table A2. Architecture of the residual block employed in the Semi-DGPose encoder.

RESIDUAL Layer
Input: previous layer output
Layer Definition
1 CONV-(N512, K3, S1, P1), BN, ReLU
2 CONV-(N512, K3, S2, P1), BN
3 SUM(conv2 output, previous layer output)
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