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Abstract

Many high-dimensional optimisation problems exhibit rich geometric structures in
their set of minimisers, often forming smooth manifolds due to over-parametrisation
or symmetries. When this structure is known, at least locally, it can be exploited
through reduction mappings that reparametrise part of the parameter space to lie
on the solution manifold. These reductions naturally arise from inner optimi-
sation problems and effectively remove redundant directions, yielding a lower-
dimensional objective. In this work, we introduce a general framework to under-
stand how such reductions influence the optimisation landscape. We show that
well-designed reduction mappings improve curvature properties of the objective,
leading to better-conditioned problems and theoretically faster convergence for
gradient-based methods. Our analysis unifies a range of scenarios where struc-
tural information at optimality is leveraged to accelerate convergence, offering
a principled explanation for the empirical gains observed in such optimisation
algorithms.

1 Introduction

First-order gradient methods are the workhorse for large-scale optimisation in machine learning and
data science due to their simplicity and scalability. However, the objective functions encountered
in these settings often exhibit highly non-convex and intricate loss landscapes, stemming from
various factors such as over-parametrisation, compositions of nonlinear functions, and underlying
data distributions, to name a few [1–4]. Despite this complexity, gradient-based methods perform
remarkably well in practice, achieving local linear convergence under mild regularity conditions—
such as the widely studied Polyak-Łojasiewicz (PŁ) condition [5–9]. This apparent tension between
theoretical difficulty and empirical success motivates a deeper understanding of the geometry of loss
landscapes and its role in shaping optimisation dynamics.

Let us consider the geometry of the solution spaces, which are shown to have manifold-like structures,
rather than isolated points for many machine learning problems due to over-parametrisation, sym-
metries, or latent invariances [10, 6]. Such structured sets of minimisers are not merely theoretical
curiosities—they naturally arise in a variety of real-world applications. For instance, in deep neural
networks, over-parametrisation often leads to entire manifolds of local minima [10] related by sym-
metries [11–13]. Furthermore, recent findings in neural collapse [14] reveal that optimal solutions
often exhibit highly regular, symmetric, low-dimensional structures across layers [15–20]. In matrix
factorisation problems [21] such as dictionary learning [22–25], low-rank matrix completion [26, 27],
and tensor decomposition problems [28, 29], solutions are only identifiable up to scaling or orthogonal
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Figure 1: Illustration of how well-designed reduction mappings iron out worst-case curvature. The
opaque surface depicts the graph of the function f : R2 → R, lifted above the ambient domain (grey
plane) for visualisation purposes. The function has a single global minimum S = {(0, 0)}. In general,
S can be a set of non-isolated points. The blue curve shows the restriction of f along the mapping
Ψ1 : x1 7→ x1, where the high-curvature quadratic component cancels, yielding a flatter profile in
x1. In contrast, the orange curve corresponds to the mapping Ψ2 : x1 7→ 0, which preserves most
of the steep curvature of f . The grey-green curve traces the restriction along a nonlinear sinusoidal
mapping—an example of a poorly designed reduction, which introduces additional curvature into
the problem. Dashed curves on the ambient domain represent the images of these mappings as
one-dimensional submanifolds M. The submanifolds have a non-empty intersection with S .

transformations [30], reflecting the inherent symmetries of these models. Similar invariances exist
in problems such as phase retrieval [31–34] and blind deconvolution [35–40]. These symmetries
induce structured sets of minimisers, often forming smooth manifolds or discrete equivalence classes,
reflecting invariance under these transformations [30]. These examples all share a common theme:
the objective exhibits invariances that endow the set of solutions with rich geometric structure.

In this work, we study how the geometric structure of the solution set can be systematically exploited
to accelerate convergence. We focus on reduction mappings—reparametrisations that encode known
components of the solution manifold, and study their effect on the local curvature. In practice, these
reductions often arise from inner optimisation problems, thereby reformulating the original problem
into a bi-level optimisation problem and yielding a lower-dimensional objective. While intuitively
promising, not all such reduction mappings are beneficial. Even if optimal in value, a poorly designed
reduction can distort local curvature and hinder convergence. We develop a rigorous framework to
identify when and how these mappings lead to provable improvements in outer iteration complexity
for gradient descent.

To build geometric intuition, Figure 1 illustrates how different reduction mappings affect the local
curvature of the objective along their respective subspaces. For more details on this example, refer
to Appendix A. While some mappings reveal a well-conditioned, flattened profile, others retain
or even exaggerate steep curvature. This highlights a central idea of our work: the convergence
behaviour of gradient methods depends not just on the presence of structure, but on how effectively it
is incorporated into the optimisation process.

1.1 Contributions

We provide a systematic characterisation of when reduction mappings lead to provable gains in
optimisation efficiency. Specifically, we identify conditions under which the reduced objective
exhibits a strictly smaller smoothness constant and a strictly larger sharpness constant1. Together,
these improvements yield a strictly better condition number, leading to faster worst-case convergence

1A general term encompassing Polyak-Łojasiewicz (PŁ), quadratic growth (QG), and related properties.
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rates for gradient-based methods applied to the reduced problem. The results hold under standard
regularity assumptions and apply to both affine and nonlinear mappings. Specifically we contribute
the following:

• Theorem 1 shows that for affine reduction mappings, the smoothness constant of the reduced
objective is strictly smaller than that of the full objective.

• Theorem 2 extends this result to general nonlinear mappings, establishing improved smooth-
ness under mild regularity assumptions.

• Theorem 3 demonstrates that the sharpness constant of the reduced problem is strictly larger,
implying stronger curvature near the minimisers.

• Corollary 3 combines the above to show that the condition number of the reduced problem
is strictly better, leading to faster convergence of gradient descent under the PŁ condition.

For completeness, we include a number of supporting lemmas and additional theoretical results in the
appendices.

1.2 Related Work

Reparametrisations and geometry-aware optimisation have long been used to exploit structure and
improve conditioning in nonconvex problems [41]. Examples include normalisation methods [42,
43], which can be interpreted as explicit reduction mappings improving feature geometry and
convergence [44]; neural collapse [14] formulations, where our framework captures both fixed
classifier parametrisations [45] and dynamic equiangular tight frame (ETF) projections [46]; and
gauge-fixing strategies in problems with symmetries, offering a lightweight alternative to quotient
manifold optimisation [47, 48]. Preconditioned methods also relate closely to our approach, with
connections to natural gradient descent [49, 50], adaptive preconditioning [51, 52], and studies
of parameter space geometry under reparametrisation [53]. Our framework generalises these by
treating reduction mappings as intrinsic geometry-aware preconditioners, unifying and extending
prior work on preconditioning and geometry adaptation. Finally, classical variable elimination and
bilevel optimisation methods [54, 55] can be seen as special cases of reduction mappings, where our
analysis goes beyond dimensionality reduction to provide precise improvements in conditioning and
convergence rates. A more detailed discussion is provided in Appendix B.

2 Setup, Notation, and Preliminaries

We consider general unconstrained optimisation problems of the form

minimise
x∈Rn

f(x) , (1)

where f : Rn → R is a C2 (twice differentiable), possibly non-convex function. We assume that the
set of minimisers of f is not discrete, but instead forms a non-isolated set. Specifically, we define the
set of all local minima in a neighbourhood as

S = {x ∈ Rn : x is a local minimum of f and f(x) = c} . (2)

Without loss of generality, we assume the minimum of f is zero, i.e., c = 0. We further assume that,
locally around any minimiser, the function f satisfies the PŁ condition with constant µ > 0 (µ-PŁ),
that is,

f(x) ≤ 1

2µ
∥∇f(x)∥2 . (PŁ)

Other related conditions commonly imposed in non-convex optimisation include the quadratic growth
(QG) condition [56] and the error bound (EB) condition [57]. These can be defined as follows, where
dist is the classical Euclidean distance: f satisfies the quadratic growth condition with µ > 0 around
a minimum if

f(x) ≥ µ

2
dist2(x,S) . (QG)

Also, f satisfies the error bound condition with µ > 0 around a minimum if

µdist(x,S) ≤ ∥∇f(x)∥ . (EB)
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Numerous works derive convergence rates for gradient-based methods under these assumptions [58–
61]. Another important condition is the Morse–Bott property [62–64], which generalises the classical
Morse theory framework [65]. While Morse functions require all critical points to be isolated and non-
degenerate, the Morse–Bott condition relaxes this by allowing the set of critical points to form smooth
manifolds, as long as the Hessian is non-degenerate in directions normal to these manifolds [62]. This
setting is particularly relevant in optimisation problems where symmetries or invariances naturally
give rise to non-isolated minimisers lying on structured sets and hence singular Hessians.

Definition 1 (Morse–Bott Property) Let x̄ be a local minimiser of f with associated set of min-
imisers S and Tx̄S be the tangent space of S at x̄. Then f satisfies the Morse–Bott property at x̄
if

S is a C1 submanifold around x̄ and ker∇2f(x̄) = Tx̄S . (MB)

Furthermore, if there exists a uniform µ > 0 such that for all vectors v normal to S one has

⟨v,∇2f(x̄) v⟩ ≥ µ ∥v∥2 ,

then we say that f satisfies the µ-MB property.

Notably, for C2 functions, it has been shown [64] that these conditions are essentially equivalent—up
to potential degradations in the constants or reductions in the neighbourhoods where they hold.
Therefore, throughout this work, assuming any one of these conditions allows us to invoke the others
interchangeably. Under (MB), we refer to set of minimisers S as the solution manifold.

Assumption 1 (Standing Assumptions on Function f ) Suppose there exist constants L, β, µ > 0
and a compact neighbourhood N ⊂ Rn around a minimiser x̄ such that the following hold:

1. (Interpolation) The function f attains its infimum at zero, and the set of minimisers S is
non-empty.

2. (Smoothness) The function f is L-Lipschitz continuous and β-smooth on N ; that is, its
gradient is β-Lipschitz continuous on N .

3. (PŁ condition) The function f satisfies the (PŁ) condition at every point in N .

2.1 Reparametrisation via Reduction Mappings

We begin by decomposing the variable x of the function f into two components, x1 ∈ Rn1 and
x2 ∈ Rn2 , such that n = n1 + n2, with n1 < n. Whenever the problem structure or prior knowledge
permits, we assume that the component x2 exhibits a known geometric structure at optimality. This
allows us to introduce an appropriate mapping—typically a projection or an implicit parametrisation—
that explicitly encodes this structure by setting x2 as a function of x1. This leads to a reduction
mapping, where x2 is fixed to lie on its optimal structure, enabling us to reformulate the problem by
optimising only over the remaining variables x1.

Definition 2 (Reduction Mapping and Reduced Function) Let Ψ : Rn1 → Rn2 be a C2 mapping
representing the known geometric structure of x2 at optimality. We define the reduction mapping
Φ : Rn1 → Rn as

Φ(x1) :=
(
x1,Ψ(x1)

)
. (3)

We then define the reduced objective F : Rn1 → R as the pullback of f along Φ as

F (x1) := f
(
Φ(x1)

)
= f

(
x1,Ψ(x1)

)
. (4)

Since f and Φ are C2, the reduced function F is also C2.

Definition 3 (Graph Manifold) We define the graph manifold of the reduction mapping Φ as

MF := {Φ(x1) =
(
x1,Ψ(x1)

)
| x1 ∈ Rn1} . (5)

Assuming Ψ is C2, the manifold MF , which we will refer to as the feasible manifold, is a globally
embedded C2 submanifold of Rn of dimension n1, since Φ is globally injective and C2.

Assumption 2 (Standing Assumptions on the Reduced Function F ) Assume the following hold
within a compact neighbourhood N ⊂ Rn defined around a minimiser x̄:

4



1. The reduced objective F is βF -smooth on N .
2. The intersection MF ∩ S is non-empty. We denote this set as SF := MF ∩ S , which forms

the set of minimisers of F .

Notation In the sequel, we use the subscript f , to denote all constants associated with the original
objective f (e.g., βf for the smoothness constant, µf for the (PŁ)). Similarly, all constants related to
the reduced objective F will be subscripted accordingly (e.g., βF , µF ).

3 Main Results

We now present the main theoretical contributions of this work. Our results formally demonstrate
how exploiting known geometric structure at optimality via reduction mappings leads to improved
smoothness and sharpness properties, which in turn result in improved convergence rates for gradient-
based methods. Among the four equivalent sharpness conditions discussed previously, we will, for
the purpose of this section, adopt the (MB) condition as our reference framework for comparing
sharpness constants. When discussing convergence rates, we will switch to the (PŁ) condition, which
is more directly linked to iteration complexity. For clarity of exposition, we organise the results into
two parts: smoothness improvements and improvements of the Morse–Bott constant.

3.1 Smoothness Improvement under Affine Reduction Mappings

We first establish that affine reduction mappings, by eliminating alignment with the worst-case
curvature directions of the original problem, yield strictly improved smoothness constants for the
reduced problem. This result is made precise in the following theorem. A noteworthy special case of
affine mappings are constant mappings, whose analysis is deferred to Appendix A.

Theorem 1 (Sharper Smoothness Constant for Reduced Functions with Affine Mappings) Let
f : Rn → R be a C2 function satisfying Assumption 1 on the compact neighbourhood N . Let
Ψ : Rn1 → Rn2 be an affine mapping, and define the reduction mapping Φ(x1) =

(
x1,Ψ(x1)

)
, the

reduced function F , and the feasible manifold MF as in Definitions 2 and 3. We consider the local
feasible manifold Mloc

F := MF ∩N .

Let σ1, . . . , σn be the singular values of ∇2f(x) arranged in descending order. Suppose that, for
every x ∈ Mloc

F , the largest singular value (denoted σmax) has multiplicity p ≥ 1, with associated
dominant subspace Σmax. Assume the following:

1. There exists a uniform constant ε ∈ (0, 1] such that for all unit vectors v ∈ Σmax,

∥PTxMloc
F

v∥ ≤ 1− ε ,

where PTxMloc
F

is the orthogonal projection onto the tangent space TxMloc
F .

2. There is a uniform spectral gap:

∆max := inf
x∈Mloc

F

[
σmax

(
∇2f(x)

)
− σp+1

(
∇2f(x)

)]
> 0 .

Then, equipping Rn1 with the pullback metric induced by the embedding Φ, the Riemannian gradient
of F is Lipschitz continuous with constant βF satisfying:

βF ≤ βf −∆max(2ε− ε2) < βf .

Proof Sketch of Theorem 1 The proof relies on viewing the smoothness of the reduced function
F as the largest curvature of f along the feasible manifold Mloc

F . Since the dominant curvature
directions of f are not contained in the tangent space of Mloc

F , the restriction of the Hessian to
Mloc

F exhibits strictly smaller operator norm. By combining this observation with the spectral gap
assumption, we obtain a strict improvement in the smoothness constant. The argument is formalised
in Appendix C. ■

This result establishes that the smoothness constant of the reduced function F is strictly smaller than
that of the original function f , with the improvement governed by the geometric properties of the
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intersection between the dominant curvature directions and the feasible manifold. These assumptions
correspond to generic properties under mild conditions, as discussed in Appendices E.3 and E.4.

We now translate this result into the standard Euclidean setting, where the role of the pullback metric
becomes explicit through the following corollary.

Corollary 1 (Euclidean Smoothness Bound under Affine Mappings) Under the setting of Theo-
rem 1, define the Euclidean smoothness constant of the reduced function F as β(E)

F := sup
x1

∥∥∇2F
∥∥,

where the derivative of Φ is DΦ =

(
I

DΨ

)
and M (Φ) := λmax

(
DΦ⊤ DΦ

)
. Then,

β
(E)
F ≤ M (Φ)

[
βf −∆max(2ε− ε2)

]
< M (Φ) βf .

In particular, when Ψ is an orthogonal projection, M (Φ) = 2, and the sufficient condition ensuring
β
(E)
F < βf reduces to

∆max(2ε− ε2) > 1
2 βf . (⋆)

Condition (⋆) requires the Hessian of f to exhibit a significant spectral gap between its largest and
subsequent eigenvalues. This scenario corresponds to highly anisotropic curvature, where a small
number of dominant directions govern the largest curvatures of the loss landscape. Such spectral
structures are commonly observed in over-parametrised models in machine learning, where empirical
studies have consistently reported Hessians with a few large outlier eigenvalues and a bulk of near-
zero eigenvalues [66–70]. This phenomenon supports the practical relevance of our condition in
many deep learning settings. We note that the degradation observed in the Euclidean smoothness
constant in Corollary 1 arises because the reduction mapping induces a non-Euclidean geometry on
the reduced space. The natural metric in this setting is the pullback metric induced by the mapping
itself, under which the improvement in smoothness is directly captured, as shown in Theorem 1. We
will return to this point and its implications for convergence rates in Section 4.

3.2 Smoothness Improvement under Nonlinear Reduction Mappings

We now extend the previous result to the more interesting case where the reduction mapping Ψ(x1)
is nonlinear. In this setting, the feasible manifold Mloc

F becomes curved within the ambient space,
introducing an additional curvature contribution to the reduced function F . This contribution is
captured by the correction term C(x1) in the Hessian (see Lemma 3). Intuitively, this term quantifies
the bending effect of Mloc

F and the extent to which the nonlinearity of Ψ adds curvature to F . When
this correction remains sufficiently small relative to the spectral gap between the largest curvature
directions of f and their restriction to Mloc

F , the reduction in the smoothness constant is preserved.
This is formalised in the following theorem and the corresponding corollary for the Euclidean case.

Theorem 2 (Sharper Smoothness Constant for Reduced Functions with Nonlinear Mappings)
Let f , Φ, F , and Mloc

F be as in Theorem 1, except that Ψ(x1) is now a general C2 mapping. Assume:

1. There exist constants Q,Z > 0 such that for all x1 ∈ Mloc
F , ∥D2 Ψ(x1)∥ ≤ Q and

∥∇x2
f(x1,Ψ(x1))∥ ≤ Z.

2. The correction term satisfies QZ
m(Φ) < δ, where m(Φ) = λmin

(
DΦ⊤ DΦ

)
and δ is the

curvature gap defined as

δ := σmax

(
∇2f(Φ(x1))

)
− σmax

(
∇2f(Φ(x1))

∣∣
TΦ(x1)Mloc

F

)
.

Then, the reduced function F has a Lipschitz continuous Riemannian gradient with

βF ≤ βf −∆max(2ε− ε2) +
QZ

m(Φ)
< βf .

In particular, when Ψ is an orthogonal projection, m(Φ) = 1.

6



Proof Sketch of Theorem 2 The proof extends the affine case by accounting for the additional
curvature induced by the nonlinearity of Ψ. This is captured by the correction term C(x1) in the
Hessian of F , which arises due to the curvature of the feasible manifold Mloc

F . By controlling
∥C(x1)∥ via bounds on D2 Ψ and ∇x2

f , and ensuring that it remains strictly smaller than the
curvature gap δ obtained from the projection step, we show that the overall smoothness constant of
F is still strictly lower than that of f . The result follows by combining these bounds and applying
Weyl’s inequality for perturbed operators. Full details are given in Appendix C. ■

Corollary 2 (Euclidean Smoothness Bound under Nonlinear Mappings) Under the setting of
Theorem 2, the Euclidean smoothness constant of the reduced function F satisfies

β
(E)
F ≤ M (Φ)

[
βf −∆max(2ε− ε2)

]
+QZ < M (Φ) βf ,

where M (Φ) is the metric distortion factor defined as in Corollary 1. In particular, when Ψ is an
orthogonal projection, M (Φ) = 2, and the sufficient condition ensuring β

(E)
F < βf simplifies to

∆max(2ε− ε2) > 1
2 (βf +QZ) .

Reduction mappings often naturally arise in bilevel optimisation settings, where x2 = Ψ(x1) is
implicitly defined as the solution to an inner problem. Depending on the problem structure, these
mappings can be affine or nonlinear, and our results apply equally in both cases. We formalise this in
the remark below.

Remark 1 (Inner Mappings as Argmin Problems) Reduction mappings often arise when Ψ(x1)
is defined implicitly as a local solution to an inner optimisation problem

Ψ(x1) ∈ argmin
u∈C

G(x1, u) .

Under standard regularity conditions, such as constraint qualifications and strict second-order
sufficiency (SSOSC), classical sensitivity results ensure that Ψ(x1) is locally C2 [71]. Thus, our
previous theorems for affine and nonlinear mappings apply directly in such settings.

To better understand the bounds on the correction term, when the mapping Ψ arises from an inner
argmin problem, the constants Q and Z have been explicitly quantified in Theorem 4 in Appendix D.

3.3 Morse–Bott Constant Improvement under Reduction Mappings

In Appendix D, we establish that if the original function f satisfies the (MB) property, then the
reduced function F obtained via reduction mappings also satisfies the (MB) property, albeit potentially
with a different constant. In the following theorem, we strengthen this result by showing that the
(MB) constant of the reduced problem is in fact strictly improved compared to that of the original
problem.

Theorem 3 (Strict Improvement of the Morse–Bott Constant under Smooth Reduction) Let
f : Rn → R be a C2 function where the solution manifold S satisfies the µf -MB property within a
compact neighbourhood N . Let Ψ : Rn1 → Rn2 be a C2 mapping and define the reduced function
F (x1) = f(x1,Ψ(x1)), with local feasible manifold Mloc

F = MF ∩N .

At each x̄ ∈ S ∩Mloc
F , let Hx̄ denote the restriction of ∇2f(x̄) to Nx̄S. Assume:

1. The smallest eigenvalue λmin(Hx̄) has multiplicity m, with eigenspace Emin, and for all
v ∈ Emin, ∥v∥ = 1,

∥PTx̄Mloc
F

v∥ ≤ 1− ε ,

holds uniformly for some ε ∈ (0, 1].
2. The spectral gap ∆min := inf

x̄∈S∩Mloc
F

[λn−m(Hx̄)− λmin(Hx̄)] > 0.

Then, for the (MB) property of the reduced function F , we obtain a strictly improved constant

µF ≥ µf +∆min(2ε− ε2) > µf .

7



Proof The result follows by applying the same geometric argument as in Theorem 1, now to the
positive definite Hessian Hx̄ restricted to Nx̄S. Since we operate entirely within the normal space
and on the solution manifold, only eigenvalues and eigenspaces matter, and the nonlinearity of Ψ has
no effect. ■

In the Euclidean setting, the improvement in the Morse–Bott constant is further scaled by the pullback
metric. Specifically, since the Euclidean constant is related to the intrinsic pullback constant via
µ
(E)
F ≥ m(Φ)µF , the distortion introduced by the metric, through its smallest eigenvalue m(Φ) ≥ 1,

amplifies the effective (MB) constant. This shows that the pullback metric does not only improve the
intrinsic condition number but also results in a better constant when measured under the Euclidean
metric. In particular, when Ψ is a projection mapping, we have m(Φ) = 1, and the Euclidean result
coincides exactly with the pullback metric case.

Remark 2 (Morse–Bott Constant Equivalence [64]) Since in Theorem 3 we showed that µF > µf

for the (MB) property, by equivalence it follows that the constants µ for the (PŁ), (EB), and (QG)
conditions will follow the same strict inequality.

4 Convergence Rate Results and Discussion

In this section, we discuss the algorithmic implications of our geometric analysis of reduction
mappings. In particular, we focus on the impact of the improved smoothness and (MB)—and by
equivalence (PŁ)—constants obtained in Theorems 1, 2, and 3 on the convergence behaviour of
first-order methods.

When the reduced problem is equipped with the pullback metric induced by the reduction mapping
Φ, our results show that the condition number of the reduced function F is strictly improved relative
to that of the original problem f . This theoretical gain directly translates into faster local linear
convergence rates when applying preconditioned gradient descent (PrecGD) on the reduced objective.
We formally state this result below. A broader discussion on metric choices, algorithmic implications,
and practical considerations follows.

Corollary 3 (Faster Linear Convergence of the Reduced Function) Under the settings of Theo-
rems 1, 2, and 3, equipping Rn1 with the pullback metric induced by Φ yields a strictly improved
condition number for the reduced problem

κF :=
βF

µF
<

βf

µf
=: κf .

As a result, preconditioned gradient descent applied to F achieves a strictly faster local linear
convergence rate under (PŁ) condition compared to gradient descent on f [5]. Specifically:

• The rate factor improves from O(exp(−t/κf )) to O(exp(−t/κF )).
• The iteration complexity to achieve accuracy ϵ improves from O(κf log(1/ϵ)) to
O(κF log(1/ϵ)).

Below, we make explicit the form of the preconditioned gradient descent algorithm applied to the
reduced problem F under the pullback metric induced by Φ

x
(t+1)
1 = x

(t)
1 − η R−1 ∇F

(
x
(t)
1

)
, with R := DΦ⊤ DΦ . (PrecGD)

This method performs steepest descent under the pullback metric, aligning the descent directions
with the intrinsic geometry induced by the reduction mapping—a fundamental principle in optimi-
sation [72]. While preconditioning introduces additional computational cost due to the inversion
of R, such overhead can often be mitigated by exploiting the structure of R, as shown in prior
works [73, 74, 50, 75, 76, 52, 51]. In particular, for affine mappings, R is constant and cheap to apply,
whereas for nonlinear mappings, structured or approximate solvers can be used. Designing efficient
implementations of these methods is primarily mapping dependent and beyond the scope of this work,
where our focus is on the iteration complexity benefits arising from the improved conditioning.

An instructive special case is when Ψ is an orthogonal projection; a common choice for many
reparametrisations. If Ψ is affine, then R simplifies, and its inverse is given by R−1 = I −

8



1
2 DΨ⊤ DΨ, implying no additional computational overhead. If Ψ is nonlinear but still defines an
orthogonal projection onto a manifold, R has a favourable and stable spectrum. This allows for an
efficient and cheap inversion via the Woodbury formula, as the condition number of R remains fixed.

While preconditioning is necessary and recommended [53] to fully exploit the improved geometry
induced by the reduction mapping, improvements can still be observed under Euclidean gradient
descent. Specifically, if the condition (⋆) holds, we still have β(E)

F < βf , leading to a better condition
number even without preconditioning. Even if this condition fails, the improvement in the sharpness
constant µ(E)

F > µf may still result in a better overall condition number κ(E)
F compared to κf . Thus,

gains are still possible, although they may be limited.

If a practitioner desires additional control over the condition number in Euclidean space for con-
vergence guarantees, the reduction mapping can be modified to induce approximate isometries via
a simple small-slope method. This approach is general and may warrant a more systematic study;
however, a full investigation of such strategies lies outside the scope of this paper. We sketch the idea
below.

Remark 3 (Small-Slope Method and Approximate Isometry) When using reduction mappings,
the pullback metric takes the form of R = I +DΨ⊤ DΨ, which in general is not identity, leading to
potential degradation in the Euclidean smoothness constant proportional to λmax(R). To mitigate
this, we propose a simple small-slope method, where the mapping is rescaled as Ψα(x1) := αΨ(x1)
for a small α > 0. This modifies the metric to Rα = I + α2 DΨ⊤ DΨ, whose condition number
becomes

κ(Rα) =
1 + α2λmax(DΨ⊤ DΨ)

1 + α2λmin(DΨ⊤ DΨ)
.

Thus by making α sufficiently small, Rα becomes approximately isometric, improving the likelihood
that β(E)

F ≲ βf . This method offers a simple yet effective trade-off between improving conditioning
and preserving geometric fidelity. Notably, if the geometric structure encoded by Ψ is not scale-
invariant, excessively small α may distort the mapping, potentially degrading its ability to capture
the correct geometry of the x2 variables. This trade-off is less critical in many common cases—such
as subspaces, cones, or orthogonal structures—where the geometry is inherently scale-invariant. The
parameter α can be treated as a user-defined knob, balancing conditioning improvement against the
precision of the reduction.

4.1 Limitations and Future Directions

Our analysis assumes that the reduction mapping Ψ can be evaluated exactly. When Ψ is defined
implicitly, this idealisation neglects the approximation errors that may arise in practice, potentially
introducing bias in the reduced gradients and weakening the theoretical convergence guarantees.
Moreover, the computational cost of evaluating Ψ(x1) is inherently problem-specific and is not
explicitly captured in the iteration complexity analysis. A rigorous treatment that jointly considers
the benefits of reduction mappings and their evaluation cost remains an open, problem-dependent
direction for future work.

Beyond these considerations, our analysis is confined to local properties and deterministic first-
order methods. Extending the theory to global convergence settings, particularly in nonconvex
landscapes, is an important future direction. In this context, it would be valuable to explore how
reduction mappings reshape the landscape globally, including their potential to eliminate or introduce
saddle points and spurious minima, extending the framework of [41]. Another promising direction
is applying our geometric framework to specific structured problems where the objective admits
compositional forms, such as matrix factorisation, nonlinear regression, or neural network training,
to obtain practical insights. Finally, extending the analysis to stochastic settings, for example by
studying stochastic gradient descent (SGD) under reduction mappings and characterising its regularity
conditions, would enhance the relevance of our results in large-scale applications.

5 Conclusion

In this work, we presented a unified geometric framework for analysing reduction mappings in
optimisation problems with structured solution sets. By explicitly incorporating mappings that
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encode known geometric structures at optimality, we showed that the resulting reduced problems
exhibit strictly improved smoothness and sharpness properties. This leads to enhanced local condition
numbers and provably faster convergence rates when applying appropriately preconditioned first-order
methods. Our analysis generalises seamlessly from affine to nonlinear mappings, carefully accounting
for the additional curvature induced by the bending of the feasible manifold. While the improvements
are fundamentally intrinsic to the pullback geometry, we further showed that, under appropriate
constructions and trade-offs, these gains can also manifest in the Euclidean metric. Throughout, we
emphasised the generality and flexibility of our framework, illustrating that reduction mappings may
be given explicitly or arise implicitly as solutions to inner optimisation problems, thereby connecting
our approach to classical bilevel and composition formulations via implicit differentiation. We believe
this geometric perspective offers a principled and broadly applicable toolset for designing more
efficient optimisation algorithms that better exploit problem structure, with potential impact across
areas such as matrix factorisation, deep learning, and other structured nonconvex problems.
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A A Gentle Start

To build intuition for the broader theoretical developments in this work, we begin with two illustrative
examples. Each example is carefully chosen to highlight a different geometric structure of the
minimisers: a function with a unique isolated minimum and a function with a continuum of non-
isolated minima. For each case, we examine the curvature of the landscape through the lens of the
Hessian and its maximal eigenvalue, offering insight into the local geometry.

We then apply a range of reduction mappings to these examples—each designed to restrict the
optimisation to a lower-dimensional subspace or manifold—and observe how these mappings affect
the curvature of the objective function. Of particular interest is how the maximum curvature behaves
under these reductions, as this has direct implications for the conditioning of the problem and the
performance of iterative methods.

The section concludes with a focused analysis of constant mappings, a special class where the
reduction ignores part of the variable space entirely. This case serves as a useful analytical baseline,
offering contrast to structured mappings that actively exploit the problem geometry, whereas constant
mappings remain agnostic to how this structure influences the reduced variables.

A.1 Example 1: Single Isolated Minimum

Consider the function f : R2 → R defined by

f(x1, x2) = x2
1 +M(x2 − x1)

2 , (6)

where M ≫ 1 is a large constant. This function exhibits strong anisotropy: the quadratic term in x2

introduces high curvature along the x2-direction. As a result, the Lipschitz constant of the gradient
(i.e., the smoothness constant) βf is on the order of M , reflecting the steep variations in the landscape.
We note that this function is used in Figure 1 with M = 2 for ease of visualisation.

To make this explicit, we compute the gradient and Hessian of f as follows

∇f(x1, x2) =

(
2x1 + 2M(x1 − x2)

2M(x2 − x1)

)
, ∇2f(x1, x2) =

(
2 + 2M −2M

−2M 2M

)
. (7)

The eigenvalues of the Hessian are given by

λ =
(2 + 4M)±

√
(2 + 4M)2 − 16M

2
. (8)

If one instead fixes x2 via a constant mapping that lies on the solution manifold, the effective
maximum curvature in the x1-direction becomes 2 + 2M , since x2 is no longer allowed to adapt to
changes in x1, and the mismatch induces high curvature.

Now consider an affine mapping, which can arise from a bilevel setting such that

x∗
2(x1) = argmin

x2

f(x1, x2) . (9)

For the function above, it is easy to verify that the optimal inner solution satisfies x∗
2(x1) = x1.

Along the reduced trajectory (x1, x
∗
2(x1)) = (x1, x1), the function simplifies to

F (x1) = f(x1, x
∗
2(x1)) = x2

1 . (10)

In this formulation, the steep curvature contributed by the term M(x2 − x1)
2 is eliminated entirely,

and the resulting function F has a smoothness constant that is independent of M .

This example illustrates that allowing x2 to adjust optimally can “iron out” steep variations that would
otherwise hinder optimisation. However, this is true only when the mapping is well-designed. To see
that not all reductions lead to improved curvature, consider instead a nonlinear mapping given by

x2(x1) = x1 − 2 sin(x1) . (11)

Under this mapping, the reduced function becomes

F (x1) = x2
1 + 4M sin2(x1) . (12)
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The curvature of this reduced function is now influenced by the oscillatory term sin2(x1), and its
second derivative includes a component proportional to 4M cos(2x1), leading to increased curvature
compared to the original function f .

This contrasting case makes clear that not all mappings are beneficial: poorly chosen or misaligned
mappings can introduce new sources of curvature rather than mitigate them. Hence, curvature
reduction is not an automatic consequence of reparametrisation—it depends critically on the mapping
being well-aligned with the geometry of the solution manifold and its effect on the optimisation
trajectory. In well-structured settings, such as when x∗

2(x1) is derived from minimising over x2, the
resulting outer function F can exhibit substantially improved curvature characteristics.

In Figure 2, we plot the curvature

κ(x) =
f ′′(x)[

1 + (f ′(x))2
]3/2 , (13)

over the domain x ∈ [−0.5, 0.5] with M = 10 for the reduced cases. For comparison, we also
indicate the corresponding maximum curvature value (i.e., the largest eigenvalue of the Hessian) for
each case, including the original 2D function.
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Figure 2: Curvature profiles for three reduction mappings. The full (unconstrained) function
f(x1, x2) = x2

1 + 10(x2 − x1)
2 exhibits high curvature (approximately 41). Fixing x2 = 0 yields

Ffixed(x1) = 11x2
1, with curvature 22 at x1 = 0. The bilevel reduction Flinear(x1) = x2

1 has lower
curvature (2 at x1 = 0), while the nonlinear mapping induces strong oscillations and increases the
maximum curvature to 82.

A.2 Example 2: Non-Isolated Minima

Consider the function f : R2 → R defined by
f(x1, x2) = φ(x1) + (x2 − sin(x1))

2 , (14)
where the flat-bottom quartic φ is defined as

φ(x1) :=


(x1 − α)4, x1 < α ,

0, x1 ∈ [α, β] ,

(x1 − β)4, x1 > β .

(15)

The gradient of f is given by

∇f(x1, x2) =

(
φ′(x1)− 2(x2 − sin(x1)) cos(x1)

2(x2 − sin(x1))

)
, (16)
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where

φ′(x1) =


4(x1 − α)3, x1 < α ,

0, x1 ∈ [α, β] ,

4(x1 − β)3, x1 > β .

(17)

The Hessian is

∇2f(x1, x2) =

[
φ′′(x1) + 2(x2 − sin(x1)) sin(x1) + 2 cos2 x1 −2 cos(x1)

−2 cos(x1) 2

]
, (18)

where

φ′′(x1) =


12(x1 − α)2, x1 < α ,

0, x1 ∈ [α, β] ,

12(x1 − β)2, x1 > β .

(19)

Since the Hessian is symmetric, its eigenvalues are real and given by

λ± =
1

2

(
a+ c±

√
(a− c)2 + 4b2

)
, (20)

where a = ∇2
x1x1

f , b = ∇2
x1x2

f = −2 cos(x1), and c = ∇2
x2x2

f = 2. These expressions follow
from the standard characteristic equation for symmetric 2× 2 matrices. In our analysis, we record
the largest eigenvalue of the Hessian restricted to the region x1 ∈ [α, β], where φ′′(x1) = 0.

We consider three reduction mappings Ψi : R → R, each inducing a reduced function Fi(x1) =
f(x1,Ψi(x1)). The quality of each mapping can be assessed by the curvature of the resulting reduced
function, particularly over the flat region [α, β], where φ′′(x1) = 0.

• Nonlinear (Implicit) mapping: Ψ1(x1) = sin(x1). This choice corresponds to the exact
solution of the inner minimisation problem

Ψ1(x1) = argmin
x2

f(x1, x2) , (21)

and cancels the coupling term, i.e., (x2 − sin(x1))
2 = 0. The resulting reduced function is

F1(x1) = φ(x1) , (22)

which is piecewise quartic with a flat basin over [α, β]. Since both the first and second
derivatives vanish in that interval, F1 has zero curvature there. This mapping represents the
ideal scenario for dimensionality reduction, as it perfectly aligns with the optimal structure
of the original function.

• Fixed mapping: Ψ2(x1) = 0. This mapping treats x2 as a constant and neglects the
structure of the inner problem. The reduced function becomes

F2(x1) = φ(x1) + sin2(x1) , (23)

where the additional term sin2(x1) introduces artificial curvature even inside the flat region,
due to the mismatch between the fixed choice x2 = 0 and the optimal one x2 = sin(x1).
While simple to implement, this mapping results in a highly curved landscape that can
significantly hinder optimisation.

• Linear mapping: Ψ3(x1) = x1. This mapping is a linear approximation to the sine function
near the origin and yields

F3(x1) = φ(x1) + (x1 − sin(x1))
2 . (24)

Inside the interval [α, β], φ′′ = 0, but the additional term (x1−sin(x1))
2 introduces nonzero

curvature. However, unlike the fixed mapping, the misalignment with sin(x1) is smaller,
especially near the origin. Thus, F3 achieves lower curvature than F2, but does not eliminate
coupling completely. It represents a computationally cheap, yet structurally-informed
approximation.

These three reductions are visualised in Figure 3, where each curve lies on the surface of f and
projects to its corresponding manifold MFi in the base plane. Figure 4 plots the curvature κ(x1)
of each reduction and confirms that the implicit mapping achieves the smallest curvature, which
vanishes on [α, β], where we have picked α = −0.5 and β = 0.5.
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x1

x2

Ambient Surface of f

f(x1, x2) = φ(x1) + (x2 − sin(x1))
2

F1(x1) = f(x1,Ψ1(x1))

MF1
= {(x1, sin(x1)) : x1 ∈ R}

F2(x1) = f(x1,Ψ2(x1))

MF2
= {(x1, 0) : x1 ∈ R}

F3(x1) = f(x1,Ψ3(x1))

MF3
= {(x1, x1) : x1 ∈ R}

Figure 3: Visualisation of the ambient function f(x1, x2) = φ(x1) + (x2 − sin(x1))
2, with φ a

flat-bottom quartic, and three lifted restriction curves corresponding to different reduction mappings
Ψi(x1). The black curve S denotes the global minimisers of f , forming a non-isolated solution
manifold parametrised by x1 ∈ [−0.5, 0.5] and x2 = sin(x1). Each lifted curve lies on the surface f ,
and the dashed curves on the base plane show the image of each corresponding manifold MFi

.

A.3 Constant Mappings: A Special Case

As a special case of our reduction framework, consider a constant mapping of the form

Ψ(x1) = x̄2 , for some fixed x̄2 ∈ Rn2 . (25)

The reduced function is then
F (x1) = f

(
x1, x̄2

)
, (26)

with reparametrisation map Φ(x1) = (x1, x̄2), whose Jacobian satisfies

DΦ(x1) =

(
In1

0

)
∈ R(n1+n2)×n1 , DΦ(x1)

⊤ DΦ(x1) = In1 . (27)

This isometric property ensures that the geometry of the reduced space is Euclidean, and hence
optimisation proceeds without distortion or the need for metric preconditioning.

Although the mapping is static, it completely eliminates the x2-directions. If the original function
f exhibits strong curvature in those directions, the reduced function F may be significantly better
conditioned. In this way, constant mappings can yield nontrivial curvature reduction, even without
adapting to the structure of f as x1 varies.

Under standard assumptions (e.g., smoothness and PŁ conditions), the reduced function F can inherit
the same convergence guarantees as affine mappings, provided the non-tangency condition and a
uniform spectral gap hold. The key advantage here is that these guarantees apply directly in the
Euclidean setting, without requiring any geometric correction.

The main limitation of constant mappings lies in their lack of adaptivity. Since the mapping is
fixed, it cannot adjust to the optimal choice of x∗

2(x1) as x1 evolves during optimisation. In settings
where x1 and x2 are tightly coupled, this can lead to misalignment between the reduced function
F (x1) = f(x1, x̄2) and the true solution manifold of f . While x̄2 may belong to the global minimiser
set of f , it need not remain optimal for all values of x1. As a result, F may fail to faithfully reflect
the structure of f away from neighbourhoods where (x1, x̄2) ∈ S, potentially slowing convergence
or yielding suboptimal solutions.

This scenario frequently arises in overparametrised models with symmetric minimiser sets. For
instance, in deep neural networks, the optimal classifier weights often lie in the set of Equiangular
Tight Frames (ETFs). A constant mapping implicitly selects a particular representative x̄2 in this set
and holds it fixed throughout training. While this preserves global optimality in principle, it breaks

18



−1.5 −1 −0.5 0 0.5 1 1.5

0

1

2

3

4
maxκ = 4

maxκ = 2

maxκ ≈ 2.22maxκ ≈ 2.14

x1

C
ur

va
tu

re
κ

Unconstrained
Fixed
Linear

Nonlinear

Figure 4: Curvature comparison across different reduction mappings applied to the function
f(x1, x2) = φ(x1) + (x2 − sin(x1))

2, where φ is flat on [−0.5, 0.5] and quartic outside. The
black dashed line represents the maximum eigenvalue of the full Hessian when no reduction is
applied. The blue curve shows the curvature induced by fixing x2 = 0, resulting in high curvature
due to mismatch with the optimal x2 = sin(x1). The red curve corresponds to the linear reduction
x2 = x1, which aligns more closely with sin(x1) and yields lower curvature. The green curve
represents the bilevel (implicit) reduction x2 = sin(x1), which eliminates coupling and flattens the
function inside the flat region, driving curvature to zero. Each dashed horizontal line indicates the
maximum curvature for its corresponding method.

the symmetry in a way that may be incompatible with the evolution of x1. The reduced function
F thus becomes a projection of f onto a fixed slice of the solution manifold, which may not be
well-aligned with the optimisation trajectory unless additional structure or coordination is imposed.

In summary, constant mappings offer a geometrically clean and computationally simple reduction
strategy. They can yield strong local convergence when well-aligned with the solution structure, and
are especially attractive in models where redundant variables can be safely eliminated. However,
their rigidity makes them less suitable for problems requiring global coordination between variables
or adaptivity along the optimisation path. In practice, they serve as a valuable analytic baseline and
an effective modelling choice when the structure of the solution is known or can be fixed a priori.

B Extended Related Work

Reparametrisations are widely adopted to exploit problem structure and improve the conditioning of
nonconvex optimisation problems [41]. Our framework offers a unified lens to view these diverse
approaches as special cases of reduction mappings—whether constant, affine, nonlinear, explicitly
defined, or arising implicitly—and systematically analyses their effect on problem conditioning and
the convergence of first-order methods. Below, we outline several representative cases.

Normalisation and induced feature geometry. A canonical example is normalisation layers, such
as batch normalisation [42] or layer normalisation [43], which perform explicit nonlinear mappings
that constrain the scale and centring of activations or parameters. These reparametrisations have been
shown to accelerate convergence by implicitly altering the smoothness and sharpness constants [44].
In our framework, this can be interpreted as introducing a reduction mapping Ψ that enforces a fixed
feature geometry on specific variables, such as unit variance or zero mean.

Neural collapse and ETF reparametrisations. In the context of neural collapse, our framework
naturally captures both prevalent approaches. Fixing the classifier to an equiangular tight frame (ETF)
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corresponds to a constant reduction mapping that constrains the classifier parameters to a predefined
geometric structure [45]. Alternatively, dynamically solving for the nearest ETF given the current
features has been shown to accelerate convergence [46], and fits within our framework as a nonlinear
or implicitly defined mapping, enforcing optimal alignment with the feature space. Such reduction
mappings can also been extended to regression settings [77]. In all cases, our analysis applies directly,
providing theoretical guarantees on improved conditioning and convergence.

Optimisation on quotient manifolds and gauge fixing. In optimisation over quotient mani-
folds [47, 48], the goal is to account for known invariances by operating directly on equivalence
classes, such as optimising over the Grassmannian or Stiefel quotient manifolds. While these ap-
proaches formally respect the problem’s intrinsic symmetries, they can incur significant per-iteration
costs due to expensive manifold operations like projections and retractions. Our framework provides
an alternative by enabling explicit gauge fixing via reduction mappings, where one selects a repre-
sentative from each equivalence class—for example, fixing scaling or orthogonal symmetry through
a carefully designed mapping Ψ. This strategy can be viewed as a symmetry-breaking mechanism
that reduces the optimisation problem to a lower-dimensional space equipped with the pullback
metric induced by the reduction mapping. This allows standard first-order methods to operate more
efficiently while still respecting the problem’s local geometry. Thus, our approach can potentially
offer a lightweight and practical alternative to quotient manifold optimisation, particularly suitable
for large-scale or deep learning scenarios where iteration efficiency is paramount.

Preconditioned methods and metric-aware optimisation. Preconditioning is a classical approach
in optimisation and numerical linear algebra to accelerate convergence by modifying the problem
geometry through a change of metric [78]. This perspective underpins variable metric and quasi-
Newton methods [78], where gradient steps are taken relative to a preconditioner that improves
conditioning. In deep learning, natural gradient descent [49] formalises this idea by using the Fisher
information matrix as a Riemannian metric aligned with the model’s statistical structure, with recent
works showing that such methods can achieve accelerated convergence in overparametrised neural
networks [50]. Similarly, recent efforts have revisited scalable preconditioning strategies, such as
Kronecker-factored methods [79], Shampoo [51], and Muon [52], which exploit problem structure to
efficiently approximate second-order information in large-scale settings. More broadly, the geometry
of parameter spaces under reparametrisation has been studied to understand how such choices
influence conditioning and learning dynamics [53]. Our framework complements and generalises
these approaches by introducing reduction mappings as a geometric preconditioning mechanism,
where the pullback metric induced by Φ serves as an intrinsic, problem-adaptive preconditioner. This
allows first-order methods to exploit problem geometry efficiently, without explicit second-order
computations, while benefiting from strictly improved condition numbers. Moreover, our analysis
applies uniformly to both affine and nonlinear mappings, unifying classical preconditioning with
modern geometry-aware methods and extending their reach to a broader class of structured nonconvex
problems.

Reduction mappings and problem dimensionality reduction. Classical strategies for problem
simplification often rely on variable elimination techniques, such as projection methods, partial
optimisation, or block coordinate descent, where certain variables are explicitly or implicitly optimised
out to reduce problem dimensionality [54]. A more general formulation arises in bilevel optimisation,
where the inner problem implicitly defines a mapping from the outer variables to the lower-level
solution [55]. In these settings, implicit differentiation offers a principled mechanism to compute
gradients of the reduced objective, effectively collapsing the problem to the outer variables alone. Our
framework generalises and unifies these approaches by viewing them as reduction mappings—whether
explicitly defined or arising from inner problems solved to optimality—and providing a geometric
lens to analyse their impact on problem conditioning. Crucially, our focus extends beyond mere
dimensionality reduction, offering sharp characterisations of how these mappings improve local
smoothness and sharpness constants of the reduced problem, and thus enhance the convergence rates
of first-order methods.
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C Proof of Main Theorems

This section contains the complete proofs of the main results stated in the paper. Each proof is
presented in a separate subsection for clarity. Some of the arguments rely on technical lemmas, which
are deferred to Appendix E for readability.

C.1 Proof of Theorem 1

Proof Since F (x1) = f
(
x1,Ψ(x1)

)
, we have the reduction mapping

Φ(x1) :=

(
x1

Ψ(x1)

)
∈ Rn1+n2 .

By the chain rule, the gradient of F is given by

∇F (x1) = DΦ(x1)
⊤∇f

(
Φ(x1)

)
∈ Rn1 ,

where the Jacobian of Φ has the form

DΦ(x1) =

(
In1

J(x1)

)
∈ R(n1+n2)×n1 , with J(x1) := DΨ(x1) ∈ Rn2×n1 ,

and the gradient of f is ∇f
(
Φ(x1)

)
∈ Rn1+n2 .

We define a Riemannian metric on Rn1 induced by Φ (i.e., a pullback metric) as

g(u, v) := ⟨u, v⟩R = u⊤Rv, with R := DΦ(x1)
⊤ DΦ(x1) .

Because the solution mapping Ψ(x1) is assumed affine, R is constant. Also, we have D2 Ψ(x1) = 0,
so no additional correction term appears in the Hessian of F .

Differentiating ∇F (x1) with respect to x1 yields (see Lemma 3)

∇2F (x1) = DΦ(x1)
⊤∇2f

(
Φ(x1)

)
DΦ(x1) .

Define A := ∇2f
(
Φ(x1)

)
and note that A|V := ∇2F (x1) is the restriction of A to the n1-

dimensional subspace
V = im (DΦ(x1)) = TΦ(x1)M

loc
F .

We define the following operator norms

∥A∥ = max
∥w∥=1

∣∣w⊤Aw
∣∣ = max{λmax(A), −λmin(A)} = σmax(A) ,

and
∥A|V∥R = max

w∈V
∥w∥=1

∣∣w⊤Aw
∣∣ = max

{
λmax(A|V), −λmin(A|V)

}
= σmax(A|V) .

Also, by definition, the Lipschitz constant of ∇f is βf = supx∈N ∥A∥, and, similarly, the Lipschitz
constant for the Riemannian gradient ∇F is βF = supx1∈Mloc

F
∥A|V∥R.

Step 1. Restriction of the Hessian.
By the Rayleigh quotient characterisation (see Lemma 4), we have

λmax(A|V) ≤ λmax(A), λmin(A|V) ≥ λmin(A) ,

so,
σmax(A|V) ≤ σmax(A) ,

with equality if and only if there exists a unit vector w ∈ V satisfying

|w⊤Aw| = σmax(A) .

Since σmax(A) is achieved only along vectors in the maximum singular-vector subspace

Σmax = span{v ∈ N : Av = λv, |λ| = σmax(A)} ,
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we have equality if and only if some unit vector w ∈ V is in Σmax.

Step 2. Uniform Non-Tangency of Σmax with V .
The uniform non-tangency condition (where its general validity is expressed precisely in Corollary 6
by setting ε = 1− θ) implies that for every unit vector v ∈ Σmax there exists a uniform ε > 0 such
that

∥PV v∥ ≤ 1− ε .

Now, consider any unit vector w ∈ V . Since w lies in V , we can use the following argument for any
unit vector v ∈ Σmax:

1. Write the vector v ∈ Σmax in its orthogonal decomposition with respect to V
v = PV v + (I − PV) v .

2. Since w ∈ V , it is orthogonal to every vector in the orthogonal complement, in particular to
(I − PV)v. Therefore, we have,

w⊤v = w⊤ [PV v + (I − PV) v] = w⊤PV v .

3. Applying the Cauchy-Schwartz inequality, we obtain

|w⊤v| = |w⊤(PV v)| ≤ ∥w∥∥PV v∥ = ∥PV v∥ .
Since ∥w∥ = 1 and by the uniform non-tangency condition, it follows that

|w⊤v| ≤ 1− ε .

Step 3. Bounding the Absolute Rayleigh Quotient
Let A =

∑n
i=1 λi viv

T
i be an orthonormal eigendecomposition of A with eigenvectors {vi}, and

define σi = |λi|, ordered so that σ1 = . . . = σp =: σmax(A) > σp+1 ≥ . . . ≥ σn. For any unit
vector w ∈ V , write

w =

n∑
i=1

αi vi, so that
∑

α2
i = 1 .

Let θ :=
∑p

i=2 α
2
i be the squared norm of the projection of w onto the top singular subspace. Then∣∣wTAw

∣∣ = ∣∣∣ n∑
i=1

λi α
2
i

∣∣∣ ≤ n∑
i=1

σi α
2
i = σmax(A) θ2 +

n∑
i=p+1

σiα
2
i .

Since σi ≤ σp+1 for i > p, the tail sum is bounded:∑
i>p

σiα
2
i ≤ σp+1(1− θ2) ,

yielding ∣∣wTAw
∣∣ ≤ σmax(A) θ2 + σp+i(1− θ2) .

Using the uniform non-tangency condition θ2 ≤ (1− ε)2 and taking the maximum over all w ∈ V ,
we obtain

σmax(A|V) = max
w∈V, ∥w∥=1

|w⊤Aw| ≤ σmax(A) (1− ε)2 + σp+1

[
1− (1− ε)2

]
.

Step 4. Expressing the Gap via the Singular-Value Gap
We define the spectral gap between the largest eigenvalue and the second largest as

∆max ≤ σmax(A)− σp+1 .

Rewriting σp+1 ≤ σmax(A)−∆max, we have,

σmax(A|V) ≤ σmax(A) (1− ε)2 + (σmax(A)−∆max)
[
1− (1− ε)2

]
= σmax(A)−∆max

[
1− (1− ε)2

]
= σmax(A)−∆max(2ε− ε2) .
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Taking the supremum over all points in each domain, it follows that

βF = sup
x1∈Mloc

F

σmax

(
A|V

)
≤ sup

x∈N
σmax(A)−∆max(2ε− ε2) = βf −∆max(2ε− ε2) .

Thus, by our assumption that ∆max > 0, we obtain the desired strict inequality:

βF ≤ βf −∆max(2ε− ε2) < βf .

This completes the proof. ■

C.2 Proof of Corollary 1

Proof The result follows directly from Corollary 4. Applying this to ∇2F (x1) and take the
supremum over x1 ∈ Mloc

F yields

β
(E)
F = sup

x1

∥∥∇2F (x1)
∥∥ ≤ M (Φ) sup

x1

∥∥∇2F (x1)
∥∥
R
= M (Φ) βF .

Finally, substitute the bound βF ≤ βf −∆max(2ε− ε2) from Theorem 1 to conclude

β
(E)
F ≤ M (Φ)

[
βf −∆max(2ε− ε2)

]
< M (Φ) βf ,

with M (Φ) be equal to 2 by the non-expansive property of the projection mapping Ψ. ■

C.3 Proof of Theorem 2

Proof From Lemma 3, we have that the Hessian of F can be written as

∇2F (x1) = DΦ(x1)
⊤∇2f

(
Φ(x1)

)
DΦ(x1) + C(x1) ,

where the correction term due to the nonlinearity of Ψ(x1) is

C(x1) = D2 Ψ(x1) • ∇x2f
(
Φ(x1)

)
.

Here • denotes the contraction of the third-order Hessian tensor D2 Ψ ∈ Rn2×n1×n1 with the gradient
vector ∇x2

f ∈ Rn2 over the first index, that is,

C(x1) =

n2∑
k=1

D2 Ψk,:,:(x1) ·
∂f

∂x2,k

(
Φ(x1)

)
.

Define A := ∇2f(Φ(x1)), B := DΦ(x1)
⊤∇2f

(
Φ(x1)

)
DΦ(x1), and the restriction of A into the

tangent space of V = TΦ(x1)Mloc
F as A|V = ∇2F (x1), such that

A|V = B +C .

Since A|V and B are symmetric, it follows that C(x1) is a symmetric matrix. For B,C symmetric
matrices, we apply the Weyl’s inequality for the pullback metric R

σmax(B +C) ≤ σmax(B) + ∥C∥R .

From Theorem 1, we have

σmax(B) ≤ σmax(A)−∆max (2ε− ε2) ,

so,
σmax(A|V) ≤ σmax(A)−∆max (2ε− ε2) + ∥C∥R ,

where we have ∥C∥R ≤ ∥C∥/m(Φ). We need to control now the Euclidean operator norm of the
correction term C. By the sub-multiplicative property of the norm and our assumption on the bounds,
we get

∥C∥ ≤ ∥D2 Ψ(x1)∥ ∥∇x2f(Φ(x1))∥ ≤ QZ ,

where since D2 Ψ(x1) is a higher order tensor, we take the appropriate norm for the sub-multiplicative
property to hold. More specifically, a standard choice is to use the tensor operator or injective norm.
If we have an N -th order tensor T ∈ Rn1×n2×...×nN its operator norm is defined by

∥T∥ = sup{|T(x(1), x(2), . . . , x(N))| : ∥x(i)∥ = 1, ∀ i} ,
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where T(x(1), x(2), . . . , x(N)) is the scalar obtained by contracting T with the vectors x(1), . . . , x(N).

We also have the uniform curvature gap defined as

δ = σmax(A)− σmax(B) ≥ η .

Since the bound QZ on the correction term is assumed to be strictly less than the curvature gap
δ, the improvement in smoothness obtained by projecting onto the tangent space is preserved. In
other words, the additional curvature introduced by the nonlinearity does not overwhelm the inherent
reduction from the projection, ensuring that the overall smoothness constant of the reduced function
remains strictly below βf .

Formally, by taking the supremum over the region of interest, the Lipschitz constant βF of the
Riemannian gradient ∇F satisfies

βF ≤ βf −∆max(2ε− ε2) +
QZ

m(Φ)
< βf .

For projection mappings Ψ, we have 0 ⪯ DΨ⊤ DΨ ⪯ I , and I ⪯ DΦ⊤ DΦ ⪯ 2I . Hence
m(Φ) = 1. This completes the proof. ■

D Additional Theoretical Results

This appendix presents supplementary theoretical results that support the main developments in the
paper. While not required for the core proofs, these results offer deeper insight into the structure of
reduction mappings and their implications for optimisation and geometric analysis.

Specifically:

• Section D.1 provides a quantitative bound on the correction term induced by composing a
function f with a smooth minimising mapping Ψ, derived via the implicit function theorem.

• Section D.2 establishes that Morse–Bott structure is preserved under reduction, assuming
mild regularity and a clean intersection condition.

D.1 Correction Term Bound Under Argmin Mappings

The proof of the main result below relies on expressions for the first- and second-order derivatives of
implicit argmin mappings. These are provided in Appendix E, Subsection E.1.

Theorem 4 (Quantitative Bound on the Correction Term) Let f : Rn → R be C2, and let
G : Rn1 × Rn2 → R be C3. Assume that for each x1 in an open neighbourhood U ⊂ Rn1 , the
solution mapping

Ψ(x1) = argmin
u∈Rn2

G
(
x1, u

)
,

is well-defined and C2. Suppose further that for every x1 ∈ U:

(i) Strict second-order sufficient condition (SSOSC).

H(x1) := ∇2
uG

(
x1,Ψ(x1)

)
⪰ σ In2

, σ > 0 .

(ii) Bounded higher-order derivatives. There exist constants L12, L21, L3, L11 > 0 such that
at (x1,Ψ(x1)),∥∥∇3

x2
1u
G
∥∥ ≤ L12,

∥∥∇3
x1u2G

∥∥ ≤ L21,
∥∥∇3

u3G
∥∥ ≤ L3,

∥∥∇2
x1uG

∥∥ ≤ L11.

Write

∇f = (∇x1
f,∇x2

f), v(x1) = ∇x2
f
(
x1,Ψ(x1)

)
, ∥∇f(x1,Ψ(x1))∥ ≤ Lf .

Define

ξ =


∥v(x1)∥

∥∇f(x1,Ψ(x1))∥
, ∥∇f(x1,Ψ(x1))∥ > 0,

0, otherwise,
ξ ∈ [0, 1] .
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Let
D2 Ψ(x1) : Rn1 × Rn1 → Rn2 , C(x1) : Rn1 × Rn1 → R ,

be defined by
C(x1)(h, k) =

〈
v(x1), D

2 Ψ(x1)[h, k]
〉
.

Define the operator norms

∥D2 Ψ(x1)∥ = sup
∥h∥=∥k∥=1

∥∥D2 Ψ(x1)[h, k]
∥∥, ∥C(x1)∥ = sup

∥h∥=∥k∥=1

∣∣C(x1)(h, k)
∣∣ ,

and set

L̃ = σ L12 + L21 L11 +
L3 L

2
11

σ
.

Then for every x1 ∈ U , the following bounds hold:

∥v(x1)∥ ≤ ξ Lf , ∥D2 Ψ(x1)∥ ≤ L̃

σ2
, ∥C(x1)∥ ≤ L̃

σ2
ξ Lf .

Moreover, if one regards D2 Ψ(x1) as a linear map Sym2(Rn1) → Rn2 with top singular subspace
Σ ⊂ Rn2 and defines cos θ = ∥PΣ v(x1)∥/∥v(x1)∥, then the refined estimate

∥C(x1)∥ ≤ L̃

σ2
∥v(x1)∥ cos θ ≤ L̃

σ2
ξ Lf cos θ

also holds.

Proof We assume the mapping arises from an unconstrained problem for simplicity; analogous
results hold in the constrained setting.

1. First derivative via IFT. By the SSOSC assumption,

H = ∇2
uG(x1,Ψ(x1)) ⪰ σI ⇒ ∥H−1∥ ≤ 1

σ
.

Applying the first-order implicit function theorem (Lemma 1) yields

DΨ(x1) = −H−1∇2
x1uG, ∥DΨ∥ ≤ L11

σ
.

2. Second derivative via higher-order IFT. Let

A = ∇3
x2
1u
G, B = ∇3

x1u2G, C = ∇3
u3G .

Then the second-order expansion (Lemma 2) gives

D2 Ψ = −H−1
[
A + S

[
B•(I ⊗DΨ)

]
+ C•(DΨ⊗DΨ)

]
.

Using the bounds

∥H−1∥ ≤ 1
σ , ∥DΨ∥ ≤ L11

σ , ∥A∥ ≤ L12, ∥B∥ ≤ L21, ∥C∥ ≤ L3 ,

we obtain

∥D2 Ψ∥ ≤ 1

σ

(
L12 + L21

L11

σ
+ L3

L2
11

σ2

)
=

L̃

σ2
.

3. Partial-gradient bound. Since ∥v∥ ≤ ∥∇f∥ ≤ Lf , we have

∥v∥ = ξ ∥∇f∥ ≤ ξ Lf .

Moreover, ξ < 1 strictly whenever ∇x1f(x1,Ψ(x1)) ̸= 0, since then

∥∇f∥ > ∥∇x2
f∥ = ∥v∥ .

The degenerate case ξ = 1 occurs only if ∇x1
f ≡ 0, i.e., the full gradient lacks an x1-component.
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4. Operator norm of the correction form. By Cauchy–Schwarz,

∥C∥ = sup
∥h∥=∥k∥=1

∣∣⟨v, D2 Ψ[h, k]⟩
∣∣ ≤ ∥v∥ · ∥D2 Ψ∥ ≤ L̃

σ2
ξ Lf .

Let Σ denote the top singular subspace of D2 Ψ. Projecting v onto Σ, we obtain the refined bound

∥C∥ ≤ ∥D2 Ψ∥ · ∥v∥ · cos θ ,

where cos θ = ∥PΣv∥/∥v∥.

Equality cos θ = 1 holds only when v ∈ Σ, i.e., when v is fully aligned with the top-amplification
directions. Otherwise, cos θ < 1 strictly whenever v(x1) /∈ Σ. ■

D.2 Preservation of Morse–Bott Structure under Reduction Mappings

Assumption 3 The intersection MF ∩ S is clean2, ensuring SF is a C1 submanifold.

Remark 4 (Correspondence of critical sets under reduction mappings) Let Φ(x1) :=
(x1,Ψ(x1)) and F (x1) := f(Φ(x1)). Then Φ is a global C2-diffeomorphism onto its graph manifold
MF . If the critical set S intersects MF cleanly, their intersection corresponds diffeomorphically to
the reduced critical set SF = {x1 : F (x1) = c, ∇F (x1) = 0}, with

Φ : SF

∼=−−→ S ∩MF .

Moreover, DΦ(x1) is a linear isomorphism between their tangent spaces.

Theorem 5 (Morse–Bott Reduction) Let f : Rn → R be a C2 function which, on a compact
neighbourhood N of a level c, satisfies the Morse–Bott property: its critical set S = {x ∈ N :
∇f(x) = 0, f(x) = c}, is a smooth submanifold and

ker
(
∇2f(x)

)
= TxS ∀x ∈ S ,

while every positive eigenvalue of ∇2f(x) satisfies λi ≥ µf > 0 uniformly.

Let Φ : Rn1 → Rn1+n2 be a C2 embedding and denote its image MF = Φ(Rn1). Write Φ(x1) =(
x1,Ψ(x1)

)
, so Ψ : Rn1 → Rn2 is the induced projection. Define the reduced function

F : Rn1 → R, F (x1) = f
(
Φ(x1)

)
,

and set
NF = Φ−1(N ), SF = {x1 ∈ NF : ∇F (x1) = 0, F (x1) = c} .

Also suppose that for the intersection S ∩MF Assumptions 2 and 3 hold. The F is Morse–Bott on
NF :

1. SF is a smooth submanifold of Rn1 .

2. At each x1 ∈ SF , ker
(
∇2F (x1)

)
= Tx1SF , and every positive eigenvalue of ∇2F (x1)

satisfies λi ≥ µF > 0 uniformly.

Proof Since, by assumption, the submanifolds S and MF intersect cleanly, their intersection
S ∩ MF is a smooth submanifold of Rn. Moreover, since Φ is a C2 embedding, the pre-image
SF = Φ−1(S ∩MF ) is a smooth submanifold of Rn1 , diffeomorphic to S ∩MF (see Remark 4).

At a critical point x∗
1 ∈ SF , we now establish the identity

ker
(
∇2F (x∗

1)
)
= Tx∗

1
SF .

The proof consists of two parts.

2We assume that the intersection MF ∩ S is clean so that SF is a well-defined smooth submanifold. This
assumption is essential for establishing the Morse–Bott property for the reduced function F . A discussion on the
definition of clean intersections and their genericity is provided in Appendix F.
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(1) Tx∗
1
SF ⊂ ker

(
∇2F (x∗

1)
)
:

A tangent w ∈ Tx∗
1
SF must satisfy ∇F = 0, F = c to first order. At a critical point ∇F (x∗

1) = 0,
the only nontrivial condition is

∇2F (x∗
1)w = 0 ,

so that w ∈ ker
(
∇2F (x∗

1)
)
.

(2) ker
(
∇2F (x∗

1)
)
⊂ Tx∗

1
SF :

If ∇2F (x∗
1)w = 0, then

0 = DΦ(x∗
1)

⊤ [
∇2f

(
Φ(x∗

1)
)
DΦ(x∗

1)w
]
.

Injectivity of DΦ gives ∇2f
(
Φ(x∗

1)
)
[DΦ(x∗

1)w] = 0, so

DΦ(x∗
1)w ∈ ker

(
∇2f

(
Φ(x∗

1)
))

.

Since f satisfies the Morse–Bott property, we have

ker
(
∇2f

(
Φ(x∗

1)
))

= TΦ(x∗
1)
S .

By definition, we have DΦ(x∗
1)w ∈ TΦ(x∗

1)
MF , hence

DΦ(x∗
1)w ∈ TΦ(x∗

1)
S ∩ TΦ(x∗

1)
MF = TΦ(x∗

1)
(S ∩MF ) .

By the pre-image description of SF , we conclude that w must lie in Tx∗
1
SF .

Combining the two inclusions yields

ker
(
∇2F (x∗

1)
)
= Tx∗

1
SF ,

which shows that the reduced function F (x1) satisfies the Morse–Bott property. On a compact SF ,
the smallest positive eigenvalue of ∇2F attains a minimum of µF > 0. ■

E Supporting Lemmas

This appendix collects technical results used throughout the main body of the paper. The lemmas
are grouped into four self-contained subsections, each addressing a specific analytical or geometric
aspect of the theory:

• Derivatives: Closed-form expressions for the first- and second-order derivatives of implicitly
defined mappings, as well as the Hessian of the reduced function induced by a smooth
reparametrisation.

• Rayleigh Quotients Comparison: Classical inequalities comparing spectral quantities of
symmetric matrices under embeddings into lower-dimensional subspaces, used to control
the curvature of reduced objectives.

• Uniform Angle Bounds and Genericity: Results showing that the eigenspaces associated
with extreme curvature directions intersect the tangent space of the feasible manifold only
trivially. This condition holds generically and yields uniform lower bounds on the angle
between the subspaces.

• Genericity of Single Eigenvalues: A measure-theoretic argument demonstrating that
symmetric matrices with repeated eigenvalues form a zero-measure subset. This justifies the
generic spectral gap assumptions used in several proofs.

E.1 Derivatives

Lemma 1 (First-Order Derivative Expression for Implicit Functions) Let h : Rm × Rn → R
be at least twice continuously differentiable. Suppose that for each x there exists a unique y∗(x)
satisfying the optimality condition

Dy h(x, y
∗(x)) = 01×n ,
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and assume further that the Hessian D2
y h(x, y

∗(x)) is invertible for all x in a neighbourhood U
around a local minimiser. Then the first-order derivative of y∗(x) with respect to x is given by

D y∗(x) = −
[
D2

y h(x, y
∗(x))

]−1
D2

xy h(x, y
∗(x)) .

Proof Starting from the optimality condition and differentiating it with respect to x yields

Dx(Dy h(x, y
∗(x)))⊤ = 0

D2
xy h(x, y

∗(x)) + D2
y h(x, y

∗(x)) D y∗(x) = 0

D y∗(x) = −
[
D2

yy h(x, y
∗(x))

]−1

D2
xy h(x, y

∗(x)) .

The uniqueness of y∗(x) is guaranteed by the classical implicit function theorem. ■

Lemma 2 (Second-Order Derivative Expression for Implicit Functions) Let h : Rm × Rn → R
be C3, and suppose that y∗(x) is the unique solution of

Dy h(x, y
∗(x)) = 0, x ∈ U ,

with
H(x) := D2

y h(x, y
∗(x)) ∈ GLn(R) ,

for all x ∈ U . Define

J(x) := D y∗(x) = −H(x)−1 D2
xy h (x, y

∗(x)) ∈ Rn×m .

Further introduce the following third-order multilinear maps at (x, y∗(x)):

A(x) := D3
x2y h ∈ Rn ⊗ Rm ⊗ Rm,

B(x) := D3
xy2 h ∈ Rn ⊗ Rm ⊗ Rn,

C(x) := D3
y h ∈ Rn ⊗ Rn ⊗ Rn .

Let S : L(Rm ⊗ Rm,Rn) → L(Sym2Rm,Rn) be the symmetrisation operator S [T](u, v) =
1
2 (T[u, v] + T[v, u]). Then the second derivative D2 y∗(x) ∈ L(Sym2Rm,Rn) is given by the
formula

D2 y∗(x) = −H(x)−1 • [A(x) + S [B(x) • (I ⊗ J(x))] + C(x) • (J(x)⊗ J(x))] ,

where ⊗ is the tensor product and • is a tensor contraction on matching covariant and contravariant
indices.

Proof For convenience, we define the vector-valued function F : Rm × Rn → Rn where

F (x, y) = Dy h(x, y), Dx F = D2
xy h, Dy F = D2

y2 h = H(x) .

From Lemma 1, we have that for the direction u ∈ Rm

DF [u] = Dx F [u] + Dy F
[
D y∗[u]

]
= 0 .

Differentiating again in direction v ∈ Rm, we obtain

D(Dx F [u]) [v] + D
(
Dy F

[
D y∗[u]

])
[v] = 0 .

We now expand each of these two terms by applying the produce - and chain - rules in turn.

D(Dx F [u]) [v] = D2
xx F [u, v]︸ ︷︷ ︸
A(x)[u,v]

+D2
xy F [u,D y∗[v]]︸ ︷︷ ︸
B(x)[u,D y∗[v]]

.

D
(
Dy F

[
D y∗[u]

])
[v] = B(x)[D y∗[u], v] + D2

yy F [D y∗[u],D y∗[v]]︸ ︷︷ ︸
C(x)[D y∗[u],D y∗[v]]

+Dy F [D2 y∗[u, v]] .

Summing the two expansions and recalling that Dy F = D2
y h is the Hessian in y, we get

D2
y h[D

2 y∗[u, v]] = −
{

A(x)[u, v]+B(x)[u,D y∗[v]]+B(x)[D y∗[u], v]+C(x)[D y∗[u],D y∗[v]]
}
.
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Since D2
yh =: H(x) is invertible, and denoting J(x) := D y∗(x), we conclude

D2 y∗(x)[u, v] = −[H(x)]−1
{

A(x)[u, v] + B(x)[u, J(v)] + B(x)[J(u), v] + C(x)[J(u), J(v)]
}
.

Because the function h is smooth, the mixed partials should commute by the Schwarz’s theorem. The
tensors A and C are already symmetric, so we only need to deal with the two B terms. To that end,
we introduce the symmetrisation operator S [T](u, v) = 1

2 (T[u, v],T[v, u]), and we conclude

D2 y∗(x)[u, v] = −[H(x)]−1
{

A(x)[u, v] + S [B(·, J(·))](u, v) + C(x)[J(u), J(v)]
}
.

Re-expressing this result in the compact tensor-product/contraction notation exactly yields the
lemma’s statement. ■

Lemma 3 (Restricted Hessian of the Reduced Function) Let f : Rn1+n2 → R be twice contin-
uously differentiable and let Ψ(x1) : Rn1 → Rn2 be a twice continuously differentiable mapping.

Define the reduced function F : Rn1 → R by F (x1) = f
(
x1,Ψ(x1)

)
, and denote the reduction map

Φ(x1) =

(
x1

Ψ(x1)

)
, with J(x1) = Dx1 Ψ(x1) .

Then the Hessian of F is given by the compact representation

∇2F (x1) =
[
I J(x1)

⊤] ∇2f(x∗)

[
I

J(x1)

]
+C(x1) ,

where x∗ = Φ(x1) and the correction term

C(x1) = D2
x1

Ψ(x1) • ∇x2
f(x∗) ,

captures the curvature of the constraint manifold MF = {(x1,Ψ(x1)) : x1 ∈ Rn1}. The symbol •
denotes a tensor contraction operation at the appropriate indices.

Proof We start by differentiating the reduced function F (x1) = f(x1,Ψ(x1)). By the chain rule,

∇F (x1) = ∇x1
f(x∗) + (Dx1

Ψ(x1))
⊤ ∇x2

f(x∗) ,

where x∗ = (x1,Ψ(x1)). Differentiating ∇F (x1) with respect to x1 gives

∇2F (x1) = Dx1

(
∇x1

f(x∗) + (Dx1
Ψ(x1))

⊤ ∇x2
f(x∗)

)
= ∇2

x1
f(x∗) +∇2

x1x2
f(x∗) Dx1 Ψ(x1)

+ Dx1

[
(Dx1 Ψ(x1))

⊤
]
• ∇x2f(x

∗) + (Dx1 Ψ(x1))
⊤
Dx1

[
∇x2f(x

∗)
]
.

Since Dx1 [∇x2f(x
∗)] = ∇2

x2x1
f(x∗) + ∇2

x2
f(x∗) Dx1 Ψ(x1) and using the notation J(x1) =

Dx1
Ψ(x1), we can rewrite the above as

∇2F (x1) = ∇2
x1
f(x∗) +∇2

x1x2
f(x∗) J(x1)

+ Dx1

[
(J(x1))

⊤
]
• ∇x2f(x

∗) + J(x1)
⊤
[
∇2

x2x1
f(x∗) +∇2

x2
f(x∗) J(x1)

]
.

Grouping like terms, we obtain

∇2F (x1) = ∇2
x1
f(x∗) +∇2

x1x2
f(x∗) J(x1) + J(x1)

⊤∇2
x2x1

f(x∗) + J(x1)
⊤∇2

x2
f(x∗) J(x1)

+ D2
x1

Ψ(x1)︸ ︷︷ ︸
n2×n1×n1

•∇x2
f(x∗)︸ ︷︷ ︸

n2×1︸ ︷︷ ︸
n1×n1

.

This expression can be compactly represented in block form as

∇2F (x1) =
[
I J(x1)

⊤] ∇2f(x∗)

[
I

J(x1)

]
+D2

x1
Ψ(x1) • ∇x2

f(x∗) ,

which completes the derivation. ■
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E.2 Rayleigh Quotients Comparison

Lemma 4 (Rayleigh Quotient on an Embedded Subspace) Let A ∈ Rn×n be a symmetric matrix
and let B ∈ Rn×k (k < n) have full column–rank. Write

V := imB ⊂ Rn, B⊤B ≻ 0 .

Define the ambient extremal Rayleigh quotients

λmax(A) := max
v∈Rn, v ̸=0

v⊤Av

v⊤v
, λmin(A) := min

v∈Rn, v ̸=0

v⊤Av

v⊤v
,

and the embedded (or generalised) Rayleigh quotients

λmax(A|V) := max
y∈Rk, y ̸=0

y⊤B⊤AB y

y⊤B⊤B y
, λmin(A|V) := min

y∈Rk, y ̸=0

y⊤B⊤AB y

y⊤B⊤B y
.

Then
λmin(A) ≤ λmin(A|V) ≤ λmax(A|V) ≤ λmax(A) . (∗)

Moreover, the right (resp. left) inequality in (∗) is strict if and only if Emax(A) ∩ V = {0} (resp.
Emin(A) ∩ V = {0}).

Proof Put w := By ∈ V . Because B has full column–rank, the map y 7→ w is a bijection between
Rk \ {0} and V \ {0} and

y⊤Ry = (By)⊤(By) = ∥w∥2, y⊤B⊤AB y = (By)⊤A(By) = w⊤Aw .

Hence

λmax(A|V) = max
w∈V, w ̸=0

w⊤Aw

w⊤w
, λmin(A|V) = min

w∈V, w ̸=0

w⊤Aw

w⊤w
.

Applying the Courant–Fischer variational characterisation to the ordinary Rayleigh quotient on the
proper subspace V ⊂ Rn gives the chain of inequalities (∗). If, in addition, Emax(A) ∩ V = {0}
(respectively Emin(A) ∩ V = {0}), then the extremal value attained over V is strictly smaller
(respectively strictly larger) than the ambient one. ■

Corollary 4 (Euclidean Rayleigh Bounds via Gram-Matrix Extremes) Keep the notation and
assumptions of Lemma 4 and set

m(R) := λmin(R), M (R) := λmax(R) (0 < m ≤ M) .

Define the coordinate Rayleigh quotients

λ̂max(B
⊤AB) := max

y∈Rk, y ̸=0

y⊤B⊤AB y

y⊤y
, λ̂min(B

⊤AB) := min
y∈Rk, y ̸=0

y⊤B⊤AB y

y⊤y
.

Then
m(R) λmin(A) ≤ λ̂min(B

⊤AB) ≤ λ̂max(B
⊤AB) ≤ M (R) λmax(A) . (∗)

Moreover, the right (resp. left) inequality in (∗) is strict if and only if Emax(A) ∩ V = {0} (resp.
Emin(A) ∩ V = {0}).

Proof Because m(R)I ⪯ R ⪯ M (R)I , for every y ̸= 0 one has

m(R) y⊤y ≤ y⊤Ry ≤ M (R) y⊤y .

Combining this with the definition of the generalised Rayleigh quotient gives

y⊤B⊤AB y

y⊤y
≤ M (R) y

⊤B⊤AB y

y⊤Ry
,

y⊤B⊤AB y

y⊤y
≥ m(R) y

⊤B⊤AB y

y⊤Ry
.

Taking the maximum (respectively minimum) over y ̸= 0 and invoking Lemma 4 yields

m(R) λmin(A|V) ≤ λ̂min(B
⊤AB) ≤ λ̂max(B

⊤AB) ≤ M (R) λmax(A|V) .
Applying again the bounds λmin(A) ≤ λmin(A|V) and λmax(A|V) ≤ λmax(A) gives the chain (∗).
Strictness of the outer inequalities propagates from the corresponding strictness in Lemma 4. ■
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E.3 Uniform Angle Bounds and Genericity

Lemma 5 (Local Compactness of the Intersection S ∩MF in a bounded neighbourhood) Let a
function f be C2. We define the manifold of local minimisers as

S = {x ∈ Rn : ∇f(x) = 0, f(x) = fS} ,

and the graph of a continuous mapping Ψ as

MF = {(x1,Ψ(x1)) : x1 ∈ Rn1} .

Also, let N ⊂ Rn1+n2 be an closed and bounded set. Write

S loc := S ∩ N , Mloc
F := MF ∩N .

Then both S loc and Mloc
F are closed subsets of the compact set N , and therefore

S loc ∩Mloc
F ,

is compact.

Proof We can write the solution manifold S as an intersection of two pre-images

S = f−1({fS}) ∩ (∇f)−1({0}) .

Since f is C1, and {fS} ⊂ R, {0} ⊂ R are closed sets, it follows that their respective pre-images are
closed in Rn. Hence, S is a closed set.

Similarly, the feasible manifold can be defined as the pre-image of a function g : Rn1 × Rn2 → Rn2

such that
MF = {(x1, x2) : g(x1, x2) := x2 −Ψ(x1) = 0} = g−1({0}) ,

is closed in Rn1+n2 .

Finally, since S and MF are closed, their intersection with the neighbourhood N is a closed subset of
a compact set. Any closed subset of a compact set is compact, and thus S loc ∩Mloc

F is compact. ■

Lemma 6 (Uniform Angle Bound for an Isolated Spectral Subspace) Let N ⊂ Rn be a compact
set and let H : N → Sym(n) be a continuous map. Let MF ⊂ Rn be a smooth submanifold such
that K := N ∩MF is compact.

For each x ∈ K choose an eigenvalue λ(x) ∈ spec(Hx) (with multiplicity k ≥ 1) and assume it is
uniformly isolated:

min
µ∈spec(Hx)\{λ(x)}

|µ− λ(x)| ≥ ∆ > 0 .

Define the (possibly multi-dimensional) eigenspace

E(x) := ker
(
Hx − λ(x)I

)
,

and assume that it satisfies

E(x) ∩ TxMF = {0}, ∀x ∈ K .

Then there exists θ > 0 such that for every x ∈ K and every unit vector v ∈ E(x) one has

∠
(
v, TxMF

)
≥ θ .

Proof Step 1. Continuous subspace field produced by the Riesz projector. By hypothesis, for every
x ∈ N ∩MF we have

min
µ∈spec(Hx)\{λ(x)}

|µ− λ(x)| ≥ ∆ > 0 ∀x ∈ N ∩MF .

Hence one can choose a disjoint small closed contour γ(x) of radius 1
2∆ around λ(x). By construction

this contour encloses precisely the λ-cluster and avoids all other eigenvalues of Hx. Then, the Riesz
projection onto the λ–eigenspace,

R(x) =
1

2πi

∮
γ

(z −Hx)
−1 dz ,
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is well-defined and depends continuously on x (cf. Kato [80] Ch. II §1.4).

Set
E(x) = imR(x) .

Thus x 7→ E(x) is a continuous map N ∩MF → Gr(Rn) into the Grassmannian i.e., it forms a
continuous field of subspaces.

Step 2. Compact unit-sphere field. Define

K =
{
(x, v) : x ∈ N ∩MF , v ∈ E(x), ∥v∥ = 1

}
.

Continuity of x 7→ E(x) implies that the set is closed in the product N ∩MF × Sn−1; because the
base N ∩MF is compact (since MF is closed - see Lemma 5). Hence, the set K is compact.

Step 3. Uniform angle gap. For any (x, v) ∈ K, we have v /∈ TxMF by the hypothesis E(x) ∩
TxMF = {0}. We note that this trivial intersection is generic (Lemma 7). Because orthogonal
projection decreases norm unless the vector is in the target space,

φ(x, v) := ∥PTxMF
(v)∥ < 1 .

The function φ : N ∩MF → [0, 1) is continuous; compactness of K gives a global maximum δ =
maxK φ < 1 (by the extreme value theorem). Choosing θ = arccos δ > 0 yields ∠(v,TxMF ) ≥ θ
for all (x, v) ∈ K, as claimed. ■

Corollary 5 (Uniform Angle for the λmin–Eigenspace) Let K := N ∩ S ∩MF ⊂ Rn, where N
is a closed bounded neighbourhood of a local minimiser of f ∈ C2, S is the Morse–Bott critical
locus of f , and MF is a smooth submanifold (so K is compact - see Lemma 5). Set

Hx := ∇2f(x)
∣∣
NxS

, x ∈ K ,

so that Hx is positive–definite. Suppose

(a) the smallest eigenvalue λmin(x) (mult. m ≥ 1) of Hx is isolated by a uniform gap

λn−m(x)− λmin(x) ≥ ∆min > 0 ,

(b) its eigenspace Emin(x) := ker
(
Hx − λmin(x)I

)
satisfies the trivial intersection

Emin(x) ∩ TxMF = {0}, ∀x ∈ K .

Then Lemma 6 yields a constant θ > 0 such that, for every x ∈ K and every unit v ∈ Emin(x),

∠
(
v,TxMF

)
≥ θ .

Corollary 6 (Uniform Angle for the σmax–Singular Subspace) Let K := N ∩ MF ⊂ Rn,
where N is a closed bounded neighbourhood of a local minimiser of f ∈ C2 and MF is a smooth
submanifold (so K is compact - see Lemma 5). For x ∈ K set

Hx := ∇2f(x), σmax(x) := largest singular value of Hx.

Assume

(a) the largest singular value σmax(x) (mult. p ≥ 1) of Hx is isolated by a uniform gap

σmax(x)− σp+1(x) ≥ ∆max > 0 ,

(b) the eigenspace Emax(x) := ker
(
H2

x − σ2
max(x)I

)
satisfies the trivial intersection

Emax(x) ∩ TxMF = {0}, ∀x ∈ K .

Then, by Lemma 6 (with the eigenvalue cluster {σ2
max(x)} of H2

x), there exists θ > 0 such that for
every x ∈ K and every unit v ∈ Emax(x),

∠
(
v,TxMF

)
≥ θ .
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Lemma 7 (Genericity of Trivially-Intersecting Subspaces) Let 0 < k, l < N with k + l < N .
Write Gr(k,N) (resp. Gr(l, N)) for the real Grassmannian of k–planes (resp. l–planes) in RN and
set

Σ = {(U ,V) ∈ Gr(k,N)×Gr(l, N) | U ∩ V ̸= {0}} .
Then Σ is a real-algebraic subset of Gr(k,N)×Gr(l, N) of codimension

codimΣ = N − (k + l) + 1 ≥ 1 .

Consequently Σ has empty interior and Lebesgue measure 0; in particular a generic pair of planes
satisfies U ∩ V = {0}.

Proof Step 1. Rank-drop criterion. Choose full-rank matrices U ∈ RN×k, V ∈ RN×l whose
column spaces are U and V , and form the N × (k + l) matrix M = [U V ]. We have

U ∩ V ≠ {0} ⇐⇒ rankM ≤ k + l − 1 .

Thus the “bad” locus Σ is the image in Gr(k,N)×Gr(l, N) of the determinantal variety

D :=
{
M ∈ RN×(k+l) | rankM ≤ k + l − 1

}
,

defined by the vanishing of all (k + l)× (k + l) minors of M .

Step 2. Codimension in matrix space. For general integers N,m, r with r < m ≤ N ,

dim{N ×m matrices of rank ≤ r} = (N +m)r − r2 ,

hence
codimRN×m{ rank ≤ r} = Nm− (N +m)r + r2 = (N − r)(m− r) .

Taking m = k + l and r = k + l − 1 gives

codimRN×(k+l) D = (N − (k + l) + 1) .

Because k + l < N by hypothesis, this number is ≥ 1.

Step 3. Passage to the Grassmannians. The product of Stiefel manifolds St(k,N) × St(l, N) ⊂
RN×(k+l) , is an open subset of the full-rank matrices, so intersecting D with it cannot decrease
codimension. Next, the quotient map

St(k,N)× St(l, N) −→ Gr(k,N)×Gr(l, N), (Q1, Q2) 7→ (col(Q1), col(Q2)) ,

is a smooth submersion with compact fibres O(k)×O(l), which preserves codimension. Consequently

codimGr(k,N)×Gr(l,N) Σ = N − (k + l) + 1 .

Step 4. Genericity. Because Σ is a proper real-algebraic subset of positive codimension, it has
Lebesgue measure 0 and empty interior. Its complement is therefore dense (indeed Zariski open) and
of full measure, so a generic pair (U ,V) satisfies U ∩ V = {0}. ■

E.4 Genericity of Single Eigenvalues

Lemma 8 (Codimension of the Repeated Eigenvalue Locus [81, 80]) Let

S(n) = {A ∈ Rn×n : A = A⊤} ,
be the space of real symmetric n× n matrices, and let,

Σ = {A ∈ S(n) : A has a repeated eigenvalue} .
Then Σ is an algebraic subset of S(n) (namely, the zero set of the discriminant of the characteristic
polynomial).

At a matrix A0 ∈ Σ where an eigenvalue λ0 has multiplicity exactly 2 (with the other eigenvalues
distinct and different from λ0), the condition that a nearby matrix has a double eigenvalue imposes
two independent (local) constraints on its parameters.

Consequently, the codimension of Σ in S(n) is at least 2.
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Remark 5 (Generic Simplicity of the Eigenvalues of Symmetric Matrices) Lemma 8 shows
that the set of symmetric matrices with repeated eigenvalues is a real-analytic subset of Sn, which
can be decomposed into a finite union of smooth submanifolds, each of codimension at least two.
Since smooth submanifolds of codimension ≥ 2 have Lebesgue measure zero (by applying Sard’s
theorem [82]), it follows that this set has measure zero. Therefore, the complement—the set of
symmetric matrices with simple (distinct) eigenvalues—has full measure. In other words, simple
eigenvalues are generic among symmetric matrices.

F Transversality and Clean Intersection of Smooth Manifolds

To study the geometry of constrained critical sets, we begin by recalling two foundational concepts
that govern how smooth manifolds intersect: transversality [83, Chapter 3] and clean intersection [84,
Appendix C.3]. These notions describe the local structure and regularity of the intersection and play a
central role in establishing genericity results for solution sets in optimisation and variational problems.
To build geometric intuition, we illustrate examples of transverse and clean (but non-transverse)
intersections in Figure 5.

Let
M, N ⊂ Z ,

be embedded submanifolds of a smooth manifold Z , with

dimM = r, dimN = k, dimZ = l .

The classical condition of transversality ensures that two manifolds intersect in general position,
meaning their tangent spaces at each point of intersection span the ambient space. This condition is
central in differential topology and guarantees that intersections behave stably under perturbation.
However, in many geometric and optimisation contexts, transversality is unnecessarily strong. For
example, if the sum of the dimensions satisfies r + k < l, then transversality cannot hold unless the
intersection is empty. Consequently, generic perturbations that enforce transversality may eliminate
meaningful intersections entirely.

This behaviour is undesirable in applications where the intersection encodes feasible or optimal
solutions—properties we wish to preserve. To accommodate more flexible and structured intersections,
the notion of clean intersection provides a weaker but still geometrically meaningful alternative.
Clean intersection allows the tangent spaces to align nontrivially, as long as the intersection remains
a smooth submanifold with compatible tangent structure. This relaxation offers a more flexible
framework that preserves non-empty intersections under generic, local perturbations, which is exactly
the setting we consider in our problem.

We now formalise both notions:

Definition 4 (Transversality) We say that M and N intersect transversally, denoted by M ⋔ N , if
for every point x ∈ M∩N the tangent spaces satisfy

TxM+TxN = TxZ ,

or, equivalently, the normal spaces satisfy

NxM∩NxN = {0} .

Definition 5 (Clean Intersection) We say that M and N intersect cleanly, denoted by M ⋒N , if
for every point x ∈ M∩N , we have that the dimension d := dim(TxM∩ TxN ) is constant and

Tx(M∩N ) = TxM∩ TxN .

Remark 6 Transversality implies a clean intersection between manifolds but the converse is not
always true.

To rigorously analyse generic properties of smooth manifolds and function spaces, we work within
the topological framework of residual sets. This notion allows us to make precise what it means for a
property to hold “generically”—that is, to be true for a large and stable class of objects. In particular,
we will be concerned with residual subsets in spaces of smooth functions or immersions, equipped
with the Whitney Cr topology.
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Definition 6 (Residual set & generic property) Let X be a topological space. A subset

A ⊂ X ,

is called residual if it contains a countable intersection of dense open sets in X . If X is a Baire space
(e.g., any Banach or Fréchet space, with its usual topology), then every residual set is itself dense in
X .

A property P of points in X is said to hold generically if the set

{x ∈ X : x satisfies P} ,
is residual in X .

Within this framework, differential topology offers a foundational result: transversality is a generic
condition, as we see in the following Lemma. That is, for a large class of smooth mappings,
transversality to a fixed submanifold holds generically under perturbation.

Lemma 9 (Generic Transversality of Submanifolds) Let M,N ⊂ Z be submanifolds of a smooth
manifold Z , and let F be the space of smooth immersions of one of the submanifolds into Z (e.g.,
M). Then, the set of maps ϕ ∈ F such that ϕ(M) ⋔ N is residual in F with the Whitney Cr

topology for r ≥ 1. In particular transverse intersection is generic under smooth perturbation.

Proof This result follows directly from standard transversality theory, specifically the Parametric
Transversality Theorem or Thom’s Transversality Theorem. See, for example, [83, Chapter 3,
Theorems 2.1 and 2.9], where it is shown that the set of maps transverse to a fixed submanifold is
residual in Whitney Cr topology for any r ≥ 1. ■

We now apply these concepts to the setting of critical points. Let f ∈ C2(Rn) be a smooth function
satisfying the Morse–Bott condition, and consider the set of critical points at a fixed value as defined
below. We are particularly interested in the intersection of this critical locus with a fixed feasible
manifold MF ⊂ Rn. While transverse intersection may fail due to dimension constraints, clean
intersection remains a viable and meaningful condition—and, crucially, it holds generically within
the space of C2 functions.

Definition 7 (Critical-locus map) Fix c ∈ R and a C2 function f : Rn → R in which the
Morse–Bott property holds. Define

C (x) =
(
f(x)− c,∇f(x)

)
: Rn → R× Rn .

Its zero-set S = C−1(0, 0) is the Morse–Bott critical locus.

Lemma 10 (Equivalence of Clean Intersection and Local Transversality [85, Lemma 2.6]) Let
M,N ⊂ Z be submanifolds of a smooth manifold Z , and suppose that the dimension dim(TxM∩
TxN ) is locally constant for all x ∈ M∩N . Then, the following are equivalent:

1. M ⋒N ;
2. For each x ∈ M ∩ N , there exists a submanifold N ′ ⊂ Z containing N near x, with

codim(N ′) = dimM− dim(TxM∩ TxN ) such that

M ⋔ N ′ and M∩N = M∩N ′ locally near x .

In particular, clean intersection between M and N near x is equivalent to transversality of M with
an auxiliary submanifold N ′ that locally agrees with N on the intersection.

Lemma 11 (Generic Clean Intersection of the Critical Locus) Let S = C−1(0, 0) be the Morse–
Bott critical locus of a C2 function f : Rn → R at level c ∈ R as in Definition 7, and let MF ⊂ Rn

be a fixed embedded submanifold. Then, clean intersection between S and MF is a generic property
in the space of C2 functions under the Whitney topology.

Proof By Lemma 10, clean intersection between S and MF near a point x ∈ S∩MF is equivalent
to the existence of a submanifold N ⊂ Rn containing MF near x such that

S ∩MF = S ∩ N locally, and S ⋔ N .
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That is, clean intersection is locally equivalent to transversality between S and an auxiliary submani-
fold N .

Since S is defined as the zero set of the critical-locus map C (x) = (f(x) − c,∇f(x)), it varies
smoothly with f in the Whitney C2 topology. By Lemma 9, transversality S ⋔ N is a generic
condition among C2 functions. Therefore, clean intersection S ⋒MF holds generically in the space
of C2 functions. ■

Remark 7 (Density and Small Perturbations) Since every residual set in a Baire space is dense,
the generic set

{ f ∈ C2 (Rn) : Critc(f) ⋒MF } ,
is not only large in the topological sense but also satisfies: for any given f and any ϵ > 0, there exists
a g ∈ C2 (Rn) with ∥g − f∥C2 < ϵ such that Critc(g) ⋒MF .

In other words, any non-generic f can be made generically clean by an arbitrarily small C2

perturbation, without making the intersection empty.

36



Figure 5a: Transverse Intersection
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Figure 5b: Corresponding Intersection Set

Figure 5c: Clean & Non-Transverse
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Figure 5d: Corresponding Intersection Set

Figure 5e: Non-Clean & Non-Transverse
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Figure 5f: Corresponding Intersection Set

Figure 5: Visualisations of three types of surface intersections in R3. Left column shows intersecting
surfaces, right column shows corresponding intersection curves. Top (Transverse): The paraboloid
z = x2+y2 intersects the plane z = 1+x+y transversely, with distinct tangent planes at every point
of intersection. Middle (Clean, Non-Transverse): The surface z = −0.02x2 − 0.02y2 is intersected
by the curve γ(t) = (0, t, −0.02t2 + φ(t)), where φ(t) = 0 for |t| ≤ 1, φ(t) = 0.04(−t− 1)3 for
t < −1, and φ(t) = −2(t−1)3 for t > 1. The curve lies exactly on the surface for t ∈ [−1, 1], so the
intersection is a smooth 1D submanifold and hence clean. However, outside this interval, the curve
deviates from the surface, and the tangent vectors do not span R3, so the intersection is not transverse.
Bottom (Non-Clean, Non-Transverse): The surfaces z = x2 + y2 and z = x2 + y2 + x2y intersect
along {x = 0} ∪ {y = 0}, forming two parabolic curves that meet at the origin. At the origin, there
is a singularity, so the intersection is not a smooth submanifold, hence neither clean nor transverse.
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