NN: 5825 Model 5G pp- 1-10 (col. figs: 4)

Contents lists available at ScienceDirect

Neural Networks
Gﬁ. b
FI SEVIER journal homepage: www.elsevier.com/locate/neunet
Highlights
Bidirectionally self-normalizing neural networks Neural Networks xxx (xxxx) xxx

Yao Lu’, Stephen Gould, Thalaiyasingam Ajanthan

e The vanishing/exploding gradient problem in training deep neural networks is addressed.
e The problem is provably solved under mild conditions using high-dimensional probability theory.
e Experiments show neural network of 200 layers can be trained without linearizing the networks.

Graphical abstract and Research highlights will be displayed in online search result lists, the online
contents list and the online article, but will not appear in the article PDF file or print unless it is

mentioned in the journal specific style requirement. They are displayed in the proof pdf for review
purpose only.

Please cite this article as: Y.Lu, S.Gould and T Ajanthan, Bidirectionally self-normalizing neural networks. Neural Networks (2023),
https://doi.org/10.1016fj.neunet.2023.08.017.

NN: 5825

Neural Networks xoo¢ (s00) x00

1

ELSEVIER

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Bidirectionally self-normalizing neural networks

Yao Lu** Stephen Gould ?, Thalaiyasingam Ajanthan *¢

* Australian National University, Australia
b peking University, China
© Amazon

ARTICLE INFO

Article history:

Received 11 October 2022

Received in revised form 9 August 2023
Accepted 11 August 2023

Available online xxxx

Keywords:

Neural networks

Vanishing/exploding gradient problem
Training

Optimization

ABSTRACT

The problem of vanishing and exploding gradients has been a long-standing obstacle that hinders the
effective training of neural networks. Despite various tricks and techniques that have been employed
to alleviate the problem in practice, there still lacks satisfactory theories or provable solutions. In
this paper, we address the problem from the perspective of high-dimensional probability theory. We
provide a rigorous result that shows, under mild conditions, how the vanishing/exploding gradients
problem disappears with high probability if the neural networks have sufficient width. Our main idea
is to constrain both forward and backward signal propagation in a nonlinear neural network through
a new class of activation functions, namely Gaussian-Poincaré normalized functions, and orthogonal
weight matrices. Experiments on both synthetic and real-world data validate our theory and confirm
its effectiveness on very deep neural networks when applied in practice.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Neural networks have brought unprecedented performance
in various artificial intelligence tasks (Ciregan, Meier, & Schmid-
huber, 2012; Graves, Mohamed, & Hinton, 2013; Krizhevsky,
Sutskever, & Hinton, 2012; Silver et al,, 2017). However, despite
decades of research, training neural networks is still mostly
guided by empirical observations and successful training often
requires various heuristics and extensive hyperparameter tuning.
It is therefore desirable to understand the cause of the difficulty
in neural network training and to propose theoretically sound
solutions.

A major difficulty is the vanishing/exploding gradients prob-
lem (Bengio, Simard, & Frasconi, 1994; Glorot & Bengio, 2010;
Hochreiter, 1991; Pascanu, Mikolov, & Bengio, 2013; Philipp,
Song, & Carbonell, 2018). That is, the norm of the gradient in
each layer is either growing or shrinking at an exponential rate
as the gradient signal is propagated from the top layer to bot-
tom layer. For deep neural networks, this problem might cause
numerical overflow and make the optimization problem intrinsi-
cally difficult, as the gradient in each layer has vastly different
magnitude and therefore the optimization landscape becomes
pathological. One might attempt to solve the problem by simply
normalizing the gradient in each layer. Indeed, the adaptive
gradient optimization methods (Duchi, Hazan, & Singer, 2011;

* Corresponding author at: Peking University, China.

E-mail addresses: yaolubrain@gmail.com (Y. Lu), stephen.gould@anu.edu.au
(S. Gould), thalaiyasingam.ajanthan@anu.edu.au (T. Ajanthan).

https:/[/doi.org/10.1016/j.neunet.2023.08.017
0893-6080(© 2023 Elsevier Lid. All rights reserved.

Kingma & Ba, 2015; Tieleman & Hinton, 2012) implement this
idea and have been widely used in practice. However, one might
also wonder if there is a solution more intrinsic to deep neural
networks, whose internal structure if well-exploited would lead
to further advances. For example, making the activation function
more linear (Glorot, Bordes, & Bengio, 2011) and adding residual
connections (He, Zhang, Ren, & Sun, 2016) might alleviate the
problem, though they do not solve it in principle.

To enable the trainability of deep neural networks, batch nor-
malization (loffe & Szegedy, 2015) was proposed in recent years
and achieved widespread empirical success. Batch normalization
is a differentiable operation which normalizes its inputs based
on mini-batch statistics and is inserted between the linear and
nonlinear layers. It is reported that batch normalization can ac-
celerate neural network training significantly (loffe & Szegedy,
2015). However, batch normalization does not solve the van-
ishing/exploding gradients problem (Philipp et al., 2018). Indeed
it is proved that batch normalization can actually worsen the
problem (Yang, Pennington, Rao, Sohl-Dickstein, & Schoenholz,
2019). Besides, batch normalization requires separate training
and testing phases and can be ineffective when the mini-batch
size is small (loffe, 2017).

Alternatively, self-normalizing neural networks (Klambauer,
Unterthiner, Mayr, & Hochreiter, 2017) and dynamical isometry
theory (Pennington, Schoenholz, & Ganguli, 2017) were proposed
to combat the vanishing/exploding gradients problem. In self-
normalizing neural networks, a new activation function, scaled
exponential linear unit (SELU), was devised to ensure the output
of each unit to have zero mean and unit variance. In dynamical

_NN: 5825

Y. Lu, 5. Gould and T. Ajanthan

isometry theory, all singular values of the input-output Jacobian
matrix are constrained to be close to one at initialization. This
amounts to initializing the functionality of a neural network to
be close to an orthogonal matrix. While the two theories dispense
batch normalization, it is shown that neural networks with SELU
still suffer from the vanishing/exploding gradients problem and
dynamical isometry restricts the functionality of neural networks
to be close to linear (pseudo-linearity) (Philipp et al,, 2018).

In this paper, we follow the above line of research to investi-
gate neural network trainability. Our contributions are three-fold:
First, we propose a new type of neural networks that consist
of orthogonal weight matrices and a new class of activation
functions which we call Gaussian-Poincaré normalized (GPN)
functions. We show many common activation functions can be
easily transformed into their respective GPN versions. Second, we
rigorously prove that the vanishing/exploding gradients problem
disappears with high probability in the neural networks if the
width of each layer is sufficiently large. Third, with experiments
on synthetic and real-world data, we confirm that the vanish-
ing/exploding gradients problem is solved to large extent in the
neural networks while nonlinear functionality is maintained.

2. Theory

In this section, we introduce bidirectionally self-normalizing
neural networks (BSNNs) formally and analyze its properties. All
the proofs of our results are left to Appendix. To simplify the
analysis, we define neural network in a restricted sense as the
following.

Definition 1 (Neural Network). A neural network is a function
from B9 to R that forI=1,...,L

h = \N[”X[”, U+ — @(h{l))‘ (1)

where W) € R9*4, ¢ : R — R is a differentiable function applied
element-wise to a vector, x'" € R4 is the input and x!"*+1 ¢ R? is
the output.

Under this definition, ¢ is called the activation function,
{WW}_ | are called the parameters, d is called the width and L
is called the depth and superscript (I) denotes the Ith layer of a
neural network. The above formulation is similar to Pennington
et al. (2017) but we omit the bias term in (1) for simplicity as it
plays no role in our analysis.

Let E be the objective function of {W"}[and DY =
diag(¢'(h"), ..., #'(h}))), where ¢’ denotes the derivative of ¢
and h” denotes the ith element of h). Now, the error signal is
back propagated via

W _ po_9E
y"=D ax(+1)’ (2)
y“] — D[I](WH—]]]Ty“-'—”» [3)

and the gradient of the weight matrix for layer [can be computed
as
IE i
— yl Dy
swa = YO (4)

To solve the vanishing/exploding gradients problem, we con-
strain the forward signal x'” and the backward signal y'” in order
to constrain the norm of the gradient. This leads to the following.

Definition 2 (Bidirectional Self-Normalization). A neural network
is bidirectionally self-normalizing if

IXVNy = --- = x|, = Vd, (5)

JE
Dy, — = @y, = [
lyPlla =--- = lly ||2—|’axu+1}H2- (6)

Neural Networks xxx (xxxx) xxx

Proposition 1.
normalizing, then
P) WD

dE
| |

In the rest of this section, we derive the conditions under
which bidirectional self-normalization is achievable for a neural
network.

If a neural network is bidirectionally self-

2,

2.1. Constraints on weight matrices

We constrain the weight matrices to be orthogonal since mul-
tiplication by an orthogonal matrix preserves the norm of a
vector. For linear neural networks, this guarantees bidirectional
self-normalization and its further benefits are discussed in Saxe,
McClelland, and Ganguli (2014). Even for nonlinear neural net-
works, orthogonal constraints are shown to improve the train-
ability with proper scaling (Mishkin & Matas, 2016; Pennington
et al.,, 2017).

2.2. Constraints on activation functions

To achieve bidirectional self-normalization for a nonlinear net-
work, it is not enough only to constrain the weight matrices. We
also need to constrain the activation function in such a way that
both forward and backward signals are normalized. To this end,
we propose the following constraint.

Definition 3 (Gaussian-Poincaré Normalization). Function ¢
R — & is Gaussian—Poincaré normalized if it is differentiable and

Exn0,)[¢(x)*] = Evonro.)[¢'(x)*] = 1. (8)

The definition is inspired by the following theorem which
shows the fundamental relationship between a function and its
derivative under Gaussian measure.

Theorem 1 (Gaussian-Poincaré Inequality). If function ¢ : R — R
is differentiable and has bounded E, o 1)[¢(x)*] and Eyaro.1)
[¢'(x)*], then

Vare a0, 1)[¢x)] < Exnro,n)[@'(x)%1. (9)

The proof can be found in Bogachev (1998). Note that there is
an implicit assumption that the input is approximately Gaussian
for a Gaussian-Poincaré normalized (GPN) function. Even though
this is standard in the literature (Klambauer et al., 2017; Penning-
ton et al, 2017; Schoenholz, Gilmer, Ganguli, & Sohl-Dickstein,
2017), we will rigorously prove that this assumption is valid
when orthogonal weight matrices are used in (1). Next, we state
a property of GPN functions.

Proposition 2. Function ¢ R — R is Gaussian-Poincaré
normalized and Ey_pro 1)[¢(x)] = 0 if and only if ¢(x) = x or
d(x) = —x.

This result indicates that any nonlinear function with zero
mean under Gaussian distribution (e.g., Tanh and SELU) is not
GPN. Now we show that a large class of activation functions can
be converted into their respective GPN versions using an affine
transformation.

Proposition 3. For any differentiable function ¢ : B — R with
non-zero and bounded E, 0, 1)[¢(X)*] and B, v 1)[¢'(x)*], there
exist two constants a € R and b € R such that ap(x) + b is
Gaussian—Poincaré normalized.

_NN: 5825

Y. Lu, 5. Gould and T. Ajanthan

Table 1
Constants for Gaussian-Poincaré normalization of activation functions.
Tanh RelU LeakyRelU ELU SELU GELU
a 1.4674 1.4142 14141 1.2234 0.9660 1.4915
b 0.3885 0.0000 0.0000 0.0742 0.2585 0.9097

To obtain a and b, one can use numerical procedure to com-
pute the values of Ex- a0, 1)[¢'(x)?], Ex~ar0,1)[@(x)*] and Ex-pr0,1)
[¢(x)] and then solve the quadratic equations

Exnion[@®¢’(x)*] = 1, (10)
Exnto,[(ap(x) + bY] = 1. (11)

We computed a and b (not unique) for several common activation
functions (Clevert, Unterthiner, & Hochreiter, 2016; Hendrycks &
Gimpel, 2016; Klambauer et al.,, 2017; Maas, Hannun, & Ng, 2013;
Nair & Hinton, 2010) with their default hyperparameters' and
the results are listed in Table 1. Note that RelLU, LeakyRelLU and
SELU are not differentiable at x = 0 but they can be regarded
as approximations of their smooth counterparts. We ignore such
point and evaluate the integrals for x € (—oc, 0) U (0, 0o).

With the orthogonal constraint on the weight matrices and
the Gaussian-Poincaré normalization on the activation function,
we prove that bidirectional self-normalization is achievable with
high probability under mild conditions in the next subsection.

2.3. Norm-preservation theorems

The bidirectional self-normalization may not be achievable
precisely in general unless the neural network is a linear one.
Therefore, we investigate the properties of neural networks in
a probabilistic framework. The random matrix theory and the
high-dimensional probability theory allow us to characterize the
behaviors of a large class of neural networks by its mean behavior,
which is significantly simpler to analyze. Therefore, we study
neural networks of random weights whose properties may shed
light on the trainability of neural networks in practice.

First, we need a probabilistic version of the vector norm con-
straint.

Definition 4 (Thin-Shell Concentration). Random vector x € R? is
thin-shell concentrated if for any € = 0

7|

as d — oo.

1
i3 = 1| >} >0 (12)

The definition is modified from the one in Bobkov (2003). Ex-
amples of thin-shell concentrated distributions include standard
multivariate Gaussian and any distribution on the d-dimensional
sphere of radius +/d.

To prove the main results, ie., the norm-preservation theo-
rems, we require the following assumptions.

Assumptions.

1. Random vector x € RY is thin-shell concentrated.

2. Random orthogonal matrix W = (wy, ..., wy)" is uniformly
distributed.

3. Function ¢ : R — R is Gaussian—Poincaré normalized.

4. Function ¢ and its derivative are Lipschitz continuous.

T we use ¢(x) = max(0, x) + 0.01 min(0, x) for LeakyReLU, ¢(x) = max(0, x) |
min(0, exp(x) — 1) for ELU and ¢(x) = x/(1 + exp(- 1.702x)) for GELU.

Neural Networks xxx (xxxx) xxx

The above assumptions are not restrictive. For Assumption
1, one can always normalize the input vectors of a neural net-
work. For Assumption 2, orthogonal constraint or its relaxation
has already been employed in neural network training (Brock,
Lim, Ritchie, & Weston, 2017). Note, in Assumption 2, uniformly
distributed means that W is distributed under Haar measure,
which is the unique rotation invariant probability measure on or-
thogonal matrix group. We refer the reader to Meckes (2019) for
details. Furthermore, all the activation functions or their smooth
counterparts listed in Table 1 satisfy Assumptions 3 and 4.

With the above assumptions, we can prove the following
norm-preservation theorems.

Theorem 2 (Forward Norm-Preservation).
(P(WiX), ... p(w;x)) (13)
is thin-shell concentrated.

This result shows the transformation (orthogonal matrix fol-
lowed by the GPN activation function) can preserve the norm
of its input with high probability. Since the output is thin-shell
concentrated, it serves as the input for the next layer and so on.
Hence, the forward pass can preserve the norm of its input in
each layer along the forward path when d is sufficiently large.

Theorem 3 (Backward Norm-Preservation). Let
D = diag(¢'(w;X), ..., ¢'(WyX)) (14)
andy € R be a fixed vector with bounded ||y|| .- Then for any € = 0

- 1 2 2
P [IDYI3 — IyI3| = €] -0 (15)
as d — oc.

This result shows that the multiplication by the diagonal ma-
trix D preserves the norm of its input with high probability. Since
orthogonal matrix W also preserves the norm of its input, when
the gradient error signal is propagated backwards as in (3), the
norm is preserved in each layer along the backward path when d
is sufficiently large.

Hence, combining Theorems 2 and 3, we proved that bidirec-
tional self-normalization is achievable with high probability if the
neural network is wide enough and the conditions in the Assump-
tions are satisfied. Then by Proposition 1, the vanishing/exploding
gradients problem disappears with high probability.

Sketch of the proofs. The proofs of Theorems 2 and 3 are
mainly based on a phenomenon in high-dimensional probability
spaces, concentration of measure. We refer the reader to Ver-
shynin (2018) for an introduction to the subject. Briefly, it can
be shown that for some high-dimensional probability distri-
butions, most mass is concentrated around certain range. For
example, while most mass of a low-dimensional standard mul-
tivariate Gaussian distribution is concentrated around the center,
most mass of a high-dimensional standard multivariate Gaussian
distribution is concentrated around a thin-shell. Based on this
phenomenon, it can be shown that random vector Wx in high
dimensions is approaching a random vector uniformly distributed
on a sphere. Then the random vector uniformly distributed on
a high-dimensional sphere is approximately Gaussian. Then the
Gaussian random variables transformed by Lipschitz and GPN
functions are subgaussian with unit variance. And the random
vector of the subgaussian random variables has the concentration
of norm property in high dimensions. Each of these steps is
rigorously proved in Appendix.

_NN: 5825

Y. Lu, 5. Gould and T. Ajanthan

04
0.2
0
0 50 100 150 200
Layer
(a) IxPlI3/d, Tanh.
1.2 : , .
1
0.8 s . ,
50 100 150 200
Layer
(c) Ix®|3/d, Tanh-GPN.
12 : , ‘
1
0.8 - . ,
50 100 150 200
Layer
(e) Ix®)12/d, SELU.
1.2 : , .
1
0.8 - . ,
50 100 150 200
Layer

(g) Ix®2/d, SELU-GPN.

Neural Networks xxx (xxxx) xxx

1.3]
124]
1.1 - . ,
0 50 100 150 200
Layer
(b) I 5555 . Tanh.
30
25+
20 : ; .
0 50 100 150 200
Layer
(d) Il 52455 Il . Tanh-GPN.

100 150 200
Layer

(f) Il 5555 1, SELU.

30

251

20
0 50 100 150 200
Layer
(h) 115255+, SELU-GPN.

Fig. 1. Results on synthetic data with different activation functions. *-GPN" denotes the function is Gaussian-Poincaré normalized. x|, denotes the L, norm of
the outputs of the Ith layer. d denotes the width. ||ﬁn |l is the Frobenius norm of the gradient of the weight matrix in the Ith layer.

3. Experiments

We verify our theory on both synthetic and real-world data.
In short, while very deep neural networks with non-GPN acti-
vations show vanishing/exploding gradients, GPN versions show
stable gradients and improved trainability in both synthetic and
real data. Furthermore, compared to dynamical isometry theory,
BSNNs do not exhibit pseudo-linearity and maintain nonlinear
functionality.

3.1. Synthetic data

We create synthetic data to test the norm-preservation prop-
erties of the neural networks. The input x'" is 500 data points
of random standard Gaussian vectors of 500 dimensions. The
gradient error E /ax!"*Y is also random standard Gaussian vector
of 500 dimensions. All the neural networks have depth 200. All
the weight matrices are random orthogonal matrices uniformly
generated. No training is performed.

In Fig. 1, we show the average norm of inputs and gradients of
the neural networks of width 500. The standard deviation is not
large and therefore not plotted for visual clarity. From the results,
we can see that with GPN, the vanishing/exploding gradients
problem is eliminated to large extent. The neural network with
Tanh activation function does not show the vanishing/exploding
gradients problem either. However, ||x|| is close to zero for
large | and each layer is close to a linear one since Tanh(x) = x
when x = 0 (pseudo-linearity), for which dynamical isometry is
achieved.

One might wonder if bidirectional self-normalization has the
same effect as dynamical isometry in solving the vanishing/
exploding gradients problem, that is, to make the neural network
close to an orthogonal matrix. To answer this question, we show
the histogram of qb’[hE”) in Fig. 2. If the functionality of a neu-
ral network is close to an orthogonal matrix, since the weight
matrices are orthogonal, then the values of qb’(h](”} would con-
centrate around one (Fig. 2(a)), which is not the case for BSNNs

_NN: 5825

Y. Lu, 5. Gould and T. Ajanthan

%107

0 0.2 0.4 0.6 0.8 1
(a) Tanh.

Neural Networks xxx (xxxx) xxx

3
4><10

0 0.5 1 1.5
(b} Tanh-GPN.

Fig. 2. Histogram of qb’(h':‘.”). The values of qb’(hE”) are accumulated for all units, all layers and all samples in the histogram.

10
B 4
6
4
2} T I e i S
500 1000 1500
Width

(a) Tanh-GPN.

Fig. 3. Gradient norm ratio for different layer width on synthetic data. The ratio is max; ||

show standard deviation.

Table 2

Accuracy (percentage) of neural networks of depth 200 with different activation
functions on real-world data. The numbers in parenthesis denote the results
when batch normalization is applied before the activation function.

MNIST CIFAR-10

Train Test Train Test
Tanh 99.05 (87.39) 96.57 (89.32) 80.84 (27.90) 42.71 (29.32)
Tanh-GPN 99.81 (84.93) 95.54 (87.11) 96.39 (25.13) 40.95 (26.58)
ReLU 1124 (11.24) 11.35 (11.42) 10.00 (10.00) 10.00 (10.00)
ReLU-GPN 33.28 (11.42) 28.13 (11.34) 46.60 (10.09) 34.96 (9.96)
LeakyReLU 11.24 (11.24) 11.35 (11.63) 10.00 (10.21) 10.00 (10.06)
LeakyReLU-GPN 43.17 (11.19) 49.28 (11.66) 51.85 (9.89) 39.38 (10.00)
ELU 99.06 (98.24) 95.41 (97.48) B80.73 (42.39) 45.76 (44.16)
ELU-GPN 100.00 (97.86) 96.56 (96.69) 99.37 (43.35) 43.12 (44.36)
SELU 99.86 (97.82) 97.33 (97.38) 29.23 (46.47) 29.55 (45.88)
SELU-GPN 99.92 (97.91) 96.97 (97.39) 98.24 (47.74) 45.90 (45.52)
GELU 11.24 (12.70) 11.35 (10.28) 10.00 (10.43) 10.00 (10.00)
GELU-GPN 97.67 (11.22) 95.82 (9.74) 90.51 (10.00) 36.94 (10.00)

(Fig. 2(b)). This shows that BSNNs do not suffer from the van-
ishing/exploding gradients problem while exhibiting nonlinear
functionality.

In Fig. 3, we show the gradient norm of BSNNs with varying
width. Notice, as the width increases, the norm of gradient in each
layer of the neural network becomes more equalized, as predicted
by our theory.

3.2. Real-world data

We run experiments on real-world image datasets MNIST (Le-
Cun, Bottou, Bengio, & Haffner, 1998) and CIFAR-10 (Krizhevsky,
Hinton, et al,, 2009). The MNIST dataset contains 60000 training
images and 10000 testing images in 10 classes. Each image is
gray-scaled and has size 28 x 28. The CIFAR-10 dataset contains
50000 training images and 10000 testing images in 10 classes.
Each image is colored and has size 32 x 32. The neural networks
have width 500 and depth 200 (plus one unconstrained layer at
bottom and one at top to fit the dimensionality of the input and
output). We use stochastic gradient descent of momentum 0.5

- N W & W

500 1000 1500
Width
(b) SELU-GPN.

dE

s I/ ming ||% . The width ranges from 100 to 1500. The error bars

with mini-batch size 64 and learning rate 0.0001. The training
is run for 50 epochs for MNIST and 100 epochs for CIFAR-10.
We do not use data augmentation. Since it is computationally
expensive to enforce the orthogonality constraint, we simply
constrain each row of the weight matrix to have L, norm one
as a relaxation of orthogonality by the following parametrization
W = (V-[f”\f] ”2, - ,Vd}(“\fd“z)T and optimize V=(vq,.... \f'd]T
as an unconstrained problem.

We summarize the results in Table 2. We can see that, for
activation functions ReLU, LeakyReLU and GELU, the neural net-
works are not trainable. But once these functions are GPN, the
neural network can be trained. GPN activation functions con-
sistently outperform their unnormalized counterparts in terms
of the trainability, as the training accuracy is increased, but not
necessarily generalization ability.

We show the test accuracy during training in Fig. 4, from
which we can see the training is accelerated when SELU is GPN.
RelU, LeakyReLU and GELU, if not GPN, are completely untrain-
able due to the vanished gradients.

We observe that batch normalization leads to gradient explo-
sion when combining with any of the activation functions. This
confirms the claim of Philipp et al. (2018) and Yang et al. (2019)
that batch normalization does not solve the vanishing/exploding
gradients problem. On the other hand, without batch normal-
ization the neural network with any GPN activation function
has stable gradient magnitude throughout training. This indicates
that BSNNs can dispense batch normalization and therefore avoid
its shortcomings.

4. Discussion

We compare our theory to several most relevant theories
in literature. A key distinguishing feature of our theory is that
we provide rigorous proofs of the conditions under which the
vanishing/exploding gradients problem disappears. To the best of
our knowledge, this is the first time that the problem is provably
solved for nonlinear neural networks.

Self-normalizing neural networks enforce zero mean and unit
variance for the output of each unit with the SELU activation func-
tion (Klambauer et al,, 2017). However, as pointed out in Philipp

_NN: 5825

Y. Lu, 5. Gould and T. Ajanthan

40W
Wi

20 . a Tanh
W FTanh-GF’N
‘Tanh-BN
0 Tanh-GPN-BN
20 40 60 80 100
Epoch
(a) Tanh.

Neural Networks xxx (xxxx) xxx

SELU

SELU-GPN
SELL-BN
0 | SELU-GPN-BN
20 40 60 80 100
Epoch
(b) SELU.

Fig. 4. Test accuracy (percentage) during training on CIFAR-10. “-BN” denotes that batch normalization is applied before the activation function.

et al. (2018), only constraining forward signal propagation does
not solve the vanishing/exploding gradients problem since the
norm of the backward signal can grow or shrink. In Philipp et al.
(2018) and our experiments, SELU is indeed shown to cause
gradient exploding. To solve the problem, the signal propaga-
tion in both directions need to be constrained, as in our theory.
However, our work lacks of the attractive fixed-point property
of SELU (Klambauer et al.,, 2017), which deserves the future
investigation.

Our theory is largely developed from the deep signal propaga-
tion theory (Poole, Lahiri, Raghu, Sohl-Dickstein, & Ganguli, 2016;
Schoenholz et al,, 2017). Both theories require EXNN[U:]][Q.‘J’(X)Z] =
1. However, ours also requires the quantity EXNN[U:]][QMX)Z] to
be one while in Poole et al. (2016) and Schoenholz et al. (2017)
it can be an arbitrary positive number. We emphasize that it is
desirable to enforce EXNN[U:]][QMX)Z] = 1 to avoid trivial solutions.
For example, if ¢(x) = Tanh(ex) with € =~ 0, then ¢(ex) =~
ex and the neural network becomes essentially a linear one for
which depth is unnecessary (pseudo-linearity Philipp et al,, 2018).
This is observed in Fig. 1(a). Moreover, in Poole et al. (2016)
and Schoenholz et al. (2017) the signal propagation analysis is
done based on random weights under i.i.d. Gaussian distribution
whereas we proved how one can solve the vanishing/exploding
gradients problem assuming the weight matrices are orthogonal
and uniformly distributed under Haar measure.

Dynamical isometry theory (Pennington et al., 2017) enforces
the Jacobian matrix of the input-output function of a neural
network to have all singular values close to one. Since the weight
matrices are constrained to be orthogonal, it is equivalent to
enforce each D' in (3) to be close to the identity matrix, which
implies the functionality of neural network at initialization is
close to an orthogonal matrix (pseudo-linearity). This indeed
enables trainability since linear neural networks with orthogo-
nal weight matrices do not suffer from the vanishing/exploding
gradients problem. As neural networks need to learn a nonlinear
input-output functionality to solve certain tasks, during training
the weights of a neural network are unconstrained so that the
neural network would move to a nonlinear region where the van-
ishing/exploding gradients problem might return. In our theory,
although the orthogonality of weight matrices is also required,
we approach the problem from a different perspective. We do
not encourage the linearity at initialization. The neural network
can be initialized to be nonlinear and stay nonlinear during the
training even when the weights are constrained. This is shown in
Section 3.1.

Our work is also related to weight normalization (Salimans &
Kingma, 2016) as we relax the orthogonality for computational
efficiency during training.

Although random matrices of size N x N whose elements are
i.i.d sampled from Gaussian N0, %] are orthogonal in expection,
their condition number increases as N — oo, which means
the sampled random Gaussian matrices do not enjoy the strict
norm-preserving properties as orthogonal matrices. Therefore,
the orthogonality is crucial in our theory.

A limitation of our empirical evaluation is that we reported the
results on real-world datasets for only single trials of training in
Table 2, instead of running the training for multiples trials under
different random seeds and providing error bars. This is mainly
due to that the overall training takes over 100 GPU hours and the
limited computational resources we have. However, we provide
the code in the online material for reproducing our experiments.

Future work includes extending our theory to more sophis-
ticated networks such as convolutional architectures as well as
investigating the generalization capabilities of BSNNs.

Acknowledgements

This work was funded by the Australian Research Council
Centre of Excellence for Robotic Vision (CE140100016). Yao Lu
was supported by a CSIRO/Data61 scholarship.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Data availability

The data is publicly available online.
Appendix. Proofs

Proposition 1.
normalizing, then

If a neural network is bidirectionally self-

JdE JE
’(‘)W“]HF:“‘: ’awm H; (16)
Proof. For each [, we have
JE AE ; JE \T
| 5wl = \/ trace(3 (5w) (17)
= /trace(y(x)"x(y)") (18)
= V/trace((xO) x(y)Ty0) (19)
= /(x0)TxD/[y0)ry®d (20)
= X121y 2 (21)

By the definition of bidirectional self-normalization, we have
oE

WD Il (22)

||F=‘“=||m

Proposition 2. Function ¢ : B — R is Gaussian-Poincaré
normalized and Ex-ar0.1)[¢(x)] = 0 if and only if ¢(x) = x or
o(x) = —x.

NN: 5825

Y. Lu, S. Gould and T. Ajanthan

Proof. ¢(x) and ¢'(x) can be expanded in terms of Hermite
polynomials since Eyxo,1)[¢(x)*] < 00 and Eyp0,1)[¢'(x)*] <
o¢. Let the Hermite polynomial of degree k be

B {_ }k X2 k X2
Hi(x) = N/ EXP{i)@ E‘XP{—E) (23)
and due to Hj(x) = v/kHy_1(x), we have
$(x) =) aHy(x), (24)
k=0
¢'(x) =) VkaH,1(x) (25)
k=1

where g, denotes the coefficient that
ax = Ex~ o, 1)[He(x)(x)]. (26)
Since Ey a0 1)[¢(x)] = 0, we have
g = Eypro,1y[Ho(X)p(X)] (27)

= Ex o, 1[@(x)] (28)

=0. (29)
Since
Ex-n0.0)[9(%)] = Exnron[¢' ()] = 1 (30)
and Hermite polynomials are orthonormal, we have
Exnonlp(x?]1 =) d (31)

k=1
= Exnon)[¢'(x)] (32)
= Zkuﬁ =1. (33)
k=1

Therefore, we have

ikaﬁ—iafzo (34)
k=1 k=1

that is
> (k—1)at =0. (35)
k=2

Since each term in) _,~,(k— 1)a} is nonnegative, the only solution
is ay = 0 for k > 2. And since E,x0,1)[¢(x)’] = a] = 1, we have
a; = =1. Hence, ¢p(x) = £H(x) = £x.

On the other hand, if ¢(x) = +x, then

Exno)[@(X)] = Exonro.n¥*] = 1 (36)
and
Exn0.1)[@'(X)°] = Expro.n[1] = 1. (37)

Proposition 3. For any differentiable function ¢ : B — R with
non-zero and bounded Eypqo1)[¢(x)?] and Ey- a0, 19[@'(x)*],
there exist two constants a € R and b € R such that a¢(x) + b is
Gaussian-Poincaré normalized.

Proof. Let ¢(x) = ¢(x) + ¢ where ¢ € R is a constant. We
first prove that there exists ¢ such that Exaqon[(@(x))?] =
Exar0.1[(¢'(x))?] and then prove the proposition. Let

¥ (€) = Exopo,n[9(x)] (38)
— Evnon(¢'(x))*] (39)

Neural Networks xxx (xxxx) xxx

= Varx~nio.1[¢(x)] (40)
+ (Expronl@()1) (41)
— Exnonl(¢'(X))] (42)
= Vare o, n[@(x)] (43)
+ (Bxveno.n[¢(0] + ¢)? (44)
— Exenonl(¢'(X))1. (45)

Therefore, /(c) is a quadratic function of c. We also have y(c) =
0as ¢ — oo and Y(—Eypqo.n[@x)]) < 0 due to Gaussian-
Poincaré inequality. Hence, there exists ¢ for which y(c) = 0
such that Eeno.)[(¢(x) + 1 = Evopnqonld'()*]. Let a =
(Ex-pro.[@'(x)?1)""% and b = ac, we have E, o 1l(ad(x) +
bY1 = Ex-pio,nl(ag'(x)?] = 1.

The proof is largely due to Eldredge (2020) with minor modi-
fication in here.

Assumptions.

1. Random vector x € R is thin-shell concentrated.

2. Random orthogonal matrix W = (wy, ..., wy)" is uniformly
distributed.

3. Function ¢ : R — R is Gaussian—Poincaré normalized.

4. Function ¢ and its derivative are Lipschitz continuous.

Theorem 2 (Forward Norm-Preservation).

(p(WiX). ..., p(W]X)) (46)

is thin-shell concentrated.

Theorem 3 (Backward Norm-Preservation). Let
D = diag(¢'(W}X), ..., ¢'(Wgx)) (47)

and y € RY be a fixed vector with bounded ||y| . Then for any
e=0

1
p{<|IDyI — 1y13 = €] - 0 (48)
as d — oo.

Notations. 87! = {x € R? : |X[l2 = 1}. O(d) is the orthogonal
matrix group of size d. 1;, denotes the indicator function. 04
denotes the vector of dimension d and all elements equal to zero.
I; denotes the identity matrix of size d x d.

Lemma 1. If random variable x ~ N(0, 1) and functionf : R — R
is Lipschitz continuous, then random variable f(x) is sub-Gaussian.

Proof. Due to the Gaussian concentration theorem (Theorem
5.2.2 in Vershynin (2018)), we have

IF (x) = Ef(x)lly, = CK (49)

where || - ||, denotes sub-Gaussian norm, C is a constant and K
is the Lipschitz constant of f. This implies f(x) — E[f(x)] is sub-
Gaussian (Proposition 2.5.2 in Vershynin (2018)). Therefore f(x)
is sub-Gaussian (Lemma 2.6.8 in Vershynin (2018)).

Lemma 2. Let X = (X1, ..., x4) € RY be a random vector that each
coordinate x; is independent and sub-Gaussian and E[x?] = 1. Let

V=1,vq) € R? be a fixed vector with bounded ||y||~. Then
1
D A T B (50)
i i
as d — oo.

NN: 5825

Y. Lu, S. Gould and T. Ajanthan

Proof. Since yix; is sub-Gaussian, then y?x? is sub-exponential
(Lemma 2.7.6 in Vershynin (2018)). Since E[y?x?] = y?E[x}] = y?,
y?x? — y? is sub-exponential with zero mean (Exercise 2.7.10
in Vershynin (2018)). Applying Bernstein’s inequality (Corollary
2.8.3 in Vershynin (2018)), we proved the lemma.

Lemma 3. Let z ~ N(0g4, Iy). Then forany 0 < 8§ < 1

Plz e R!: (1 - 8)Vd < ||z|lz < (1+ 8)Vd) (51)
> 1 — 2exp(—ds?). (52)
Proof. See Theorem 1.2 in Alberts and Khoshnevisan (2018).

Lemma 4. Let z ~ N (04, 14). Then z/||z|; is uniformly distributed
on 841,

Proof. See Dawkins (2016).

Lemma 5. Letz = (zy,...,24) ~ N(04,14), a = (aq, ..., aq) be
a fixed vector with bounded ||a| o, and f : R — R be a continuous
function. Then for any € = 0

n[%\ Y af(d/lzlz) - Y af(@)| = €] > 0 (53)

as d — oc.

Proof. To prove this proposition, first note that since

1
E‘ Z“J(ﬂf"ﬂlzzﬂ - Zj:“tﬂzi)‘ (54)
1
< 2 2 lal - V(Vd/lzl>z) ~ f(z0)l, (55)
if
1
HD[E Z lail - lf(\/EfHZszf) —f(z) = Gl — 0, (56)

as d — oo, then

Pl Ear/aizz - Y| =] o (57

Therefore, we only need to prove (56). For 0 < § < 1, let

1
A= [z eRr?: v Z lai| - If(Vd/l1zll2zi) — f(z:)] = e}, (58)

U =z RY: (1=)V < Izl = (1+8)Vd]. (59)
Then
1
Pl Z lal - V(Vd/lzlzz) - f(z)| = €] (60)
= f 1zenyy (2)dz (61)
md
= f I{ZFAIy[Z)dZ+f l{zeﬂ}}’(zldz (62)
RIVL45 Uy

where y(z) denotes the density function of z.
Let § = d~ /4. From Lemma 3, we have, as d — o0,

f Tzen ¥ (2)dz (63)
RI\Lis

gf y(z)dz = 1 — Plz € Us) (64)
RI\Lis

<2 exp(—ds?) — 0. (65)

Neural Networks xxx (xxxx) xxx

Forz € Us and § = d~ /%, we have ||z|| — Vd, Vd/|z|2zi —
z; and therefore f(s/r_I/||z||zz,-} — f(z) as d — oo. Since |
is bounded, we have é >l - [f[x/af||z|lzz,-) —f(z)] — 0 and
therefore fus 1zendz — 0,as d — oo.

Lemma 6. Let random matrix W be uniformly distributed on O(d)
random vector # be uniformly distributed on %~ and random vector
x € RY be thin-shell concentrated. Then Wx — +/df as d — oc.

Proof. Lety € RY be any vector with |y, = +/d and a =
(+/d,0,...,0) € RY Since W is uniformly distributed, Wy has
the same distribution as Wa. Wa is the first column of /dW,
which is equivalent to random vector /d6 (Meckes, 2019). Since
X is thin-shell concentrated, X —> +/d/|x||2x = y and therefore
WX — /d8 as d — oo.

Proof of Theorem 2. letz = (z1,...,2Z4) ~ N(04 14). Due
to Lemma 1, random variable ¢(z;) is sub-Gaussian. Since ¢ is
Gaussian—Poincaré normalized, EZI.NMDJ}[r,b(z,-)Z] = 1. Applying
Lemma 2 with each y; = 1, we have fore = 0

P{|%Z¢(zi}2—1‘ze]_>0 (66)

as d — oco.
Due to Lemmas 4 and 5 (with each g; = 1), for random vector

6 = (M. ...,0;) uniformly distributed on S9!, we have
1 2 1 2
P{|EZ¢(~/590 —szjqf»{z.-} [=ef o0 (67)
and therefore
1
P{|EZ¢(\/EB.-}2—1‘ ze] -0 (68)
i
asd — oo.
Then from Lemma 6, we have Wx — +/df and therefore
1
Pnazqa(wfx)z—l‘zel_w (69)
i
asd — oo.

Proof of Theorem 3. let z = (z1,...,24) ~ N(04 I). Due
to Lemma 1, random variable ¢'(z) is sub-Gaussian. Since ¢ is
Gaussian-Poincaré normalized, ;.. wo.nl@'(zi)?] = 1. Applying
Lemma 2, we have fore = 0

i S =] o

as d — oco.
Due to Lemmas 4 and 5 (with each a; = y?), for random vector

0 = (M. ...,0;) uniformly distributed on $9~!, we have
1 ’ 2 1 2 40 2
P{|EZ[_)y$¢£ﬂ9fJ —azijy,-mzn [>¢] >0 (71)
and therefore
1
P”Enymﬁef)z—yf‘ el >0 (72)
i
asn— oo.
Then from Lemma 6, we have Wx — +/d@ and therefore
1 ,
PHEnyqﬂw{x)?—yE‘zel_»o (73)
i
asd — oo.

Y. Lu, S. Gould and T. Ajanthan
References

Alberts, T., & Khoshnevisan, D. (2018). Calculus on Gauss space: An introduction
Lo Gaussian analysis.

Bengio, Y., Simard, P, & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks.
Bobkov, 5. G. (2003). On concentration of distributions of random weighted

sums. The Annals of Probability.

Bogachev, V. L. (1998). Gaussian measures. American Mathematical Society.

Brock, A, Lim, T, Ritchie, J. M., & Weston, N. (2017). Neural photo editing with
introspective adversarial networks. In International conference on learning
representations.

Ciregan, D., Meier, U, & Schmidhuber,]. (2012). Multi-column deep neural
networks for image classification. In IEEE conference on compuler vision and
pattern recognition.

Clevert, D.-A., Unterthiner, T., & Hochreiter, 5. (2016). Fast and accurate deep nel-
work learning by exponential linear units (elus). In International conference
on learning representations.

Dawkins,]. (2016). Normalized vector of Gaussian variables is uniformly dis-
tributed on the sphere. In Math stackexchage. htips://math.stackexchange.
com/fq/1864563.

Duchi,]., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research.

Eldredge, N. (2020). When do ¢? and ¢ have Lhe same expeclation under
a Gaussian random variable? MathOverflow, htips://mathoverflow.netq/
351553,

Glorot, X, & Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In International conference on artificial intelligence
and statistics.

Glorot, X., Bordes, A, & Bengio, Y. (2011). Deep sparse rectifier neural networks.
In International conference on artificial intelligence and statistics.

Graves, A, Mohamed, A.-r, & Hinton, G. (2013). Speech recognition with deep
recurrent neural networks. In [EEE international conference on acoustics,
speech and signal processing.

He, K., Zhang, X, Ren, 5, & Sun,]. (2016). Deep residual learning for image
recognition. In [EEE conference on computer vision and pattern recognition.
Hendrycks, D, & Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv

preprint arXiv:1606.08415.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netlzen:
Diploma, Technische Universitit Miinchen.

loffe, S. (2017). Batch renormalization: Towards reducing minibatch depen-
dence in batch-normalized models. Advances in Neural Information Processing
Systems.

loffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on
machine learning.

Kingma, D. P, & Ba,]. (2015). Adam: A method for stochastic oplimization. In
International conference on learning representations.

Klambauer, G., Unterthiner, T., Mayr, A, & Hochreiter, 5. (2017). Self-normalizing
neural networks. Advances in Neural Information Processing Systems.

10

Neural Networks xxx (xxxx) xxx

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
Lliny images.

Krizhevsky, A., Sutskever, I, & Hinton, G. E. (2012). Imagenetl classification
with deep convolutional neural networks. Advances in Neural Information
Processing Systems.

LeCun, Y., Bottou, L, Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE.

Maas, A. L, Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models. In International conference on machine
learning.

Meckes, E. 5. (2019). The random matrix theory of the classical compact groups.
Cambridge University Press.

Mishkin, D., & Matas,]. (2016). All you need is a good iniL. In International
conference on learning representations.

Mair, V., & Hinton, G. E. (2010). Rectified linear unils improve restricted
boltzmann machines. In International conference on machine learning.

Pascanu, R, Mikolov, T, & Bengio, Y. (2013). On the difficulty of training
recurrent neural networks. In International conference on machine learning.

Pennington,]., Schoenholg, 5., & Ganguli, 5. (2017). Resurrecting the sigmoid in
deep learning through dynamical isometry: theory and practice. Advances in
Neural Information Processing Systems.

Philipp, G., Song, D., & Carbonell,]. G. (2018). The exploding gradient problem
demystified-definition, prevalence, impact, origin, tradeoffs, and solutions.
arXiv preprint arXiv:1712.05577.

Poole, B., Lahiri, 5., Raghu, M., Sohl-Dickstein,]., & Ganguli, 5. (2016). Exponential
expressivily in deep neural networks through transient chaos. Advances in
Neural Information Processing Systems.

Salimans, T., & Kingma, D. P. (2016). Weight normalization: A simple reparame-
lerization Lo accelerate training of deep neural networks. Advances in Neural
Information Processing Systems.

Saxe, A. M, McClelland,]. L, & Ganguli, 5. (2014). Exact solutions Lo the non-
linear dynamics of learning in deep linear neural networks. In International
conference on learning representations.

Schoenholz, 5. S, Gilmer,], Ganguli, S, & Sohl-Dickstein,]. (2017).
Deep information propagation. In International conference on learning
representations.

Silver, D., Schrittwieser,]., Simonyan, K., Antonoglou, 1, Huang, A, Guez, A, el
al. (2017). Mastering the game of go without human knowledge. Nature.
Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude. In Neural networks for machine

learning. COURSERA.

Vershynin, R. (2018). High-dimensional probability: An
applications in dala science. Cambridge Universily Press.

Yang, G., Pennington,]., Rao, V., Sohl-Dickstein,]., & Schoenholz, 5. 5. (2019).
A mean field theory of batch normalization. In International conference on
learning representations.

introduction with

