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Signal Propagation in Neural Networks

Objective

I Preserve signal norm in both forward and backward
directions.

I Maintain nonlinear functionality.

Why?

I Better trainability: faster convergence and stable
training. [Glorot-2010, Klambauer-2017, Pennington-2017]

I Very deep CNNs and RNNs. [Pennington-2018, Chen-2018]

I Improved robustness? [Lin-2019]

I Improved generalization?

What if signals are not preserved?

I Signals can saturate ⇒ vanishing/exploding gradients.
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Existing Approaches to Preserve Signal Propagation

Initialization
I Variance scaling initialization. [Glorot-2010, Mishkin-2016]

I Dynamical isometry and mean-field
theory. [Pennington-2017]

Normalization
I Self-normalizing neural networks. [Klambauer-2017]

I Batch normalization and its variants. [Ioffe-2015]

I {Layer, group, spectral, weight, ...} normalization. [...]

Architecture
I Residual connections. [He-2016]

Drawbacks
I No rigorous proofs.
I Do not solve gradient vanishing/explosion. [Philipp-2018]
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Summary of Existing Approaches

Dynamical
Isometry

Self nor-
malization

Batch nor-
malization

Weights (W) Orthogonal VS-init. Unconstrained
Activations (φ) Most SELU All
Preactivations (h) Linear region Unconstrained E ≈ 0,V ≈ 1
Forward signal (x) Constrained E ≈ 0,V ≈ 1 Constrained
Backward signal (d) Constrained Unconstrained Unconstrained
Functionality Pseudo-linear Nonlinear Nonlinear

[Philipp-2018]

Key missing points
I Do not preserve signal in both forward and backward

directions.
I Do not maintain nonlinear functionality.
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Bidirectional Self-Normalizing Neural Networks

Key idea: New class of activation functions: Gaussian-Poincaré
Normalized activations.
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Bidirectional Self-Normalization

Setting: Deep fully-connected
networks with hidden layers of
same width and no bias.

Wl ∈ Rn×n , l = {1, . . . ,L− 1}
and φ : R→ R.

No vanishing/exploding gradients.
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Orthogonal Weight Matrices

(Wl )TWl = Wl (Wl )T = In .

Properties

I Linear networks: guarantees bidirectional
self-normalization. [Saxe-2014]

I Nonlinear networks: improves trainability with appropriate
scaling. [Pennington-2017]

I Widespread usage in GANs, training sparse networks,
quantized networks, etc. [Brock-2017, Lee-2020, Lin-2019]
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GPN Activations

Eh∼N (0,1)

[
φ(h)2

]
= Eh∼N (0,1)

[
φ′(h)2

]
= 1 .

Key facts

I If Wl is orthogonal, hl can be shown to be approximately
Gaussian.

I Function φ is GPN and Eh∼N (0,1)[φ(h)] = 0, if and only if φ
is linear.

I A differentiable function φ can be transformed into its
GPN version by aφ(h) + b.
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GPN Activations
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Thin-Shell Concentration

I Probabilistic version of the vector norm constraint.

A random vector x ∈ Rn is TSC if for any ε > 0

P
{∣∣∣∣ 1n ‖x‖22 − 1

∣∣∣∣ ≥ ε}→ 0, as n →∞. [Bobkov-2003]

Examples: Multivariate Gaussian

Any distribution on n-unit-sphere scaled by
√
n.

Intuitive visualization of Gaussian. [Vershynin-2018]
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Norm Preservation Theorems

Assumptions

1. Random vector x ∈ Rn is TSC.
I Normalize the input vector.

2. Random orthogonal weight matrix W = (w1,w2, . . . ,wn)T

is uniformly distributed.

3. Activation function φ : R→ R is GPN.

4. Activation function φ and its derivative are Lipschitz
continuous.
I Most common activation functions satisfy 3 and 4.
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Norm Preservation Theorems

Theorem 1: Forward norm preservation
Random vector(

φ
(
wT

1 x
)
, φ
(
wT

2 x
)
, . . . , φ

(
wT

n x
))T

,

is TSC.

I Multiplication by W followed by φ preserves the norm with
high probability.

Theorem 2: Backward norm preservation
Let y ∈ IRn with ‖y‖∞ and Dii = φ′(wT

i x). Then for any
ε > 0

P
{∣∣∣∣ 1n ‖Dy‖22 − ‖y‖22

∣∣∣∣ ≥ ε}→ 0 ,
as n →∞.

I Multiplication by D preserves the norm with high probability.
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Sketch of the Proofs

Key theory: Concentration of measure [Vershynin-2018]

I Most mass of some high-dimensional probability
disctributions is concentrated around a certain range.

I Lipschitz functions do not affect this property.



Sketch of the Proof: Theorem 1

Rows {wi} of a random orthogonal matrix
are approximately independent for large n.

{θT
i x} is approximately Gaussian when

{θi} are independent and x is TSC.

Proof follows from Lipschitz continuous
and GPN function φ.

Each of these steps are rigorously proved.
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Tanh shows pseudo-linearity while Tanh-GPN is nonlinear.
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Histogram of φ′(h l
i ), i.e., singular value distribution, L = 200,n = 500.

Tanh shows pseudo-linearity while Tanh-GPN is nonlinear.
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Experiments on Real-World Data

MNIST CIFAR-10
Non-GPN GPN (Ours) Non-GPN GPN (Ours)

Tanh 99.05 (87.39) 99.81 (84.93) 80.84 (27.90) 96.39 (25.13)
ReLU 11.24 (11.24) 33.28 (11.42) 10.00 (10.00) 46.60 (10.09)
LReLU 11.24 (11.24) 43.17 (11.19) 10.00 (10.21) 51.85 (09.89)
ELU 99.06 (98.24) 100.0 (97.86) 80.73 (42.39) 99.37 (43.35)
SELU 99.86 (97.82) 99.92 (97.91) 29.23 (46.47) 98.24 (47.74)
GELU 11.24 (12.70) 97.67 (11.22) 10.00 (10.43) 90.51 (10.00)

Training accuracy with various activation functions, L = 200,n = 500.

GPN yields significant improvements in training accuracy.
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Test accuracy with various activation functions, L = 200,n = 500.

GPN yields improvements in many cases.



Experiments on Real-World Data
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GPN accelerates training in many cases.
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Summary

I We introduced BSNN which constrains signal norm in both
directions in nonlinear networks via orthogonal weights and
GPN activation functions.

I Many common activations functions can be transformed
into their respective GPN versions.

I Rigorously proved that gradient vanishing/exploding
problem disappears with high probability if the width is
sufficiently large.



Current Limitations

I Theoretical analysis is limited to same width,
fully-connected networks.

I Generalization capabilities are unclear.

I Universality of BSNN is an open question.



Questions?



Thank you!


	BSNN

