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» Improved generalization?

What if signals are not preserved?

» Signals can saturate = vanishing/exploding gradients.
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Initialization
» Variance scaling initialization. [Glorot-2010, Mishkin-2016]

» Dynamical isometry and mean-field
theory. [Pennington-2017]

Normalization
» Self-normalizing neural networks. [[Klambauer-2017]

» Batch normalization and its variants. [loffe-2015]

» {Layer, group, spectral, weight, ...} normalization. [..]

Architecture
» Residual connections. [He-2016]

Drawbacks
» No rigorous proofs.

» Do not solve gradient vanishing/explosion. [Philipp-2018]
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Key missing points
» Do not preserve signal in both forward and backward

directions.

» Do not maintain nonlinear functionality.
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Bidirectional Self-Normalizing Neural Networks

Key idea: New class of activation functions: Gaussian-Poincaré
Normalized activations.

Dynamical Self nor- BSNN

Isometry malization (Ours)
Weights (W) Orthogonal VS-init. Orthogonal
Activations (o) Most SELU GPN-versions
Preactivations (h) Linear region | Unconstrained || Unconstrained
Forward signal (x) Constrained | E~0,V~1 V+E2~1
Backward signal (d) | Constrained Unconstrained | V + E? ~ 1
Functionality Pseudo-linear | Nonlinear Nonlinear
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Bidirectional Self-Normalization

Setting: Deep fully-connected
networks with hidden layers of
same width and no bias.

W!He R [ ={1,...,L—1}
and ¢ : R — R.

"backward

Require: [|x!]s = [|¥%[2 = ... = |[x¥]2, {W'}, & constrained ,
[difs = |d%||lz = ... = ||dE|2, {W'}, ¢ constrained .

No vanishing/exploding gradients.




Orthogonal Weight Matrices

(Wl)Twl — Wl(wl)T —_ In )



Orthogonal Weight Matrices

Properties

P> Linear networks: guarantees bidirectional
self-normalization. [Saxe-2014]

» Nonlinear networks: improves trainability with appropriate
scaling. [Pennington-2017]

> Widespread usage in GANs, training sparse networks,
quantized networks, ete. [Brock-2017, Lee-2020, Lin-2019]
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GPN Activations

Enn0,1) [0(R)?] = Epuno) [¢/(R)?] =1.

Key facts

» If W' is orthogonal, h! can be shown to be approximately
Gaussian.

» Function ¢ is GPN and Ej, 0,1y [¢(h)] = 0, if and only if ¢
is linear.

> A differentiable function ¢ can be transformed into its
GPN version by a¢(h) + b.



GPN Activations
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Common activation functions and their GPN versions.
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Thin-Shell Concentration

» Probabilistic version of the vector norm constraint.

A random vector x € R" is T'SC if for any € > 0

1
P {‘HXH% - 1‘ > 6} — 0, asn — oo. [Bobkov-2003]
n

Examples: Multivariate Gaussian
Any distribution on n-unit-sphere scaled by +/n.

Intuitive visualization of Gaussian. [Vershynin-2018]
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Norm Preservation Theorems

Assumptions

1. Random vector x € R" is T'SC.

» Normalize the input vector.
2. Random orthogonal weight matrix W = (w1, wa,...,w,) T
is uniformly distributed.

3. Activation function ¢ : R — R is GPN.

4. Activation function ¢ and its derivative are Lipschitz
continuous.

> Most common activation functions satisfy 3 and 4.
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Norm Preservation Theorems

Theorem 1: Forward norm preservation
Random vector

(6 (WIx), ¢ (wix),...,¢ (wix))" |
is TSC.

» Multiplication by W followed by ¢ preserves the norm with
high probability.

Theorem 2: Backward norm preservation

Let y € R" with [|y|~ and D;; = ¢/(w]'x). Then for any
e>0 1
p{|Liyi3 - Iy

Ze}—>0,
as n — oo.

» Multiplication by D preserves the norm with high probability.



Sketch of the Proofs

Key theory: Concentration of measure [Vershynin-2018|

> Most mass of some high-dimensional probability
disctributions is concentrated around a certain range.

» Lipschitz functions do not affect this property.
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Sketch of the Proof: Theorem 1

Rows {w;} of a random orthogonal matrix
are approximately independent for large n.

{6Fx} is approximately Gaussian when
{0} are independent and x is TSC.

Proof follows from Lipschitz continuous
and GPN function ¢.

Each of these steps are rigorously proved.
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Histogram of ¢'(h}), i.e., singular value distribution, L = 200, n = 500.

Tanh shows pseudo-linearity while Tanh-GPN is nonlinear.
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Forward-backward signal propagation, L = 200, n = 500.

SELU suffers gradient explosion while SELU-GPN is stable.
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Width Width
Tanh-GPN SELU-GPN

Gradient norm ratio, i.e., max; ||-2 257 || 7/ min, |2 27l e, L = 200.

Larger width leads to more stable gradients.




Experiments on Real-World Data

MNIST CIFAR-10

Non-GPN || GPN (Ours) Non-GPN || GPN (Ours)
Tanh | 99.05 (87.39) || 99.81 (84.93) | 80.84 (27.90) || 96.39 (25.13)
ReLU | 11.24 (11.24) || 33.28 (11.42) | 10.00 (10.00) || 46.60 (10.09)
LReLU | 11.24 (11.24) || 48.17 (11.19) | 10.00 (10.21) || 51.85 (09.89)
ELU 99.06 (98.24) || 100.0 (97.86) | 80.73 (42.39) || 99.37 (43.35)
SELU | 99.86 (97.82) || 99.92 (97.91) | 29.23 (46.47) || 98.24 (47.74)
GELU | 11.24 (12.70) || 97.67 (11.22) | 10.00 (10.43) || 90.51 (10.00)

Training accuracy with various activation functions, L = 200, n = 500.
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Test accuracy curves on CIFAR-10, L = 200, n = 500.

GPN accelerates training in many cases.




Summary

> We introduced BSNN which constrains signal norm in both
directions in nonlinear networks via orthogonal weights and
GPN activation functions.

» Many common activations functions can be transformed
into their respective GPN versions.
» Rigorously proved that gradient vanishing/exploding

problem disappears with high probability if the width is
sufficiently large.



Current Limitations

» Theoretical analysis is limited to same width,
fully-connected networks.

» Generalization capabilities are unclear.

» Universality of BSNN is an open question.



Questions?



Thank youl
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