Bidirectional Self-Normalizing Neural Networks

Thalaiyasingam Ajanthan

Australian National University

August 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Collaborators

Yao Lu

Stephen Gould

Thalaiyasingam Ajanthan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Forward: $\mathbf{h}^l = -\mathbf{W}^l \mathbf{x}^l$, $\mathbf{x}^{l+1} = -\phi(\mathbf{h}^l)$.

イロト イヨト イヨト イヨト 三日

Forward: $\mathbf{h}^{l} = \mathbf{W}^{l} \mathbf{x}^{l}$, $\mathbf{x}^{l+1} = \boldsymbol{\phi}(\mathbf{h}^{l})$, Backward: $\mathbf{d}^{l} = \mathbf{D}^{l} \left(\prod_{k=l+1}^{L-1} \mathbf{W}^{k} \mathbf{D}^{k} \right) \frac{\partial E}{\partial \mathbf{x}^{L}}$, $D_{ii}^{l} = \boldsymbol{\phi}'(h_{i}^{l})$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

・ロト ・ 回 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Objective

- Preserve signal norm in both forward and backward directions.
- ▶ Maintain nonlinear functionality.

Why?

- Better trainability: faster convergence and stable training. [Glorot-2010, Klambauer-2017, Pennington-2017]
- ▶ Very deep CNNs and RNNs. [Pennington-2018, Chen-2018]
- ▶ Improved robustness? [Lin-2019]
- Improved generalization?

What if signals are not preserved?

Signals can saturate \Rightarrow vanishing/exploding gradients.

Objective

- Preserve signal norm in both forward and backward directions.
- ▶ Maintain nonlinear functionality.

Why?

- Better trainability: faster convergence and stable training. [Glorot-2010, Klambauer-2017, Pennington-2017]
- ▶ Very deep CNNs and RNNs. [Pennington-2018, Chen-2018]
- ▶ Improved robustness? [Lin-2019]
- ▶ Improved generalization?

What if signals are not preserved?

Signals can saturate \Rightarrow vanishing/exploding gradients.

Objective

- Preserve signal norm in both forward and backward directions.
- ▶ Maintain nonlinear functionality.

Why?

- Better trainability: faster convergence and stable training. [Glorot-2010, Klambauer-2017, Pennington-2017]
- ▶ Very deep CNNs and RNNs. [Pennington-2018, Chen-2018]
- ▶ Improved robustness? [Lin-2019]
- ▶ Improved generalization?

What if signals are not preserved?

▶ Signals can saturate \Rightarrow vanishing/exploding gradients.

Initialization

- ▶ Variance scaling initialization. [Glorot-2010, Mishkin-2016]
- Dynamical isometry and mean-field theory. [Pennington-2017]

Normalization

▶ Self-normalizing neural networks. [Klambauer-2017]

- ▶ Batch normalization and its variants. [Ioffe-2015]
- \blacktriangleright {Layer, group, spectral, weight, ...} normalization. [...]

Architecture

▶ Residual connections. [He-2016]

Drawbacks

▶ No rigorous proofs.

Do not solve gradient vanishing/explosion. [Philipp-2018]

Initialization

- ▶ Variance scaling initialization. [Glorot-2010, Mishkin-2016]
- Dynamical isometry and mean-field theory. [Pennington-2017]

Normalization

- ▶ Self-normalizing neural networks. [Klambauer-2017]
- ▶ Batch normalization and its variants. [Ioffe-2015]
- \blacktriangleright {Layer, group, spectral, weight, ...} normalization. [...]

Architecture

• Residual connections. [He-2016]

Drawbacks

▶ No rigorous proofs.

▶ Do not solve gradient vanishing/explosion. [Philipp-2018]

・ コ マ ス 雪 マ ス 雪 マ ス 日 マ

Initialization

- ▶ Variance scaling initialization. [Glorot-2010, Mishkin-2016]
- Dynamical isometry and mean-field theory. [Pennington-2017]

Normalization

- ▶ Self-normalizing neural networks. [Klambauer-2017]
- ▶ Batch normalization and its variants. [Ioffe-2015]
- ▶ {Layer, group, spectral, weight, ...} normalization. [...]

Architecture

▶ Residual connections. [He-2016]

Drawbacks

No rigorous proofs.

▶ Do not solve gradient vanishing/explosion. [Philipp-2018]

・ コット ふぼう ふ 山 マ ト ・ ロ マ

Initialization

- ▶ Variance scaling initialization. [Glorot-2010, Mishkin-2016]
- Dynamical isometry and mean-field theory. [Pennington-2017]

Normalization

- ▶ Self-normalizing neural networks. [Klambauer-2017]
- ▶ Batch normalization and its variants. [Ioffe-2015]
- \blacktriangleright {Layer, group, spectral, weight, ...} normalization. [...]

Architecture

▶ Residual connections. [He-2016]

Drawbacks

- ▶ No rigorous proofs.
- ▶ Do not solve gradient vanishing/explosion. [Philipp-2018]

Summary of Existing Approaches

	Dynamical	Self nor-	Batch nor-
	Isometry	malization	malization
Weights (\mathbf{W})	Orthogonal	VS-init.	Unconstrained
Activations (ϕ)	Most	SELU	All
Preactivations (\mathbf{h})	Linear region	Unconstrained	$\mathbb{E}\approx 0, \mathbb{V}\approx 1$
Forward signal (\mathbf{x})	Constrained	$\mathbb{E}\approx 0, \mathbb{V}\approx 1$	Constrained
Backward signal (\mathbf{d})	Constrained	Unconstrained	Unconstrained
Functionality	Pseudo-linear	Nonlinear	Nonlinear

[Philipp-2018]

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Summary of Existing Approaches

	Dynamical	Self nor-	Batch nor-
	Isometry	malization	malization
Weights (\mathbf{W})	Orthogonal	VS-init.	Unconstrained
Activations (ϕ)	Most	SELU	All
Preactivations (\mathbf{h})	Linear region	Unconstrained	$\mathbb{E}\approx 0, \mathbb{V}\approx 1$
Forward signal (\mathbf{x})	Constrained	$\mathbb{E}\approx 0, \mathbb{V}\approx 1$	Constrained
Backward signal (\mathbf{d})	Constrained	Unconstrained	Unconstrained
Functionality	Pseudo-linear	Nonlinear	Nonlinear

[Philipp-2018]

Key missing points

- Do not preserve signal in both forward and backward directions.
- ▶ Do not maintain nonlinear functionality.

Bidirectional Self-Normalizing Neural Networks

Key idea: New class of activation functions: Gaussian-Poincaré Normalized activations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Bidirectional Self-Normalizing Neural Networks

Key idea: New class of activation functions: Gaussian-Poincaré Normalized activations.

	Dynamical	Self nor-	BSNN
	Isometry	malization	(Ours)
Weights (\mathbf{W})	Orthogonal	VS-init.	Orthogonal
Activations (ϕ)	Most	SELU	GPN-versions
Preactivations (\mathbf{h})	Linear region	Unconstrained	Unconstrained
Forward signal (\mathbf{x})	Constrained	$\mathbb{E}\approx 0, \mathbb{V}\approx 1$	$\mathbb{V} + \mathbb{E}^2 \approx 1$
Backward signal (\mathbf{d})	Constrained	Unconstrained	$\mathbb{V} + \mathbb{E}^2 \approx 1$
Functionality	Pseudo-linear	Nonlinear	Nonlinear

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Setting: Deep fully-connected networks with hidden layers of same width and no bias.

$$\mathbf{W}^{l} \in \mathbb{R}^{n \times n}, \ l = \{1, \dots, L-1\}$$

and $\phi : \mathbb{R} \to \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Setting: Deep fully-connected networks with hidden layers of same width and no bias.

$$\mathbf{W}^{l} \in \mathbb{R}^{n \times n}, \ l = \{1, \dots, L-1\}$$

and $\phi : \mathbb{R} \to \mathbb{R}.$

・ロト ・ 日 ・ ・ モ ・ ・ モ ・

3

Forward:
$$\mathbf{h}^{l} = \mathbf{W}^{l} \mathbf{x}^{l}$$
, $\mathbf{x}^{l+1} = \phi(\mathbf{h}^{l})$,
Backward: $\mathbf{d}^{l} = \mathbf{D}^{l} \left(\prod_{k=l+1}^{L-1} \mathbf{W}^{k} \mathbf{D}^{k} \right) \frac{\partial E}{\partial \mathbf{x}^{L}}$, $D_{ii}^{l} = \phi'(h_{i}^{l})$,
Gradient: $\frac{\partial E}{\partial \mathbf{W}^{l}} = \mathbf{d}^{l} (\mathbf{x}^{l})^{T}$.

Setting: Deep fully-connected networks with hidden layers of same width and no bias.

 $\mathbf{W}^{l} \in \mathbb{R}^{n \times n}, \ l = \{1, \dots, L-1\}$ and $\phi : \mathbb{R} \to \mathbb{R}$.

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへの

Require: $\|\mathbf{x}^1\|_2 = \|\mathbf{x}^2\|_2 = \ldots = \|\mathbf{x}^L\|_2$, $\{\mathbf{W}^l\}, \phi$ constrained, $\|\mathbf{d}^1\|_2 = \|\mathbf{d}^2\|_2 = \ldots = \|\mathbf{d}^L\|_2$, $\{\mathbf{W}^l\}, \phi'$ constrained.

Setting: Deep fully-connected networks with hidden layers of same width and no bias.

 $\mathbf{W}^{l} \in \mathbb{R}^{n \times n}, \ l = \{1, \dots, L-1\}$ and $\phi : \mathbb{R} \to \mathbb{R}$.

Require: $\|\mathbf{x}^1\|_2 = \|\mathbf{x}^2\|_2 = \ldots = \|\mathbf{x}^L\|_2$, $\{\mathbf{W}^l\}, \phi$ constrained, $\|\mathbf{d}^1\|_2 = \|\mathbf{d}^2\|_2 = \ldots = \|\mathbf{d}^L\|_2$, $\{\mathbf{W}^l\}, \phi'$ constrained.

No vanishing/exploding gradients.

Orthogonal Weight Matrices

$$(\mathbf{W}^l)^T \mathbf{W}^l = \mathbf{W}^l (\mathbf{W}^l)^T = \mathbf{I}_n \ .$$

Properties

- Linear networks: guarantees bidirectional self-normalization. [Saxe-2014]
- Nonlinear networks: improves trainability with appropriate scaling. [Pennington-2017]
- Widespread usage in GANs, training sparse networks, quantized networks, etc. [Brock-2017, Lee-2020, Lin-2019]

Orthogonal Weight Matrices

$$(\mathbf{W}^l)^T \mathbf{W}^l = \mathbf{W}^l (\mathbf{W}^l)^T = \mathbf{I}_n \ .$$

Properties

- Linear networks: guarantees bidirectional self-normalization. [Saxe-2014]
- Nonlinear networks: improves trainability with appropriate scaling. [Pennington-2017]
- Widespread usage in GANs, training sparse networks, quantized networks, etc. [Brock-2017, Lee-2020, Lin-2019]

$$\mathbb{E}_{h \sim \mathcal{N}(0,1)} \left[\phi(h)^2 \right] = \mathbb{E}_{h \sim \mathcal{N}(0,1)} \left[\phi'(h)^2 \right] = 1 \; .$$

Key facts

- If Wⁱ is orthogonal, hⁱ can be shown to be approximately Gaussian.
- Function ϕ is GPN and $\mathbb{E}_{h \sim \mathcal{N}(0,1)}[\phi(h)] = 0$, if and only if ϕ is linear.

<ロト <回ト < 三ト < 三ト = 三

A differentiable function ϕ can be transformed into its GPN version by $a\phi(b) \rightarrow b$.

$$\mathbb{E}_{h \sim \mathcal{N}(0,1)} \left[\phi(h)^2 \right] = \mathbb{E}_{h \sim \mathcal{N}(0,1)} \left[\phi'(h)^2 \right] = 1 \; .$$

Key facts

- If W^l is orthogonal, h^l can be shown to be approximately Gaussian.
- Function ϕ is GPN and $\mathbb{E}_{h \sim \mathcal{N}(0,1)}[\phi(h)] = 0$, if and only if ϕ is linear.

うして ふゆ く 山 マ ふ し マ う く し マ

A differentiable function ϕ can be transformed into its GPN version by $a\phi(h) + b$.

$$\mathbb{E}_{h \sim \mathcal{N}(0,1)} \left[\phi(h)^2 \right] = \mathbb{E}_{h \sim \mathcal{N}(0,1)} \left[\phi'(h)^2 \right] = 1 \ .$$

Key facts

- If W^l is orthogonal, h^l can be shown to be approximately Gaussian.
- Function ϕ is GPN and $\mathbb{E}_{h \sim \mathcal{N}(0,1)}[\phi(h)] = 0$, if and only if ϕ is linear.

うして ふゆ く 山 マ ふ し マ う く し マ

A differentiable function ϕ can be transformed into its GPN version by $a\phi(h) + b$.

$$\mathbb{E}_{h \sim \mathcal{N}(0,1)} \left[\phi(h)^2 \right] = \mathbb{E}_{h \sim \mathcal{N}(0,1)} \left[\phi'(h)^2 \right] = 1 \ .$$

Key facts

- If W^l is orthogonal, h^l can be shown to be approximately Gaussian.
- Function ϕ is GPN and $\mathbb{E}_{h \sim \mathcal{N}(0,1)}[\phi(h)] = 0$, if and only if ϕ is linear.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• A differentiable function ϕ can be transformed into its GPN version by $a\phi(h) + b$.

Common activation functions and their GPN versions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ Probabilistic version of the vector norm constraint. A random vector $\mathbf{x} \in \mathbb{R}^n$ is TSC if for any $\epsilon > 0$

$$\mathbb{P}\left\{ \left| \frac{1}{n} \| \mathbf{x} \|_2^2 - 1 \right| \ge \epsilon \right\} \to 0, \quad \text{as } n \to \infty. \text{ [Bobkov-2003]}$$

Examples: Multivariate Gaussian Any distribution on *n*-unit-sphere scaled by \sqrt{n} .

Intuitive visualization of Gaussian. [Vershynin-2018]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Probabilistic version of the vector norm constraint. A random vector $\mathbf{x} \in \mathbb{R}^n$ is TSC if for any $\epsilon > 0$

$$\mathbb{P}\left\{ \left| \frac{1}{n} \| \mathbf{x} \|_2^2 - 1 \right| \ge \epsilon \right\} \to 0, \quad \text{as } n \to \infty. \text{ [Bobkov-2003]}$$

Examples: Multivariate Gaussian

Any distribution on *n*-unit-sphere scaled by \sqrt{n} .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Intuitive visualization of Gaussian. [Vershynin-2018]

Probabilistic version of the vector norm constraint. A random vector $\mathbf{x} \in \mathbb{R}^n$ is TSC if for any $\epsilon > 0$

$$\mathbb{P}\left\{ \left| \frac{1}{n} \| \mathbf{x} \|_{2}^{2} - 1 \right| \ge \epsilon \right\} \to 0, \text{ as } n \to \infty. \text{ [Bobkov-2003]}$$

Examples: Multivariate Gaussian Any distribution on *n*-unit-sphere scaled by \sqrt{n} .

Intuitive visualization of Gaussian. [Vershynin-2018]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ Probabilistic version of the vector norm constraint.

A random vector $\mathbf{x} \in \mathbb{R}^n$ is **TSC** if for any $\epsilon > 0$

$$\mathbb{P}\left\{ \left| \frac{1}{n} \| \mathbf{x} \|_2^2 - 1 \right| \ge \epsilon \right\} \to 0, \text{ as } n \to \infty. \text{ [Bobkov-2003]}$$

Examples: Multivariate Gaussian Any distribution on *n*-unit-sphere scaled by \sqrt{n} .

Intuitive visualization of Gaussian. [Vershynin-2018]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Assumptions

- 1. Random vector $\mathbf{x} \in \mathbb{R}^n$ is TSC.
 - ▶ Normalize the input vector.
- 2. Random orthogonal weight matrix $\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)^T$ is uniformly distributed.
- 3. Activation function $\phi : \mathbb{R} \to \mathbb{R}$ is GPN.
- 4. Activation function ϕ and its derivative are Lipschitz continuous.
 - Most common activation functions satisfy 3 and 4.

Assumptions

- 1. Random vector $\mathbf{x} \in \mathbb{R}^n$ is TSC.
 - ▶ Normalize the input vector.
- 2. Random orthogonal weight matrix $\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)^T$ is uniformly distributed.
- 3. Activation function $\phi : \mathbb{R} \to \mathbb{R}$ is GPN.
- 4. Activation function ϕ and its derivative are Lipschitz continuous.
 - \mathbb{P} Most common activation functions satisfy 3 and 4.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Assumptions

- 1. Random vector $\mathbf{x} \in \mathbb{R}^n$ is TSC.
 - ▶ Normalize the input vector.
- 2. Random orthogonal weight matrix $\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)^T$ is uniformly distributed.
- 3. Activation function $\phi : \mathbb{R} \to \mathbb{R}$ is GPN.
- 4. Activation function ϕ and its derivative are Lipschitz continuous.
 - Most common activation functions satisfy 3 and 4.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Assumptions

- 1. Random vector $\mathbf{x} \in \mathbb{R}^n$ is TSC.
 - ▶ Normalize the input vector.
- 2. Random orthogonal weight matrix $\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)^T$ is uniformly distributed.
- 3. Activation function $\phi : \mathbb{R} \to \mathbb{R}$ is GPN.
- 4. Activation function ϕ and its derivative are Lipschitz continuous.
 - Most common activation functions satisfy 3 and 4.

Assumptions

- 1. Random vector $\mathbf{x} \in \mathbb{R}^n$ is TSC.
 - ▶ Normalize the input vector.
- 2. Random orthogonal weight matrix $\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)^T$ is uniformly distributed.
- 3. Activation function $\phi : \mathbb{R} \to \mathbb{R}$ is GPN.
- 4. Activation function ϕ and its derivative are Lipschitz continuous.

Most common activation functions satisfy 3 and 4.

Assumptions

- 1. Random vector $\mathbf{x} \in \mathbb{R}^n$ is TSC.
 - ▶ Normalize the input vector.
- 2. Random orthogonal weight matrix $\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)^T$ is uniformly distributed.
- 3. Activation function $\phi : \mathbb{R} \to \mathbb{R}$ is GPN.
- 4. Activation function ϕ and its derivative are Lipschitz continuous.
 - ▶ Most common activation functions satisfy 3 and 4.

Theorem 1: Forward norm preservation Random vector $\left(\phi\left(\mathbf{w}_{1}^{T}\mathbf{x}\right),\phi\left(\mathbf{w}_{2}^{T}\mathbf{x}\right),\ldots,\phi\left(\mathbf{w}_{n}^{T}\mathbf{x}\right)\right)^{T}$, is TSC.

• Multiplication by W followed by ϕ preserves the norm with high probability.

Theorem 2: Backward norm preservation Let $\mathbf{y} \in \mathbb{R}^n$ with $\|\mathbf{y}\|_{\infty}$ and $D_{ii} = \phi'(\mathbf{w}_i^T \mathbf{x})$. Then for any $\epsilon > 0$ $\mathbb{P}\left\{ \left| \frac{1}{n} \|\mathbf{D}\mathbf{y}\|_2^2 - \|\mathbf{y}\|_2^2 \right| \ge \epsilon \right\} \to 0$, as $n \to \infty$.

Multiplication by D preserves the norm with high probability.

Theorem 1: Forward norm preservation Random vector $\left(\phi\left(\mathbf{w}_{1}^{T}\mathbf{x}\right),\phi\left(\mathbf{w}_{2}^{T}\mathbf{x}\right),\ldots,\phi\left(\mathbf{w}_{n}^{T}\mathbf{x}\right)\right)^{T}$, is TSC.

• Multiplication by **W** followed by ϕ preserves the norm with high probability.

Theorem 2: Backward norm preservation Let $\mathbf{y} \in \mathbb{R}^n$ with $\|\mathbf{y}\|_{\infty}$ and $D_{ii} = \phi'(\mathbf{w}_i^T \mathbf{x})$. Then for any $\epsilon > 0$ $\mathbb{P}\left\{ \left| \frac{1}{n} \| \mathbf{D} \mathbf{y} \|_2^2 - \| \mathbf{y} \|_2^2 \right| \ge \epsilon \right\} \to 0$, as $n \to \infty$.

Multiplication by D preserves the norm with high probability.

Theorem 1: Forward norm preservation Random vector $\left(\phi\left(\mathbf{w}_{1}^{T}\mathbf{x}\right),\phi\left(\mathbf{w}_{2}^{T}\mathbf{x}\right),\ldots,\phi\left(\mathbf{w}_{n}^{T}\mathbf{x}\right)\right)^{T}$, is TSC.

• Multiplication by **W** followed by ϕ preserves the norm with high probability.

Theorem 2: Backward norm preservation Let $\mathbf{y} \in \mathbb{R}^n$ with $\|\mathbf{y}\|_{\infty}$ and $D_{ii} = \phi'(\mathbf{w}_i^T \mathbf{x})$. Then for any $\epsilon > 0$ $\mathbb{P}\left\{ \left| \frac{1}{n} \| \mathbf{D} \mathbf{y} \|_2^2 - \| \mathbf{y} \|_2^2 \right| \ge \epsilon \right\} \to 0$, as $n \to \infty$.

Multiplication by D preserves the norm with high probability.

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへの

Theorem 1: Forward norm preservation Random vector $\left(\phi\left(\mathbf{w}_{1}^{T}\mathbf{x}\right),\phi\left(\mathbf{w}_{2}^{T}\mathbf{x}\right),\ldots,\phi\left(\mathbf{w}_{n}^{T}\mathbf{x}\right)\right)^{T}$, is TSC.

• Multiplication by **W** followed by ϕ preserves the norm with high probability.

Theorem 2: Backward norm preservation Let $\mathbf{y} \in \mathbb{R}^n$ with $\|\mathbf{y}\|_{\infty}$ and $D_{ii} = \phi'(\mathbf{w}_i^T \mathbf{x})$. Then for any $\epsilon > 0$ $\mathbb{P}\left\{ \left| \frac{1}{n} \|\mathbf{D}\mathbf{y}\|_2^2 - \|\mathbf{y}\|_2^2 \right| \ge \epsilon \right\} \to 0$, as $n \to \infty$.

▶ Multiplication by **D** preserves the norm with high probability.

Sketch of the Proofs

Key theory: Concentration of measure [Vershynin-2018]

 Most mass of some high-dimensional probability disctributions is concentrated around a certain range.

うして ふゆ く 山 マ ふ し マ う く し マ

▶ Lipschitz functions do not affect this property.

Rows $\{\mathbf{w}_i\}$ of a random orthogonal matrix are approximately independent for large n.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Rows $\{\mathbf{w}_i\}$ of a random orthogonal matrix are approximately independent for large n.

 $\{\boldsymbol{\theta}_i^T \mathbf{x}\}$ is approximately Gaussian when $\{\boldsymbol{\theta}_i\}$ are independent and \mathbf{x} is TSC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rows $\{\mathbf{w}_i\}$ of a random orthogonal matrix are approximately independent for large n.

 $\{\boldsymbol{\theta}_i^T \mathbf{x}\}$ is approximately Gaussian when $\{\boldsymbol{\theta}_i\}$ are independent and \mathbf{x} is TSC.

Proof follows from Lipschitz continuous and GPN function ϕ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rows $\{\mathbf{w}_i\}$ of a random orthogonal matrix are approximately independent for large n.

 $\{\boldsymbol{\theta}_i^T \mathbf{x}\}$ is approximately Gaussian when $\{\boldsymbol{\theta}_i\}$ are independent and \mathbf{x} is TSC.

Proof follows from Lipschitz continuous and GPN function ϕ .

Each of these steps are rigorously proved.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Tanh shows pseudo-linearity while Tanh-GPN is nonlinear.

Histogram of $\phi'(h_i^l)$, *i.e.*, singular value distribution, L = 200, n = 500.

Tanh shows pseudo-linearity while Tanh-GPN is nonlinear.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Forward-backward signal propagation, L = 200, n = 500.

(日) (四) (日) (日)

ъ

SELU suffers gradient explosion while SELU-GPN is stable.

Gradient norm ratio, *i.e.*, $\max_{l} \| \frac{\partial E}{\partial \mathbf{W}^{l}} \|_{F} / \min_{l} \| \frac{\partial E}{\partial \mathbf{W}^{l}} \|_{F}$, L = 200.

Gradient norm ratio, *i.e.*, $\max_{l} \left\| \frac{\partial E}{\partial \mathbf{W}^{l}} \right\|_{F} / \min_{l} \left\| \frac{\partial E}{\partial \mathbf{W}^{l}} \right\|_{F}$, L = 200.

Larger width leads to more stable gradients.

	MNIST		CIFAR-10	
	Non-GPN	GPN (Ours)	Non-GPN	GPN (Ours)
Tanh	99.05 (87.39)	99.81 (84.93)	80.84 (27.90)	96.39 (25.13)
ReLU	11.24 (11.24)	33.28 (11.42)	10.00(10.00)	46.60 (10.09)
LReLU	11.24 (11.24)	43.17 (11.19)	10.00(10.21)	51.85 (09.89)
ELU	99.06 (98.24)	100.0 (97.86)	80.73(42.39)	99.37 (43.35)
SELU	99.86 (97.82)	99.92 (97.91)	29.23(46.47)	98.24 (47.74)
GELU	11.24 (12.70)	97.67 (11.22)	10.00(10.43)	90.51 (10.00)

Training accuracy with various activation functions, L = 200, n = 500.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

	MNIST		CIFAR-10	
	Non-GPN	GPN (Ours)	Non-GPN	GPN (Ours)
Tanh	99.05 (87.39)	99.81 (84.93)	80.84 (27.90)	96.39 (25.13)
ReLU	11.24 (11.24)	33.28 (11.42)	10.00(10.00)	46.60 (10.09)
LReLU	11.24 (11.24)	43.17 (11.19)	10.00(10.21)	51.85 (09.89)
ELU	99.06 (98.24)	100.0 (97.86)	80.73(42.39)	99.37 (43.35)
SELU	99.86 (97.82)	99.92 (97.91)	29.23(46.47)	98.24 (47.74)
GELU	11.24 (12.70)	97.67 (11.22)	10.00(10.43)	90.51 (10.00)

Training accuracy with various activation functions, L = 200, n = 500.

GPN yields significant improvements in training accuracy.

	MNIST		CIFAR-10	
	Non-GPN	GPN (Ours)	Non-GPN	GPN (Ours)
Tanh	96.57 (89.32)	95.54 (87.11)	42.71 (29.32)	40.95(26.58)
ReLU	11.35(11.42)	28.13 (11.34)	10.00 (10.00)	34.96 (09.96)
LReLU	11.35(11.63)	49.28 (11.66)	10.00(10.06)	39.38 (10.00)
ELU	95.41 (97.48)	96.56 (96.69)	45.76 (44.16)	43.12(44.36)
SELU	97.33(97.38)	96.97 (97.39)	29.55(45.88)	45.90 (45.52)
GELU	11.35(10.28)	95.82 (09.74)	10.00(10.00)	36.94 (10.00)

Test accuracy with various activation functions, L = 200, n = 500.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

	MNIST		CIFAR-10	
	Non-GPN	GPN (Ours)	Non-GPN	GPN (Ours)
Tanh	96.57 (89.32)	95.54 (87.11)	42.71 (29.32)	40.95(26.58)
ReLU	11.35(11.42)	28.13 (11.34)	10.00(10.00)	34.96 (09.96)
LReLU	11.35(11.63)	49.28 (11.66)	10.00(10.06)	39.38 (10.00)
ELU	95.41 (97.48)	96.56 (96.69)	45.76 (44.16)	43.12(44.36)
SELU	97.33(97.38)	96.97 (97.39)	29.55(45.88)	45.90 (45.52)
GELU	11.35(10.28)	95.82 (09.74)	10.00(10.00)	36.94 (10.00)

Test accuracy with various activation functions, L = 200, n = 500.

GPN yields improvements in many cases.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Test accuracy curves on CIFAR-10, L = 200, n = 500.

イロト 不得 トイヨト イヨト

3

Test accuracy curves on CIFAR-10, L = 200, n = 500.

GPN accelerates training in many cases.

Summary

- We introduced BSNN which constrains signal norm in both directions in nonlinear networks via orthogonal weights and GPN activation functions.
- Many common activations functions can be transformed into their respective GPN versions.
- Rigorously proved that gradient vanishing/exploding problem disappears with high probability if the width is sufficiently large.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Current Limitations

- Theoretical analysis is limited to same width, fully-connected networks.
- Generalization capabilities are unclear.
- ▶ Universality of BSNN is an open question.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Questions?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Thank you!

(ロ)、