
Similarity Learning for Dense Label Transfer

Mohammad Najafi* Viveka Kulharia* Thalaiyasingam Ajanthan Philip H. S. Torr

University of Oxford, UK
{monaj, viveka, ajanthan, phst}@robots.ox.ac.uk

Abstract
In this work, we introduce a simple and flexible method

for video object segmentation based on similarity learn-
ing. The proposed method can learn to perform dense label
transfer from one image to the other. More specifically, the
objective is to learn a similarity metric for dense pixel-wise
correspondence between two images. This learned model
can then be used in a label transfer framework to propa-
gate object annotations from a reference frame to all the
subsequent frames in a video. Unlike previous methods, our
similarity learning approach works fairly well across vari-
ous domains, even when no domain adaptation is involved.
Using the proposed approach, we achieved the second place
in the first DAVIS challenge for interactive video object seg-
mentation, in both quality and speed tracks.

1. Introduction
Object segmentation in a video is an important problem

in computer vision with many interesting real world appli-
cations in surveillance, robotics, and autonomous driving.
Given one or more target objects, the task is to segment
those objects in every frame of the video.

In this paper, we introduce a simple and flexible method
for video object segmentation based on similarity learning.
More specifically, we turn the problem of video object seg-
mentation into a dense binary classification problem using a
Siamese network, where the objective is to predict whether
or not a pair of selected pixels from two frames belong to
the same object (or instance of an object). Our goal here is
to learn an embedding space in which, pixels of the same
object are encouraged to be close to each other, whereas
pixels of different objects are pushed away from each other.
In short, we train a similarity metric for pixel correspon-
dence between two images. We then use the trained model
in a label transfer framework to propagate object annota-
tions from a frame with ground-truth information (e.g., first
frame of the video in case of one-shot video object segmen-
tation task) to other frames.

Note that, with this simple similarity learning approach,

*Joint first author

Figure 1: One-shot segmentation outputs for sample videos
from DAVIS-2016, obtained using our model without any
test domain adaptation, online learning or interaction. Each
row illustrates outputs for different time frames of the video.

our method performs fairly well across various domains and
clearly outperforms state-of-the-art methods when no do-
main adaptation is involved. Furthermore, unlike previous
approaches [9], multi-target segmentation comes at virtu-
ally no cost in our approach. Figure 1 demonstrates qualita-
tive results computed using our method for one-shot object
segmentation on sample videos, with no test domain adap-
tation, online learning or human interaction involved.

In this work, we consider the scenario of interactive
video object segmentation with scribbles, as suggested by
[1]. In this process, the segmentation system learns inter-
actively by getting feedbacks from the evaluation system.
Moreover, at each interaction, the method is fine-tuned us-
ing only a set of squiggles from one video frame, which
are much easier to obtain compared to dense ground-truth
object masks, but make the problem more challenging.

Following the above-mentioned protocol, we developed
an interactive segmentation system based on our dense sim-
ilarity learning and label transfer method, and achieved the
second place in the first DAVIS challenge for interactive
video object segmentation, in both quality and speed tracks.

2. Method
Our approach builds upon the standard Siamese network

to learn the dense correspondence between the target ob-
jects in two given images. To this end, we first review the
Siamese architecture and then introduce our idea for using
it in a dense label transfer framework.

1



2.1. Siamese Networks

The Siamese network is a special type of neural network,
which is trained to make comparisons between pairs of in-
put data. In other words, it learns whether two input items
belong to the same class or not. Figure 2 illustrates an ex-
ample of a Siamese network that is used in our framework.

Let {x,y} be a pair of input data (usually a pair of im-
ages) which is fed into two identical deep neural networks
with a shared set of parametersW . These networks gener-
ate two embeddings {Φ(x;W),Φ(y;W)} at their outputs.
The inner-product of these embeddings can be considered
as the similarity between x and y. Also let ` be the target of
the Siamese network, which is defined as ` = 1[lx == ly],
where lx and ly are the class labels of x and y, respectively.
In other words, ` is set to one if the input pair have the same
class labels and zero otherwise. Now the objective of the
standard Siamese network can be defined as:

min
W

1

N

N∑
i=1

L(〈Φ(xi;W),Φ(yi;W)〉, `i) , (1)

where i ranges over the training set of data pairs of size N ,
L is a standard loss function, e.g., binary cross entropy, and
〈·, ·〉 denotes the inner-product operation. The hypothesis
is that, the embedding space obtained by this optimization
process corresponds to a similarity metric, in which, data of
similar class are clustered together

2.2. Object Segmentation using Siamese Networks

In this section, we extend the idea of similarity learning
to use it for dense video object segmentation. Figure 2 il-
lustrates the proposed structure, where each branch of the
Siamese network is a Deeplab-Resnet-101 [2] model with
dilated convolutions to preserve spatial information, con-
nected to a decoder network which upsamples the embed-
dings to a higher resolution. Note that, as shown in [2, 7],
preserving spatial information is crucial for segmentation
tasks. The outputs of the decoders are two pixel embed-
ding maps {Φ(x;W),Φ(y;W)}, where x and y are input
images of size [H,W ] and Φ is a three-dimensional tensor
of size [h,w, d], where h = H/2, w = W/2 and d is the
embedding size.

Next, we compute the similarities of the pixels between
images x and y by taking the inner-product of their embed-
dings. The output of this step is a dense similarity map of
size [h × w, h × w], which indicates the similarity of ev-
ery pixel embedding in Φx with all the pixel embeddings in
Φy. At this point, we apply batch-norm [4] to the output
of inner-product to prevent the gradients from exploding.
Finally, the sigmoid nonlinearity is applied to convert the
similarity scores into probabilities. Furthermore, the target
of the Siamese network is a matrix of size [h × w, h × w]
(denoted as L), which is a binary map that shows if two
pixels in the images belong to the same object class.

Figure 2: The Siamese architecture used for learning
dense correspondense. The model takes in a pair of im-
ages and outputs the similarity of their pixels by comput-
ing the inner-product of their subsampled pixel embeddings
(〈ΦK

x ,ΦK
y 〉). During evaluation, stochastic pooling is not

applied on the target image y and the inner-product output
is 〈ΦK

x ,Φy〉.

The proposed network is trained according to the ob-
jective function in Eq. 1, but for an aggregate loss over
[h × w, h × w] data points for each pair of images. Af-
ter training, the output similarity map can be used to predict
the label correspondence between pixels of images x and y.
Then, during test time, we leverage this similarity map to
predict the segmentation map of the second image y, given
a ground-truth segmentation map of the first image x, via a
label transfer approach, as described in Sec. 2.2.1.

The main challenge when using the Siamese architec-
ture to learn dense correspondence is the high memory
requirement. Note that, the output of the inner-product
Ψ = 〈Φx,Φy〉 is of dimension [h × w, h × w]. In our
case, h = 240 and w = 427, which leads to 1× 1010 float-
ing point values to be stored. This is infeasible to store on
a standard GPU. To tackle this, we approximate the inner-
product Ψ = 〈Φx,Φy〉 using only a subset of pixels.

We observe that, in an image, a large portion of the pix-
els are highly correlated to each other. Hence, it is possible
to estimate the embedding of the image pixels using only
a small fraction of them. Based on this argument, we in-
troduce a stochastic pooling layer to the network, that sub-
samples k pixels uniformly at random for each object class
present in the image. Thus, a total of K pixels are chosen
from each of the embeddings. Now, the inner-product can
be approximated as:

Ψ = 〈Φx,Φy〉 ≈ 〈ΦK
x ,ΦK

y 〉 , (2)

where ΦK
x and ΦK

y represent the embeddings correspond-
ing to the chosen subsets of x and y, respectively. Note
that, Ψ is of size [K,K], where K is the chosen subset
size. Also note that, the same chosen subsets are used to
create the target map LK for the Siamese network. In our
experiments, we observed that the performance plateaus for
k > 100, which supports the above argument. This effec-
tively reduces the memory requirement from 1 × 1010 to

In this section, for brevity, we call the pixel embedding as a pixel.

2



1×104 (assuming one object in each image), and also makes
it faster in both training and inference phases.
2.2.1 Label Transfer
Once the network is trained, one can label a query image
y by matching its pixels with the pixels of a reference im-
age x (whose ground-truth annotation is available) using the
learned similarity model. At test time, the reference image
is fed into the top branch of the Siamese network, while the
query image is given to the bottom branch. Then a represen-
tative set of pixel embeddings are subsampled from the ref-
erence image via the stochastic pooling layer, and their sim-
ilarities with the embeddings of the query pixels are com-
puted. Subsequently, the class labels of the selected refer-
ence pixels are transferred to all the query pixels based on
their similarity scores. Note that, in this step, the stochastic
pooling is applied only to the reference image and the sim-
ilarity scores using the inner-product are computed for all
the query pixels, i.e., Ψ ≈ 〈ΦK

x ,Φy〉.
Let Nl′ be the selected subset of pixels from the refer-

ence image for class l′, then the class label of pixel i ∈ Q
within the query image Q is predicted using the following
formulation:

li = arg max
l′

∑
j∈Nl′

Ψ̃ij , (3)

where Ψ̃ is the similarity score after the batch-norm layer.

3. Experiments
We evaluated our method interactively on DAVIS-

2017 [8] validation (30 videos) and Test-dev (30 videos)
sets. For validation, we used a model pre-trained on
DAVIS-2017 training set (60 videos), however in the test
phase, we pre-trained our model using the entire train-
ing+validation set (90 videos). All the experiments in this
paper were performed on 480× 854 resolution videos.
Interactive Segmentation The proposed approach was
evaluated using the interactive toolkit released by [1]. Ini-
tially a set of squiggles representing the objects of interests
in one of the video frames are provided as training exam-
ples. The segmentation system is fine-tuned based on this
sparse set of ground-truth information and predicts pixel-
level masks for targets over the entire video. The outputs
are then analysed, and the video frame with the worst seg-
mentation output is chosen to provide the user with a set
of feedbacks on which regions the method has failed. Note
that the feedbacks are also in the form of scribbles. This
interaction improves the segmentation system, as it learns
where it fails the most and updates its parameters such that
those mistakes are resolved.
Evaluation Metrics Two evaluation metrics are designed
for this interactive task by [1], which take into account both
segmentation accuracy and speed. The first one is Area Un-
der the Curve (AUC) of the plot Time vs Jaccard (J ) per-
formance. Note that J is a standard metric which is defined

as the intersection-over-union (IoU) of the predicted object
mask and its respective ground-truth mask. Each point in
the AUC-J plot is computed considering the average time
and the average Jaccard, obtained for a certain interaction,
for the whole dataset. The second metric is called J@60
which evaluates what Jaccard performance a method can
reach within 60 seconds.

Network Structure Each branch of our network (Fig-
ure 2) is a Deeplab-Resnet-101 model (pre-trained on Im-
ageNet [3] and Microsoft-coco image dataset [6]), which
produces feature maps whose resolutions are eight times
smaller than the resolution of input images. These fea-
tures maps are upsampled using the decoder network which
yields high-resolution embeddings. The decoder consists
of a transposed convolution layer (with stride = 2) and a
non-parametric bilinear upsampling layer (with stride = 2).

Training and Label Transfer At each training iteration,
a video is randomly selected from the training pool, and
then a pair of frames are drawn randomly from the video
to feed the network. We followed the pooling strategy ex-
plained in Sec. 2.2 and selected k = 100 pixel embeddings
in our experiments. The network was trained for 100000 it-
erations, using dense ground-truth annotations in the train-
ing split, with the base learning rate of 2.5 × 10−4 for the
branches and a learning rate factor of two for the decoder
(lrdecoder = 5 × 10−4, with a momentum of 0.9 and weight
decay of 0.0005. In addition, learning rates were decreased
polynomially, with a power of 0.9.

At the validation/test time, the second branch of the net-
work is fed by a query image, and we use the learned simi-
larity model to transfer the ground-truth labels of the train-
ing input image in the top branch to the query image. Label
transfer, as explained in Sec. 2.2.1, is merely a label match-
ing operation, which does not leverage any prior informa-
tion over the image pixels. Hence we can further improve
the output of this step by passing it through a dense CRF [5].

The interactive process included a sequence of domain
adaptation (fine-tuning based on the provided set of ground-
truth scribbles), label transfer, and post-processing (CRF),
which were designed differently at different interactions.
We tailored the following strategy based on a set of experi-
ments on the validation set. We initially fine-tuned our pre-
trained model using the first set of scribbles for 5s, but ex-
tended this fine-tuning time to 20s for the second interaction
and 60s for all remaining interactions. At each interaction,
a new video frame together with a set of scribbles were pro-
vided by the evaluation toolkit. We augmented the frame by
random horizontal flipping, scaling (0.5 to 1.5) and rotation
(−30◦ to 30◦). The augmented data (with different aug-
mentation parameters) fed the branches of the network and
fine-tuned the model using their scribbles, together with the
images and scribbles supplied at previous interactions. In
addition, we stopped fine-tuning when the maximum value

3



Figure 3: The performance of our method on DAVIS-2017
validation split (left) with AUC = 70.2% and J@60 =
54.8%, and Test-Dev split (right) with AUC = 54.5%
and J@60 = 39.4%. Note that in the Test-Dev set, the
60s time-point occurs before the second interaction because
more complex videos with larger number of objects are
present and processed in this data split.

of loss dropped below 0.04 at each interaction. Also we
skipped CRF for the first couple of interactions to speed
up the evaluation. Furthermore, the provided scribbles at
each interaction were dilated with a square kernel of size
three, and we also denoted the image pixels that were far
from all of the object scribbles, as background pixels. Note
that whenever the feedbacks did not include any region from
background during interactions, pixels which were the least
similar to any of the initial ground-truth object scribbles
were selected to represent the background.

Following the above strategy, we achieved the second
place in both quality (AUC-J ) and speed (J@60) tracks.
The charts in Figure 3 show the results obtained using our
model on the validation and test-dev splits of DAVIS-2017
dataset. As shown in the figure, the model has consistently
improved by learning from the previous mistakes. Figure 4
demonstrates some examples, where the interactive process
has incrementally improved the segmentation outputs.

4. Conclusion
In this work, we tackled the problem of video object seg-

mentation using sparse ground-truth data, through similar-
ity learning. In particular, we trained a Siamese network,
whose objective is to predict whether or not two pixels from
two video frames belong to the same object class. Next, a
dense label transfer approach was proposed that used the
learned similarity to propagate annotations from one video
frame to the rest of the videos. The proposed method
achieved the second place in the first DAVIS challenge for
interactive video object segmentation, in both quality and
speed tracks.

5. Acknowledgement
This work was supported by the EPSRC, ERC grant

ERC-2012-AdG 321162-HELIOS, EPSRC grant Seebibyte
EP/M013774/1 and EPSRC/MURI grant EP/N019474/1.
We also thank NVIDIA for donating a GPU for this project.
Viveka Kulharia is wholly funded by TRI’s grant.

Figure 4: The impact of successive interactions on the
quality of the segmentation outputs. The top row illus-
trates the input images and the segmentation results for con-
secutive interactions are depicted in the 2nd to 8th rows.

References
[1] S. Caelles, A. Montes, K.-K. Maninis, Y. Chen, L. Van Gool,

F. Perazzi, and J. Pont-Tuset. The 2018 davis challenge on
video object segmentation. arXiv:1803.00557, 2018.

[2] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. IEEE T-PAMI, 40(4):834–848, 2018.

[3] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
CVPR, 2009.

[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015.

[5] P. Krähenbühl and V. Koltun. Parameter learning and conver-
gent inference for dense random fields. In ICML, 2013.

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common
objects in context. 2014.

[7] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[8] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-
Hornung, and L. Van Gool. The 2017 davis challenge on video
object segmentation. arXiv:1704.00675, 2017.

[9] P. Voigtlaender and B. Leibe. Online adaptation of convo-
lutional neural networks for video object segmentation. In
BMVC, 2017.

4


