
Refining Semantic Segmentation with Superpixels using Transparent
Initialization and Sparse Encoder

Zhiwei Xu1,2 Thalaiyasingam Ajanthan1 Richard Hartley1

1Australian National University and Australian Centre for Robotic Vision
2Data61, CSIRO, Australia

{zhiwei.xu,thalaiyasingam.ajanthan,richard.hartley}@anu.edu.au

Figure 1: Edge comparison with the state-of-the-art, that is ResNeSt200 on ADE20K (top row) and ResNeSt269 on PASCAL Context
(bottom row). Left: RGB, middle: state-of-the-art, right: ours. Ours has a better alignment with object edges than the state-of-the-art.

Abstract

Although deep learning greatly improves the perfor-
mance of semantic segmentation, its success mainly lies in
object central areas without accurate edges. As superpix-
els are a popular and effective auxiliary to preserve object
edges, in this paper, we jointly learn semantic segmenta-
tion with trainable superpixels. We achieve it with fully-
connected layers with Transparent Initialization (TI) and
efficient logit consistency using a sparse encoder. The pro-
posed TI preserves the effects of learned parameters of pre-
trained networks. This avoids a significant increase of the
loss of pretrained networks, which otherwise may be caused
by inappropriate parameter initialization of the additional
layers. Meanwhile, consistent pixel labels in each super-
pixel are guaranteed by logit consistency. The sparse en-
coder with sparse matrix operations substantially reduces
both the memory requirement and the computational com-
plexity. We demonstrated the superiority of TI over other
parameter initialization methods and tested its numerical
stability. The effectiveness of our proposal was validated on
PASCAL VOC 2012, ADE20K, and PASCAL Context show-
ing enhanced semantic segmentation edges. With quantita-
tive evaluations on segmentation edges using performance
ratio and F-measure, our method outperforms the state-of-

the-art.

1. Introduction

Semantic segmentation is an essential task in computer
vision which requires mapping image pixels of interesting
objects to predefined semantic labels. Applications include
autonomous driving [14], object identification [36, 38], im-
age editing [22], and scene analysis [21]. Recent devel-
opments of semantic segmentation are greatly promoted by
deep learning on several large-scale datasets [35, 32], result-
ing in effective networks [34, 55, 58, 8, 7, 9, 53, 54]. Se-
mantic segmentation obtained by these methods, however,
is not substantially aligned with object edges.

This problem can be alleviated by using qualified edge-
preserving methods [28, 58, 8] or independently learning
edges for semantic segmentation [25, 17, 7]. Nevertheless,
those edges are usually incomplete and oversegmented. To
solve this problem, denseCRF [28] based methods aggre-
gate object features over a large and dense range using bi-
lateral filters with high-dimensional lattice computations.
This, however, could be more efficient and desirable to learn
on locally oversegmented areas, such as superpixels that ag-
gregate similar pixels into a higher-order clique [1, 30].

Existing superpixel segmentation approaches are mainly

1

ar
X

iv
:2

01
0.

04
36

3v
3

 [
cs

.C
V

]
 2

4
N

ov
 2

02
0

categorized into traditional methods, such as SLIC [1],
LSC [30], Crisp [24], BASS [47], and those using neu-
ral networks, such as SSN [25], affinity loss [46], and su-
perpixels by FCN [52]. Although those traditional meth-
ods have qualified performance on superpixel segmenta-
tion, they cannot be easily embedded into neural networks
for end-to-end learning due to nondifferentiability or large
computational complexity. In contrast, [25] provides an
end-to-end learning for superpixel semantic segmentation,
but the pixel labels in each superpixel are not always con-
sistent. Similarly, [52] uses a fully convolutional network to
learn superpixels for stereo matching, which is the current
state-of-the-art in superpixel learning. However, the prob-
lem of inconsistent pixel labels in each superpixel will also
occur when [52] is applied to semantic segmentation.

To deal with the problems of edge loss and inconsistent
superpixel labelling, we jointly train these networks with
additional fully-connected layers using transparent initial-
ization and logit consistency, resulting in enhanced object
edges in Fig. 1. Specifically, transparent initialization warm
starts the training by recovering the pretrained network out-
put from its input at initialization, followed by a gradual
improvement in learning superpixels. Simultaneously, logit
consistency with sparse encoder enables efficient logit av-
eraging to guarantee consistent pixel labels in each super-
pixel. Furthermore, we used the popular performance ra-
tio [27] and F-measure [42, 15] to evaluate the quality of
semantic segmentation edges. Our code will be available
upon publication. The main contributions of this work are:

• We jointly learn the state-of-the-art semantic segmen-
tation network and superpixel network to enhance the
labelling performance with sharp object edges. The
improvement is vivid as demonstrated by evaluating on
PASCAL VOC 2012, ADE20K and PASCAL Context.

• Transparent initialization is proposed for learning
fused features while adding fully-connected layers to
pretrained networks. This helps to join and fine-tune
state-of-the-art networks without interrupting the ef-
fect of pretrained network parameters. The transparent
initialization may also be adapted to fine-tune multiple
and deeper pretrained networks for other tasks.

• Logit consistency, implemented by a sparse encoder
with sparse matrix operations, ensures consistent se-
mantics for all pixels in each superpixel. This makes
it feasible and efficient to index pixels by superpixels,
because of greatly reduced computational complexity.

2. Related Work

Semantic Segmentation. Semantic segmentation can be
traced back to early techniques [45] based on classifiers,
such as random decision forests [39], SVMs [49], and

graphic models with MRFs and CRFs [26, 28, 3]. In con-
trast, modern state-of-the-art methods rely on advanced ex-
ploitation of deep CNN classifiers, such as ResNet [20],
DenseNet [23], and VGG16 [41]. Fully Convolutional Net-
work (FCN) [34] and related methods are typical archi-
tectures that use rich image features from classifiers usu-
ally pretrained on ImageNet [12]. SegNet [5] uses a U-
Net structure for an encoder-decoder module to compen-
sate for low resolution by using multiple upsampled fea-
ture maps. In addition, several multiscale contextual fu-
sion methods [7, 31, 9] have been proposed to aggregate
pyramid feature maps for fine-grained segmentation. Typi-
cally, DeepLabV3+ [9] combines spatial pyramid pooling
and encoder-decoder modules to refine the segmentation
along with object boundaries. Recently, attention-based
networks [29, 56, 11, 16] improve object labelling confi-
dence by aggregating features of a single pixel with those
from other positions. Zhang et al. [54] introduce a split-
attention block in ResNet (ResNeSt), which enables multi-
scale scores with softmax for attention across feature-map
groups. This achieves the new state-of-the-art performance
in semantic segmentation and image classification. Due to
the limited capability of network architectures, however, a
huge improvement on mean Intersection over Union (mIoU)
is hard to achieve; see the minor improvement in [57].

Superpixel Segmentation. Superpixel segmentation has
been well studied for years with a comprehensive survey
in [43]. In contrast to classical methods that initialize su-
perpixel regions with seeds and cluster pixel sets using dis-
tance measurement [48], boundary pixel exchange [6], etc.,
the widely-used SLIC based methods [1, 33, 30, 2] employ
(weighted) K-means clustering on pixel feature vectors to
group neighbouring pixels. In deep learning, SSN [25] first
proposes an end-to-end learning framework for superpixels
with differentiable SLIC for semantic segmentation and op-
tical flow. By comparison, [52] replaces the soft K-means
manner in SSN with a simple fully convolutional network
and applies it to stereo matching with downsampling and
upsampling modules. While SSN results in superpixel-level
semantic segmentation, the pixel labelling is not aligned
with the superpixels. For instance, inconsistent labels exist
in each superpixel, which reduces the effects of superpixels
on semantic assignments.

Superpixel Semantic Segmentation. Some works use
superpixels to optimize graph relations [19, 50] or down-
sample images as a pooling alternative to max or average
pooling [17, 37, 40]. These methods usually use fixed su-
perpixels obtained by traditional methods mentioned above
(“Superpixel Segmentation”) and lose the exact alignment
of segmentation edges with superpixel contours after up-
sampling. This, however, can be easily achieved by our
logit consistency module. Moreover, fixed superpixels are
unsuitable for end-to-end learning since traditional meth-

2

Figure 2: Flowchart. X: input image, Y: semantic segmentation
ground truth, SPNet: superpixel network, SSegNet: semantic seg-
mentation network,

⊕
: concatenatation, Transparent Initializa-

tion: identity mapping by fully-connected layers, Logit Consis-
tency: consistent pixel labels in each superpixel.

ods, such as SLIC [1], are computationally expensive due
to CPU execution and inflexible for fine-tuning superpixels
around object edges, especially for small objects. Instead,
superpixels learned by CNN alleviate this problem.

3. Methodology

The flowchart of our method is shown in Fig. 2. Subse-
quently, we discuss each of these modules in detail.

3.1. Network Architectures

We use the state-of-the-art DeepLabV3+ [9] and
ResNeSt [54] for semantic segmentation and the state-of-
the-art superpixels with FCN [52] for superpixel contours.

DeepLabV3+ achieves high and robust performance
with atrous spatial pyramid pooling for multiscale feature
maps and encoder-decoder modules for deep features with
different output strides. It is widely used as a network back-
bone for semantic segmentation due to these well-studied
modules evaluated by empirical experiments. ResNeSt
[54] replaces ResNet with multiscale scores using softmax-
based feature map attention and achieves the new state-of-
the-art. The loss function for semantic segmentation is the
standard cross-entropy loss of predicted logits and ground
truth labelling. Readers can refer [9, 54] for more details.

Superpixel with FCN [52] is the current state-of-the-art
superpixel network. The core idea is to construct a distance-
based loss function with aggregations of neighbouring pixel
and superpixel properties and locations. This is similar to
the SLIC method [1], where the property vectors can be
CIELAB colors or one-hot semantic encoding. The loss
function for superpixel network with FCN [52] is in Eq. (1).

Given an image with Np pixels and Ns superpixels, we
denote the subsets of pixels asP = {P0, ...,PNs−1}, where
Pi is a subset of pixels belonging to superpixel i. With pixel
property f ∈ RNp×K (K features for each pixel) and prob-
ability map q ∈ RNs×Np , the loss function is

L(f ,q) =
∑
p∈P

E (f(p), f ′(p)) +
m

D
||c(p)− c′(p)||2 (1)

Figure 3: Pretrained superpixles on BSDS500 [52] vs. fine-tuned
superpixels on PASCAL VOC 2012 using our joint learning. Fine-
tuned superpixels recover accurate object edges to alleviate the
domain gap between datasets. Best view by zoom-in.

with

us =

∑
p∈Ps

f(p)qs(p)∑
p∈Ps

qs(p)
, ls =

∑
p∈Ps

c(p)qs(p)∑
p∈Ps

qs(p)
, (2a)

f ′(p) =
∑
s∈Np

usqs(p), c′(p) =
∑
s∈Np

lsqs(p), (2b)

where m is a weight balancing the effects of property and
coordinates on loss, D is a superpixel sampling interval in
proportion to superpixel size, c(i) = [xi, yi]

T for all i ∈
{1, ..., Np} are pixel coordinates, E(·, ·) is a distance mea-
sure function involving l2 norm or cross-entropy, qs(p) ∈ q
is the probability of pixel p belonging to superpixel s, and
Np is a set of superpixels surrounding pixel p.

Here, us and ls are superpixel-level property vector and
central coordinates aggregated from involved pixels respec-
tively, and f ′ and c′ are pixel-level property and coordinates
aggregated from surrounding superpixels. This updates be-
tween pixels and superpixels until the loss converges.

3.2. Learning with Transparent Initialization

Although some semantic segmentation datasets, such as
PASCAL VOC [13] and Berkeley benchmark [35], have
no accurate edges for supervised edge learning, it can be
compensated for by a superpixel network on edge-specified
datasets, such as SBDS500 [4]. Due to the domain gap of
datasets, however, pretrained superpixel models are more
desirable than learning from scratch for fast loss conver-
gence. Superpixel maps pretrained on BSDS500, however,
are not always suitable for semantic segmentation datasets.
Hence, fine-tuning by joint learning is necessary to improve
the quality of superpixel contours, compared with using the
pretrained network, as shown in Fig. 3.

Therefore, in our proposal, linear layers or convolutional
layers with 1 × 1 kernels are added to fuse the outputs of
superpixel and semantic segmentation networks. Either or
both can be pretrained. Importantly, selecting an appropri-
ate initialization on these additional layers is important to
avoid overriding the effect of learned network parameters.
It is straightforward to cast the layer operations as an iden-
tity mapping between input and output at the early training
stage. Net2Net [10] achieves this by using identity matrices

3

to initialize linear layers. This method, however, is inef-
ficient in learning since the identity matrices will result in
highly sparse gradients. In addition, it cannot handle acti-
vation functions with negative values.

In contrast, we introduce transparent initialization with
non-zero values for dense gradients, while identically map-
ping the layer input to output and preserving the effect of
the learned parameters of the pretrained networks.

Affine Layers. A linear layer without activation (such as
a convolution or fully-connected layer) can be written as
y = xA+ b with layer weights A, bias b, and input x, by
matrix multiplication with ỹ = [y,1]:

ỹ = x̃M = [x,1]

[
A 0
b 1

]
. (3)

For simplicity the mapping Eq. (3) will be denoted as y =
x A where A denotes the affine transformation, and we place
the functions on the right. Note the difference between A, an
affine transform and A, a matrix. If an activation function
σ is included, then the mapping is x 7→ x Aσ.

The right-inverse of an affine transformation Eq. (3) is
represented by the matrix

MR =

[
AR 0
−bAR 1

]
, (4)

satisfying MMR = I , the identity map. Here, AR is the
right-inverse of matrix A, which exists if A has dimension
m× n and rank m, in which case AR = A>(AA>)−1.

Transparent Initialization. The idea behind transparent
layer initialization is to construct a sequence of k ≥ 2 affine
layers denoted A1, A2, . . . , Ak such that Ak is a right-inverse
of the product A1 . . . Ak−1, satisfying A1A2 . . . Ak = I, the
identity transformation.

A necessary condition for this right inverse to exist is that
A1A2 . . . Ak−1 should be of full rank. Since a matrix with
random entries will almost surely have full rank, this leads
to the following condition.

Theorem 1 Let a sequence of affine transformations Ai :
IRmi−1 → IRmi , for i = 1, . . . , k− 1 be chosen at random.
Then A1 . . . Ak−1 almost surely has a right inverse if and
only if mi ≥ m0 for i = 1, . . . , k − 1.

Therefore, the strategy for selecting a set of parameters
for a sequence of affine layers may be described as follows.
For the sequence of layers to represent an identity trans-
form, we need that the input and output space have the same
dimension, namely m0 = mk. Then

1. Select intermediate dimensions m1, . . . ,mk−1 such
that mi ≥ m0 for all i = 1, . . . , k − 1.

(a) without activation

(b) with activation

Figure 4: Transparent initialization. ψ : x 7→ [x,1]; ψ̂ :
[x,1] 7→ x; σ: activation function. The three modules, from left
to right, in (b) are corresponding to Eqs. (8)-(10).

2. Define random affine transforms Ai by selecting the en-
tries of matrices Ai and vectors bi randomly, using a
suitable random number generator, for instance by a
zero-mean normal (Gaussian) distribution.

3. Compute the composition A1A2 . . . Ak−1 by matrix
multiplication, and take its right-inverse.

4. Set Ak to equal (A1A2 . . . Ak−1)R.
The resulting composite mapping A1A2 . . . Ak is the identity
affine transformation.

With Activation. Usually, each affine mapping A will be
followed by an activation function σ. For now, we assume
that this is ReLU(·). Our approach including activations is
to apply the activation to both x and−x and then sum them.
Consider

x
D7−→ [x,−x] σ7−→ [x+,x−]

S7−→ x+ − x− = x , (5)

where mappingsD (duplicate) and S (subtract) are the map-
pings as shown above, and x+ and x− are the positive and
negative components of x. This shows that xDσS = x,
and so DσS is the identity mapping. Note also that both D
and S are affine (in fact linear) transformations.

Applying this to a sequence of affine transformations Ai
such that xA1A2 . . . Ak = x gives

x (A1DσS) (A2DσS) . . . (Ak−1DσS) Ak = x . (6)

Bracketing this differently gives

x(A1Dσ) (SA2Dσ) . . . (SAk−1Dσ) (SAk) = x , (7)

where now each bracket is an affine mapping followed by
the activation σ (except the last). This may then be imple-
mented as a sequence of affine layers (convolution or fully-
connected) with activations. Thus, A1D is the mapping

x 7→ x
[
A1 −A1

]
+ [b1,−b1] . (8)

4

pixel index
0 1 2 3 4 · · · Np-1

su
pe

rp
ix

el
in

de
x 0 0 1 1 0 0 · · · 0

1 0 0 0 1 1 · · · 0
2 1 0 0 0 0 · · · 1

...
...

...
...

...
...

. . .
...

N
s
-1 0 0 0 0 0 · · · 0

sum 1 1 1 1 1 · · · 1

Table 1: Example of sparse property for indexing Np pixels by
Ns superpixels. Each superpixel contains only a few pixels (“1”
in each row) for logit consistency. Hence, an efficient encoding is
achieved by a sparse Ns×Np matrix with Np non-zero elements.

The mapping SAiD is the affine transformation

[x+,x−] 7→ [x+,x−]

[
Ai −Ai

−Ai Ai

]
+ [bi,−bi] (9)

and SAk is the mapping

[x+,x−] 7→ [x+,x−]

[
Ak

−Ak

]
+ bk . (10)

The structure of the network may be represented as in Fig. 4.
Observe that the outputs of intermediate layers have twice
the dimension of the output of the affine mappings Ai.

It is important to note that the structured form of the
affine mappings in Eqs. (8)-(9) are for initialization only.
There is no sharing parameters (such as Ai and −Ai) and
layers are free to implement any affine transform during
training. In fact, x in any activation functions satisfying

σ(x)− σ(−x) = cx, (11)

where c is a non-zero constant, can be recovered, such
as SoftReLU(·) defined by σ(x) = log(1 + ex) and
LeakyReLU(·) [51]:

x =
1

1 + δ
[σ(x), σ(−x)]

[
I
−I

]
, (12)

where δ > 0 is the slope of the negative part of
LeakyReLU(·). The substitution of Eq. (12) to Eqs. (8)-(9)
contributes to the identity mapping in our transparent ini-
tialization. One can derive it in a similar way to ReLU(·).
More details are given in the supplementary material.

3.3. Logit Consistency with Sparse Encoder

In addition to the notations of pixel number Np,
superpixel number Ns, and subsets of pixels P =
{P0, ...,PNs−1} in Sec. 3.1, the label set is defined as
L = {0, ..., Nl − 1} given Nl labels. For logit xls of Ps
for superpixel s at label l, the logit consistency follows

xls(p)←
1

|Ps|
∑
p∈Ps

xls(p), ∀p ∈ Ps, (13)

which guarantees all pixels in Ps having the same logit at
each label so as to be assigned with the same label.

Nevertheless, considering the high complexity of in-
dexing xls(p), a dense matrix operation requires a large
GPU memory, that is NlNsNp, especially for the back-
propagation in CNN learning. This makes it infeasible for
training due to the limited GPU memory in our experiments.

Hence, we adopted a sparse encoder, including sparse
encoding and decoding, with sparse matrix operations for
the consistency. Let us set matrix for indexing pixels by
superpixels as M(s, p), logit matrix as M(l, p), where s ∈
S, p ∈ P , and l ∈ L, sparse encoding and decoding are

Encoding: M(s, l) =
SMM(M(s, p),MT (l, p))

SADDp∈Ps(M(s, p))
, (14a)

Decoding: M(l, p)← SMM(MT (s, l),M(s, p)), (14b)

where M(s, p) ∈ BNsNp is {0, 1} binary, shown in Ta-
ble 1, SMM(·) is sparse matrix multiplication, and SADD(·)
is sparse addition. This converts Eq. (13) from dense oper-
ations to sparse with reduced complexity from NlNsNp to
NlNp. Otherwise, it is infeasible to jointly train the net-
works due to the limited GPU memory in our experiments.

4. Experiments

We first evaluated the properties of our transparent ini-
tialization including its effectiveness of data recovery and
numerical stability. Then, we demonstrated its effect on
jointly learning pretrained networks of semantic segmen-
tation and superpixels together with a sparse encoder for
logit consistency. Our code in PyTorch will be released on
GitHub upon publication.

4.1. Properties of Transparent Initialization

Effectiveness. Our transparent initialization aims at iden-
tically mapping the output of linear layer(s) to the input
at the early stage when fine-tuning pretrained network(s).
It retains the effect of learned parameters of pretrained
model(s). Off-the-shelf parameter initialization methods,
such as random (uniform) and Xavier [18] initialization,
lead to random values of the output at the early training
stage, which cannot generate effective features by the pre-
trained models. Also, compared with the identical ini-
tialization with identity matrices for deeper networks in
Net2Net [10], our transparent initialization has a high ini-
tialization rate with much more non-zero parameters for
dense gradients in the backpropagation.

We evaluated these methods on 3 fully-connected lay-
ers. The (in channels, out channels) for each layer is (42,
64)→(64, 64)→(64, 42). Since Net2Net only supports
square linear layer, i.e., in channels equals out channels, to
increase network depth, all layers have 42 in channels and

5

Manner Init.
Rate↑

Recovery Rate↑ Non-square
Filter Supportedw/o Activation w Activation

Random 98.2 0.0 0.0 3
Xavier [18] 98.2 0.0 0.0 3
Net2Net [10] 2.3 100.0 50.0 7
Ours 99.9 100.0 100.0 3

Table 2: Our transparent initialization has high initialization and
recovery rates on 3 fully-connected (FC) layers, and supports non-
square filters. “init. rate”: percentage of non-zero (absolute value
> ε) parameters; “recovery rate”: percentage of outputs with the
same (difference < ε) values as inputs; “activation”: ReLU(·);
“non-square filter”: a FC layer with different in channels and
out channels. Inputs are in [-10, 10] and ε=1e-4.

[-1, 1] [-10, 10] [-1e2, 1e2] [-1e3, 1e3]
Max Error ∼6.8e-6 ∼6.6e-5 ∼6.5e-4 ∼6.6e-3

Table 3: Stability of transparent initialization with numerical or-
ders 1, 10, 1e2, 1e3. Layer parameters are consistent with Table 2.

out channels. Input data is normally distributed with size
(4, 42, 512, 512) as (batch, in channels, height, width).

In Table 2, random and Xavier initialization have ∼98%
initialization rate but cannot recover the output from its in-
put, leading to 0% recovery rate. Net2Net [10] has only
∼2% initialization rate and 50% recovery rate with ReLU(·)
for non-negative values only. In contrast, our transparent
initialization has a high initialization rate and 100% recov-
ery rate by Eqs. (8)-(10) with ReLU(·).

Numerical Stability. Since the effect of our transpar-
ent initialization is distributed across layers and Eq. (4) is
achieved by a pseudo-inverse matrix for a rank-deficient
matrix, hidden layers have round-off errors, and thus, the
matrix multiplication of layer parameters is not strictly
identical. We therefore tested the numerical stability of our
transparent initialization on 4 numerical orders in Table 3.
Clearly, the max error between input and output is in pro-
portion to the magnitude of input values. For a pretrained
model, its output is usually stable in a numerical range, such
as probability in [0, 1]. One can easily enforce a numerical
regularization if the model output is out of range.

4.2. Implementation Setup

Datasets. We evaluated our proposal on 3 popular seman-
tic segmentation datasets, ADE20K, PASCAL VOC 2012,
and PASCAL Context. ADE20K [59, 60] has 150 seman-
tic categories for indoor and outdoor objects. It contains
20,210 samples for training and 2,000 samples for valida-
tion. PASCAL Context [36] has additional annotations for
PASCAL VOC 2010 and provides annotations for the whole
scene with 400+ classes. We selected the given 59 cate-
gories for semantic segmentation with 4,996 training sam-
ples and 5,104 validation samples. PASCAL VOC 2012 [13]
and Berkeley benchmark [35] were used as a combined ver-

sion for 21 classes segmentation. This dataset has 1,449
images from PASCAL VOC 2012 val set for validation and
10,582 images for training. Meanwhile, MS-COCO [32]
was used to pretrain the semantic segmentation network,
i.e., DeepLabV3+ in our case, for PASCAL VOC 2012. It
has 92,516 images for training and 3,899 images for vali-
dation, while 20 object classes from the primary 80 classes
were selected in accordance with PASCAL VOC 2012.

For superpixel networks, we used the state-of-the-art su-
perpixel network with FCN from [52] that was pretrained
on Berkeley Segmentation Data Set and Benchmarks 500
(BSDS500) [4] containing 500 images with handcrafted
ground truth edges.

Learning Details. For the ablation study on PASCAL
VOC 2012, we trained DeepLabV3+ from scratch on the
combined dataset above with crop size 5122. We set Learn-
ing Rate (LR) as 0.007 for ResNet and 0.07 for ASPP and
decoder. To train on MS-COCO, LR was set to 0.01 for
ResNet and 0.1 for the others. LR for superpixel network
pretrained on BSDS500 was the same as ResNet which was
pretrained on ImageNet and is accessible in PyTorch model
zoo. We used SGD [44] with momentum 0.9, weight decay
5e-4, and “poly” scheduler for 60 epochs.

For the joint training, we set LR as 1e-6 for pretrained
DeepLabV3+ and superpixel with FCN. LR for the trans-
parent initialization module is 1e-7. These LRs were fixed
in the joint training for 20 epochs.

For ADE20K and PASCAL Context, we fine-tuned the
state-of-the-art pretrained ResNeSt101 and superpixel with
FCN with crop size 4802. LR for TI module is 1e-9, and
1e-6 for the others. We fine-tuned for 100 epochs by SGD
with momentum 0.9 and weight decay 5e-4. Batch size was
decreased from 16 to 8 due to the limited GPU memory.

Metrics. For semantic segmentation, we used mean Inter-
section over Union (mIoU) and pixel accuracy [34]. For
segmentation edges, we used performance ratio of true
edges to false edges [27] and F-measure, 2RP/(R + P)
with edge recall rate R and precision P [42, 15].

4.3. Ablation Study

The ablation study was on PASCAL VOC 2012. We
first reproduced DeepLabV3+ with ResNet101, resulting
in 78.85% mIoU comparable to 78.43% 1. Applying su-
perpixel network over it by logit consistency increased the
mIoU by 0.37%. We then adopted ResNet152 for a quali-
fied baseline with 77.78% on the full size for evaluations.

Applying superpixel contours increased the mIoU from
77.78% to 78.15%, based on which fine-tuning by our trans-
parent initialization further increased it by 0.79% (1.16%
to DeepLabV3+). Pretrained on MS-COCO for PASCAL
VOC 2012, our proposal has 0.61% increase of mIoU. Note

1https://github.com/jfzhang95/pytorch-deeplab-xception.git

6

Manner Backbone SP TI MS-COCO mIoU (5122/full)
DeepLabV3+ [9] ResNet101 - - - 78.85 / 76.47
Ours ResNet101 3 - - 79.22 / 76.98
DeepLabV3+ [9] ResNet152 - - - 79.32 / 77.78

Ours ResNet152 3 - - 79.94 / 78.15
ResNet152 3 3 - 80.46 / 78.94

DeepLabV3+ [9] ResNet152 - - 3 82.62 / 80.76
Ours ResNet152 3 3 3 83.39 / 81.37

Table 4: Ablation study: single-scale evaluation on PAS-
CAL VOC 2012. Ours used DeepLabV3+ with ResNet101 and
ResNet152 and superpixel net with a 3-layer TI module. “SP”:
superpixel with logit consistency; “TI”: transparent initialization.
“mIoU” is on 5122 and full image size.

Manner pixAcc. mIoU
PSPNet [55] 81.39 43.29
EncNet [53] 81.69 44.65
ResNeSt50 [54] 81.17 45.12
ResNeSt101 [54] 82.07 46.91
Ours3 82.37 47.42

Table 5: Multiscale evaluation on ADE20K. Ours used
ResNeSt101 and superpixel with a 2-layer TI module.

Manner pixAcc. mIoU
FCN (ResNet50) [34] 73.40 41.00
EncNet [53] 80.70 54.10
ResNeSt50 [54] 80.41 53.19
ResNeSt101 [54] 81.91 56.49
Ours3 82.43 57.32

Table 6: Multiscale evaluation on PASCAL Context. Ours used
ResNeSt101 and superpixel with a 3-layer TI module.

that most edges in the ground truth were neglected in the
evaluation, marked white in Fig. 5(d).

Again, our goal is to preserve sharp edges aligned with
object contours by superpixels. Fig. 5 vividly shows the en-
hanced object edges, especially objects that are highly con-
trastive to the background, such as birds and human heads.

4.4. Evaluations

Semantic Segmentation. For ADE20K and PASCAL
Context, we used the most recent state-of-the-art seman-
tic segmentation network ResNeSt [54] 2. Its state-of-
the-art performance on ADE20K using ResNeSt200 is
82.45% pixel accuracy and 48.36% mIoU, and 83.06%
pixel accuracy and 58.92% mIoU on PASCAL Context us-
ing ResNeSt269. Since we have only 4 P100 (16 GB)
GPUs for our experiments while [54] has 64 V100 (16 GB)
GPUs, we chose ResNeSt101 instead of ResNeSt200 or
ResNeSt269 as our baseline network. Note that it is possi-
ble to enhance semantic segmentation edges on those state-
of-the-art networks given sufficient GPU memory.

In Table 5, our method improves the pixel accuracy by

3Since [54] has 64 GPUs for state-of-the-art ResNeSt training while
only 4 GPUs are accessible for ours, we used ResNeSt101 as baseline.

2https://github.com/zhanghang1989/PyTorch-Encoding

Figure 5: Single-scale evaluation on PASCAL VOC 2012. First
6 rows are successful cases; last 2 rows are failed cases. SP maps
are single-scale. Best view by zoom-in.

0.39% and mIoU by 0.61% on ADE20K over the baseline.
In Table 6, the pixel accuracy is improved by 0.71% and the
mIoU by 0.83% over the baseline.

More importantly, visualizations in Fig. 6 for ADE20K
and Fig. 7 for PASCAL Context vividly show the enhanced
object edge details. This is the core of our refinement on se-
mantic segmentation with superpixel constraints. For a fair
comparison with [54], multiscale evaluations with multi-
scale superpixel maps were used while the superpixel maps
in Figs. 6-7 are single-scale merely for demonstration.

7

Figure 6: Multiscale evaluation on ADE20K. SP maps are single-
scale for demonstration. Best view by zoom-in.

Figure 7: Multiscale evaluation on PASCAL Context. SPs are
single-scale for demonstration. Best view by zoom-in.

1 2 3 4 5

Number of Edge Pixel(s)

0

10

20

30

P
e

rf
o

rm
a

n
c
e

 R
a

ti
o ResNet101

Ours

(a) PR: PASCAL VOC 2012

1 2 3 4 5

Number of Edge Pixel(s)

0

0.2

0.4

F
 m

e
a
s
u
re

ResNet101
Ours

(b) FM: PASCAL VOC 2012

1 2 3 4 5

Number of Edge Pixel(s)

10

15

20

25

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

ResNeSt101
ResNeSt200
Ours

(c) PR: ADE20K

1 2 3 4 5

Number of Edge Pixel(s)

0.2

0.25

0.3

F
 m

e
a

s
u

re

ResNeSt101
ResNeSt200
Ours

(d) FM: ADE20K

1 2 3 4 5

Number of Edge Pixel(s)

10

20

30

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o ResNeSt101

ResNeSt269
Ours

(e) PR: PASCAL Context

1 2 3 4 5

Number of Edge Pixel(s)

0.2

0.25

0.3

0.35

F
 m

e
a
s
u
re

ResNeSt101
ResNeSt269
Ours

(f) FM: PASCAL Context

Figure 8: Evaluation on segmentation edges using Performance
Ratio (PR) and F-measure (FM). Edges in ground truth are ex-
tended to {1,2,3,4,5} pixels. Ours outperform the segmentation
edges of the most recent state-of-the-art.

Semantic Segmentation Edges. Since our refinement of
semantic segmentation mainly lies in object edge areas,
we used the popular Performance Ratio (PR) [27] and F-
measure (FM) [42, 15] to evaluate the enhanced segmenta-
tion edges. In Fig. 8, ours outperform the baselines, i.e.,
ResNet101 on PASCAL VOC 2012 and ResNeSt101 on the
others, as well as the most recent state-of-the-art [54], i.e.,
ResNeSt200 on ADE20K and ResNeSt269 on PASCAL
Context, with higher PR and FM. Illustrations of the state-
of-the-art edges compared with ours are shown in Fig. 1.

5. Conclusion
With transparent initialization and sparse encoder intro-

duced in our paper, the joint learning of the state-of-the-art
networks for semantic segmentation and superpixels pre-
serves object edges. The proposed transparent initializa-
tion used to fine-tune pretrained models retains the effect
of learned parameters through identically mapping the net-
work output to its input at the early learning stage. It is
more robust and effective than other parameter initialization
methods, such as Xavier and Net2Net. Moreover, the sparse
encoder enables the feasibility of efficient matrix multi-
plications with largely reduced computational complexity.
Evaluations on PASCAL VOC 2012, ADE20K, and PAS-

8

CAL Context datasets validate the effectiveness of our pro-
posal with enhanced object edges. Meanwhile, the qual-
ity of our semantic segmentation edges, evaluated by per-
formance ratio and F-measure, is higher than other meth-
ods Additionally, transparent initialization is not limited to
the joint learning for semantic segmentation but can also be
used to initialize additional fully-connected layers for other
tasks such as deep knowledge transfer.

Acknowledgement

We would like to thank the Australian National
University, the Australian Centre for Robotic Vision
(CE140100016), and Data61, CSIRO, Australia, for sup-
porting this work.

Appendix
This provides additional details about transparent layers,

giving more details of the initialization and structure of the
layers. In particular, it shows how the approach may be
used for any activation functions, not only forms of ReLU
that were discussed in the main paper. This also speculates
about the application of these ideas to form transparent con-
volutional layers. We now describe the ideas at a slower
pace than is possible in the main paper, sometimes using
different notation.

A. Introduction for Warmup
A common technique is to extend an existing network

by the addition of further affine layers (classification lay-
ers) before the loss layer. These layers may then be trained
separately or the whole extended network can be trained.
We refer to the original (unextended) network as the base-
network, and the network extended by some additional lay-
ers as the extended network. We assume that the exten-
sion layers consist of fully-connected layers, including off-
set, followed by an activation layer, such as a ReLU. These
extension layers are inserted before the loss-layer.

Assuming that the base layer is trained to attain a low
value of the loss, we wish to insert the extension layers into
the network without increasing the loss of the network, so
that additional training may continue to decrease the value
of the loss-function. However, if the extension layers are
initialized with random parameters, it will result in an in-
crease in the loss of the network, so that the extension lay-
ers, or the whole network needs to be trained from scratch.

Simple transparent layers. This problem has also been
addressed in previous work of Goodfellow [10]. One very
simple method to implement a transparent layer is to let the
matrix of layer parameters be the identity matrix. This has
the disadvantage, however, that all the parameters are either
0 or 1, which fails to introduce sufficient randomness into

the system, which would perhaps be desirable. In addition,
if the function f is represented by the identity mapping, then
many of the parameters are equivalent, perhaps also an un-
desirable feature. We wish to allow the parameters of the
affine transformation to be chosen randomly so as to mix
things up a bit.

It is also not clear to do in the case where f : IRm →
IRn, where m 6= n, for then there is no such thing as an
identity matrix. We wish to allow the possibility that the
output and input of the extension layers are not equal.

B. Affine Layers

We are interested in layers in a Neural Network (NN)
that implement an affine transformation on the input, that
is, a linear transformation followed by an offset. For the
present, we ignore any non-linear activatation that might be
applied to the output of the layer.

The most obvious example of such a layer is a fully-
connected layer, and that will be our main focus. However,
the same idea could be applied to handle convolution layers.
We raise this possibility and make a few comments on this
later. Any development of this idea is left to further work.

An affine layer, in the following discussion, is seen as
composed of a linear transform, followed by an offset and
then a non-linear activation. The linear transform, followed
by offset performs an affine transformation on the data,
which will be written as3

f(x) = xA+ b (15)

where f : IRm → IRn. In this note, the convention is that
vectors, such as x are row vectors, which is contrary to a
convention common in computer vision literature that vec-
tors represent column vectors. The present notation is com-
mon in computer graphics literature, however.

This mapping satisfies the condition

f(λx) + f((1− λ)x) = f(x) (16)

and it may be represented by matrix multiplication on the
homogenized vector x̃, according to

x̃ 7→ x̃Ã (17)

where the matrix Ã is given by

Ã =

[
A 0>

b 1

]
. (18)

3The notation in this exposition differs slightly, mainly in choice of
fonts, from the main paper. Here, we deonte a matrix by A, an affine
transformation by A and the matrix that expresses an affine transformation
in terms of homogeneous coordinates by Ã. Homogeneous quantities in
general (such as homogeneous vectors are denoted with a tilde).

9

For future reference, the matrix that performs the inverse
affine transformation is equal to

Ã
−1

=

[
A−1 0>

−bA−1 1

]
. (19)

This works if A is a square matrix and has an inverse.
More generally, in the case where A is of dimensionm×n,
with m < n, it is possible that A has a right-inverse, which
is a matrix, denoted by AR such that AAR = I. In this
case, a right inverse for Ã is given by

Ã
R
=

[
AR 0>

−bAR 1

]
. (20)

where AR is the right-inverse of matrix A.
An affine transform maps IRm onto an affine subspace

of IRn, and the rank of the affine transform may be defined
as the dimension of the affine space that is the image of this
transform. Such a transformation will be said to be of full
rank if its rank is equal to m, the dimension of input space.

From here on, we shall use the symbol A to represent an
affine transformation, writing xA. The symbol A represents
the transformation itself, not the matrix (in this case Ã) that
implements it. Caution: to reemphasize this, the symbols
A and A do not represent the same thing. In particular A is
a matrix and A is an affine transform, which is equivalent to
matrix multiplication by a matrix A and offset by a vector
b, so that xA is short-hand notation for xA+ b.

Interlude: right inverse of a matrix. Let A be an m×n
matrix with m ≤ n. An n × m matrix AR is the right-
inverse of A if AAR = Im×m. Such a matrix exists if
and only if A has rank m equal to its row-dimension. This
cannot happen ifm > n, where a right-inverse cannot exist.

In this case, AR is given by the formula

AR = A>(AA>)−1 , (21)

where the condition AAR = I is easily verified. This for-
mula relies on the fact that AA> has an inverse, which is
ensured because the rank of A is m.

An alternative procedure is to take the Singular Value
Decomposition (SVD) A = UDV>, where V> has di-
mension m × n and V>V = Im×m. The matrix D (of
dimension m × m) is non-singular (since A has rank m).
Then, the right-inverse is given by

AR = VD−1U> (22)

as is easily verified.

C. Sequences of Layers without Activation
For the time being, we consider the unrealistic case that

the activation layer is missing from the affine layers. In this

case, each affine layer performs an affine transformation. A
sequence of transformations A1A2 . . . Ak may be applied to
an input x, giving

x 7→ xA1A2 . . . Ak . (23)

If we choose Ak to be a right-inverse of A1A2 . . . Ak−1 then
we have

A1A2 . . . Ak = A1 . . . Ak−1(A1 . . . Ak−1)
R = I , (24)

the identity mapping.
The condition for this right inverse to exist is that

A1A2 . . . An−1 should be of full rank. A necessary condi-
tion for this to happen is as follow. Let Ai represent an
affine transformation Ai : IRmi−1 → IRmi . The first and
last spaces in this sequence are IRm0 and IRmk , so m0 = m
and mk = n. Then A1 . . . Ak−1 has a right inverse only if
mi ≥ m0 for all i = 1, . . . , k − 1. In other words, a nec-
essary condition for the right inverse to exist is that the di-
mensions of all the intermediate spaces IRm1 , . . . , IRmk−1

should be at least equal to m0. It is not hard to see that
generically, this is also a sufficient condition, meaning that
it is true for almost all sequences of transformations.4

Without being too formal here, we can state that this con-
dition will hold generically if all the transformations are
chosen at random.

Theorem 2 Let a sequence of affine transformations Ai :
IRmi−1 → IRmi , for i = 1, . . . , k− 1 be chosen at random.
Then A1 . . . Ak−1 almost surely has a right inverse if and
only if mi ≥ m0 for i = 1, . . . , k − 1.

For practical purposes it is safe to proceed as if this result
holds always (and not just almost always), since the prob-
ability that A1 . . . Ak−1 does not have an inverse is vanish-
ingly small (in fact zero).

Therefore, the strategy for selecting a set of parameters
for a sequence of affine layers may be described. For the se-
quence of layers to represent an identity transform, we need
that the input and output space have the same dimension,
namely m0 = mk. Then

1. Select intermediate dimensions m1, . . . ,mk−1 such
that mi ≥ m0 for all i = 1, . . . , k − 1.

2. Define random affine transforms Ai by selecting the en-
tries of matrices Ai and vectors bi randomly, using a
suitable random number generator, for instance by a
zero-mean normal (Gaussian) distribution.

4The terms almost all, almost always, etc. are intended in the standard
mathematical sense, meaning that the set of cases for which the relevant
condition fails to be true has measure or probability zero. For instance the
set of m× n, with m ≤ n that do not have full rank is a set of measure 0
in the set of all such matrices, so one can state that almost all such matrices
have full rank.

As another example, a matrix chosen at random (which implies that
numbers are chosen from some probability distribution such as a normal
distribution) will be of full rank with probability 1, hence almost always.

10

3. Compute the composition A1A2 . . . Ak−1 by matrix
multiplication, and take its right-inverse.

4. Set Ak to equal (A1A2 . . . Ak−1)R.

The resulting product A1A2 . . . Ak is the identity affine trans-
formation.

D. Gaussian Random Matrices
Since we are using matrices initialized from a normal

distribution, we give some properties of such matrices. The
purpose is to ensure that the concatenation of affine trans-
formations does not cause explosion of the entries of the
product A1A2 . . . Ak−1. If this is not done properly, then this
product will have very large entries and so will any value of
x0A1A2 . . . Ak−1.

The solution is to make the matrices Ai appearing as
the linear-transform part of Ai as close to orthogonal as
possible. As an additional advantage, the entries of Ak =
(A1 . . . Ak−1)

R will be approximately of the same order as
the entries of each of the other Ai. It will turn out that the
entries of each Ai should be chosen from a Gaussian distri-
bution with variance 1/m where m is its row-dimension.

We are assuming here that the dimensions of the matrix
are large. In addition, if the matrix is not square, by say-
ing it is orthogonal we mean that both its rows (and sim-
ilarly it columns) are orthogonal vectors, all of the same
length (a different length for the row and column vectors,
of course). One may mistakenly assume that by randomly
selecting each entry of a matrix randomly one obtains a ran-
dom matrix in some vague sense. In reality, one obtains an
(nearly) orthogonal matrix.

To see this, we first see that two random vectors from
distribution D are almost orthogonal. Let X and Y be two
i.i.d random variables in N (0, σ2), we have

E[XY] = E[X]E[Y] = 0 (25)

and
E[(XY)2] = E[X2]E[Y 2] . (26)

Then,

var(XY) = E[(XY)2]− E2[XY]

= E[X2] E[Y 2]

=
(
E[X2]− E2[X]) (E[Y 2]− E2[Y]

)
= var(X) var(Y) .

(27)

Now, given a column vector v ∈ Rm with entries chosen
from distribution D, we have

var

(
m∑
i=1

XiYi

)
= mvar (XiYi) = mvar2(X) = mσ4,

(28)

where Xi and Yi are independent entries in two of such
column vectors respectively. Then, the expected squared
length of such a vector v is mE[X2] = mσ2. If we
choose σ2 = 1/m, v has the expected squared length equal
to 1. This satisfies the attribute of an orthogonal matrix,
vTv = 1. Then, Eq. (27) follows

var

(
m∑
i=1

XiYi

)
= mσ4 =

1

m
. (29)

Hence, two m-length vectors randomly chosen from
N (0, 1/m) will have expected squared length 1 and ex-
pected inner-product 0 (by Eq. (25)) with variance of the
inner product as 1/m.

On the other hand, the variance of the square length of
the vector is

var

(
m∑
i=1

X2
i

)
= mvar(X2) =

2

m
, (30)

where var(X2) = 2σ4 is obtained byE(X4)−E2(X) with
E2(X2) = σ4 and

E(X4)

=

∫
X4 exp

(
− X2

2σ2

)
dX∫

exp
(
− X2

2σ2

)
dX

=
−σ2X3 exp

(
− X2

2σ2

)∣∣∣+∝
−∝

+ σ2
∫
exp

(
− X2

2σ2

)
dX3∫

exp
(
− X2

2σ2

)
dX

=
3σ2

∫
X2 exp

(
− X2

2σ2

)
dX∫

exp
(
− X2

2σ2

)
dX

=

3σ2(−σ2)

(
X exp

(
− X2

2σ2

)∣∣∣+∝
−∝
−
∫
exp

(
− X2

2σ2

)
dX

)
∫
exp

(
− X2

2σ2

)
dX

=3σ4 .
(31)

To this end, it shows

Theorem 3 If entries of an m × n matrix are chosen from
a zero-mean distribution with variance σ2 = 1/m, then
the column vectors have expected squared length 1 with
variance 2/m and the expected inner product of each two
columns is 0 with variance 1/m.

As m increases, the matrix approximates more and more
an orthogonal matrix. Corresponding to Fig. 4 in the main
paper, weights Ai and bias bi can be initialized by

1. Choose the dimension of i-th layer filter asmi−1×mi,
for i = 1, ..., k − 1, where mi ≥ m0 = mk.

11

2. Define a random affine transformation Ai by selecting
its weight matrix Ai from aN (0, 1/mi) Gaussian dis-
tribution and its bias vector bi from a N (0, 1) Gaus-
sian distribution.

3. Initialize Ak with the right inverse of A1A2...Ak−1.

Again, note that Ai is an affine transformation (also used
as a layer) where Ai is the weight matrix of Ai. Then,
the above initialization will lead to an identity mapping as
A1A2...Ak = 1.

E. Getting Past the Activation Layer
We concentrate first on the case where each affine trans-

form is followed by a ReLU activation. To do this, we will
need to double the size of the intermediate layers, as will be
seen next. We assume that affine transforms Ai are given,
let x = x0 be the input of A1 and define xi = xi−1Ai for
i = 1, . . . , k, the output of the i-th affine transform.

In the course of the following discussion, we shall be
defining new affine transforms A′i and layers represented by
A′iσ, namely an affine transform followed by an activation
σ. Once more let x′0 be the input of the first layer, x′0 = x0,
and define x′i = x′i−1A

′
iσ, the result of the affine trans-

formation followed by the activation. Quantities without
primes (Ai and x′i) belong to the original sequence of affine
transforms, whereas those with primes (A′i and x′i) belong
to the sequence, with activation, being constructed).

The first layer will be modified as follows. Suppose that
A1 is represented in matrix form as

x0A1 = (x0, 1)

[
A1

b1

]
= x0A1 + b1 . (32)

This is replaced by

x0A
′
1 = (x0, 1)

[
A1 −A1

b1 −b1

]
= x0 [A1 | −A1] + (b1,−b1)

= (x0A1 + b1,−x0A1 − b1)

= (x0A1,−x0A1)

(33)

In other words, the m0 × m1 matrix A is replaced by the
m0 × 2m1 matrix A′1 = [A1 | −A1], and b1 is replaced
by the 2m1 dimensional vector b′1 = (b1,−b1).5

5Important note: The affine transformation A′ is defined[
A1 −A1

b1 −b1

]
.

This will output a vector of the form (x0A1,−x0A1) with two parts that
are negatives of each other. It defines the initial form of the affine trans-
form only. During training, all entries of the above matrix are free to vary
(and will) independently, and its output will not maintain this symmetric
form. This applies to all the affine transforms A′i that will be defined.

Now, when this is passed through an activation layer,
represented by the activation function σ (ReLU), the result
is

x0A
′
1σ = (x0A1σ , (−x0A1)σ) = x′1 . (34)

This is the output of our modified affine layer with activa-
tion. The point to note here is the identity vσ−(−v)σ = v.
This gives

(x0A1)σ − (−x0A1)σ = x0A1 . (35)

Thus, by subtracting the two halves of x0A
′
1σ, one arrives

back at the simple affine transform x0A1.
We simplify the notation as follows. Let x+

i and x−i be
defined as

x+
i = xiσ (36a)

x−i = (−xi)σ (36b)

which are the positive and negative parts of xi respectively,
satisfying xi = x+

i − x−i . Then, we see that

x′1 = (x+
1 ,x

−
1) . (37)

Now, the first thing to do at the beginning of the next
layer is to subtract the two parts of the previous output, il-
lustrated by

x′1

[
I

−I

]
= (x+

1 ,x
−
1)

[
I

−I

]
= x1 . (38)

This is followed by the same trick of separating the posi-
tive and negative parts as before. The affine part (without
activation) of the second layer is then

x′1A
′
2 = x′1

[
I

−I

]
[A2 | −A2] + (b2,−b2)

= x′1

[
A2 −A2

−A2 A2

]
+ (b2,−b2)

= x′1A
′
2 + b′2 ,

(39)

where A′2, b′2 and A′2 are defined by this equation. Noting
Eq. (38), we arrive at

x′1A
′
2 = (x1A2,−x1A2) . (40)

and so

x′1A
′
2σ = x′2 = (x1A2σ, (−x1A2)σ) = (x+

2 ,x
−
2) . (41)

Combining this with Eq. (37) gives

x0 A
′
1σ A

′
2σ = (x+

2 ,x
−
2) . (42)

Continuing to define layers in this way, according to
Eq. (44), for layers up to layer k − 1, gives that

x0 A
′
1σ A

′
2σ . . . A

′
k−1σ = (x+

k−1,x
−
k−1) = x′k−1 . (43)

12

Finally, we define the last layer k by

x′k−1A
′
k = (x+

k−1,x
−
k−1)

[
Ak

−Ak

]
+ bk

= (x+
k−1 − x−k−1)Ak + bk

= xk−1Ak + bk

= xk−1Ak

= xk .

(44)

Putting those defined Ai all together gives

x0 A
′
1σ A2σ . . . A

′
k = xk = x0 , (45)

where the final step is because the sequence of affine trans-
forms A1 . . . Ak is chosen to be the identity map, so xk =
x0A1 . . . Ak = x0.

F. Exploration of Layer Initialization Effects
In Table 2 in the main paper, we compared the effec-

tiveness of our transparent initialization with others, that is
random, Xavier [18], and Net2Net [10]. Transparent ini-
tialization can 100% recover the input data from the layers
output with a high initialization rate and a small around-off
error shown in Table 3 and supports non-square filters, by
saying filters we mean 12 kernel-size convolutional layers
or fully-connected layers. In contrast, random and Xavier
initialization are ineffective to recover the input data from
the output while Net2Net is only effective for non-negative
data and is infeasible for non-square filters. Despite these
quantitative experiments to analyse the attributes of trans-
parent initialization, we directly compare their effects on
joint learning pretrained networks of semantic segmentation
and superpixels in addition to the ablation study in the main
paper.

In Fig. 9, for the task of semantic segmentation, the
cross-entropy loss function highly relies on the maximum
values of logits, the network outputs, along the label di-
mension. In Fig. 9(a)-9(c), input data of the add-on FC
layers contains positive and non-positive values while in
Fig. 9(d) input data is non-positive by subtracting the maxi-
mum value along the label dimension. This is to explore the
data recovering ability for different numerical space (that is
non-negative and non-positive in our case).

The final mIoUs via random and Xavier initialization
are nearly 0% as they totally interrupt the learned param-
eters, leading to a high loss. To recover non-negative data,
in Fig. 9(c), Net2Net and ours have similar loss decreas-
ing tendency. However, as the epoch increases, the loss by
ours becomes lower than Net2Net because the gradients by
transparent initialization are dense for parameter updates
compared with the sparse ones by Net2Net. Furthermore,
in Fig. 9(d), Net2Net is unable to recover negative values,

Figure 9: Training loss with different layer initialization methods.
This is an extended ablation study to Tables 2 and 4 in the main
paper. “Regular”: values containing positive, negative, and zero
values. Note that in our semantic segmentation task, a low loss is
determined by a high (mostly positive) logit from the NN along the
label dimension. The joint learning is for 21-label semantic seg-
mentation using pretrained DeepLabV3+ [9] and superpixel with
FCN [52] networks with add-on 3 Fully-Connected (FC) layers.
Here, in (a) and (b), random and Xavier initialization on these
add-on FC layers lead to a high loss, and thus, decreasing the
mIoU from ∼80% to ∼0%. It is obvious that they cannot work
in our case, since they are unable to recover the pretrained re-
sults as shown in Table 2 in the main paper. On the other hand,
Xavier initialization may have a worse local minima than random
initialization due to the interrupted output values. In contrast, for
regular data containing positive, negative, and zero values, both
Net2Net and our transparent initialization have similar good ef-
fectiveness. Because, as mentioned before, negative logit values
(hardly to be the highest) may not have significant effects on the
joint learning as in our case positive logits always have high soft-
max values. So, the negative values of the input data can even
be zero-out by ReLU or Net2Net initialization. For non-positive
inputs in (d), however, Net2Net is unable to recover negative val-
ues, leading to∼0% mIoU while ours has the same low loss as it
is in (c). Additionally, although Net2Net and ours in (c) have sim-
ilar losses, both achieving ∼83.3% mIoU, we note that the loss of
ours starts to be less than Net2Net, shown inR2. InR1, ours has a
high loss due to the effects of dense gradients that change network
parameters more dramatically than Net2Net. This is expected as
the transparent initialization should have a strong learning abil-
ity than Net2Net. Overall, ours outperforms random and Xavier
initialization, both regular and non-positive data, and Net2Net
for non-positive data. For regular data (depends on task), ours
tends to have a smaller loss than Net2Net due to its strong learn-
ing ability with dense gradients. More details are in Sec. F.

13

(a) ReLU (b) LeakyReLU

(c) SoftReLU (d) LogSigmoid

Figure 10: Examples of non-linear active functions for transpar-
ent initialization.

as shown in Table 2 in the main paper, resulting in a high
loss. In Fig. 9(c), the mIoU by Net2Net and ours are sim-
ilar, both nearly 83.3%. Corresponding to Fig. 9(d), how-
ever, the mIoU by Net2Net is nearly 0% while ours is still
nearly 83.3% since it is invariant to numerical space.

G. Activation Functions
Again, note that the notation of activation function σ(x)

has the same meaning as xσ for a simplicity of sequence
layers. For the proposed transparent initialization, any non-
linear activation functions satisfying Eq. (46) are feasible to
recover the input data from its output.

σ(x)− σ(−x) = cx , (46)

where c is a non-zero constant. This can be expressed by
xDσS with D (duplicate) and S (subtract) defined in the
main paper. In Fig. 10, we give 4 examples with corre-
sponding definitions as follows:

ReLU: y(x) =

{
x if x ≥ 0 ,
0 otherwise , (47a)

LeakyReLU: y(x) =

{
x if x ≥ 0 ,
δx otherwise , (47b)

SoftReLU: y(x) = log (1 + ex) , (47c)

LogSigmoid: y(x) = log

(
1

1 + e−x

)
. (47d)

It is easy to verify Eq. (46) for those activation functions.
Given the activation function as LogSigmoid by σ(x) =
log(1/(1 + e−x)), for instance, it follows

log

(
1

1 + e−x

)
− log

(
1

1 + ex

)
= log

(
1 + ex

1 + e−x

)
= log(ex) = x .

(48)

(a) For y = (x0σ, x1σ)S

(b) For y = (x0σ, x0σ + x1)S

Figure 11: Two different forms of layer activation (the part in
the red box) top be used as see-through activations for transparent
layers. Here, σ represents any function, for instance, a commonly
used non-linear function such as sigmoid, ReLU or hyperbolic tan-
gent, and the block marked S carries out some operation on the
two inputs. Thus, (a) implements y = (x0σ, x1σ)S and (b) repre-
sents y = (x0σ, x0σ+x1)S. At initialization, x0 = −x1 = x and
(a, b)S = a − b. In this case, the output is y = x in both case.
During the training of the network, x0 and x1 will diverge, and
S will also learn to carry out a different operation, so networks
will behave differently. However, using (b) to implement the affine
layer activation will provide a transparent initialization, whatever
function σ is chosen.

Meanwhile, with c given in Eq. (46), xDσS should be
xDσS/c, where c = 1/δ is for LeakyReLU and c = 1 for
the others. To be more general, this property holds for any
functions of the form of f(x) = cx + s(x), where s(x) is
an even function.

For other activations σ such as the sigmoid function, or
arctangent, or hyperbolic tangent, it does not work directly.
The trick is to observe that for the ReLU function, (−x)σ =
xσ−x. This allows us to rewrite the sequence of operations

x
σ7−→ (xσ, (−x)σ) = (x1, x2) 7→ x1 − x2 = x ,

where σ is the ReLU function, as

x
σ7−→ (xσ, xσ − x) = (x1, x2) 7→ x1 − x2 = x .

But now this also holds for any activation σ, ReLU or not.
This requires a slight change to the architecture of the trans-
parent affine layer. Instead of outputting (xσ, (−x)σ), it
must output (xσ, xσ − x). This is shown in Fig. 11.

H. Extension to Convolutional Layers
A common practice in experimenting with modifications

to neural network architectures is to add additional convolu-
tional layers. If a base network is already trained to achieve

14

minimal loss, then the addition of extra convolutional lay-
ers can perturb the loss, and require the network to retrain
again to achieve a low loss. The loss after addition of the
new layers may not be as low as the loss of the base net-
work. However, by initializing the extra add-on layers to
implement an identity transformation will ensure that the
loss achieved (on the training set) by the modified network
cannot be worse than that of the base network.

This section gives some ideas on the addition of transpar-
ent convolutional layers with pseudo-random initialization
that could be used for this purpose. We have not explored
this topic in any great depth, leaving it rather to be the sub-
ject of future work, and is somewhat speculative at present.

A convolutional layer as usually implemented is an ex-
ample of an affine layer, since without any non-linear ac-
tivation it implements a linear transformation on the input
and then adds bias. However, unlike fully-connected layers,
which are essentially a matrix multiplication, for which an
inverse (or right-inverse) can be easily found, convolution is
not conveniently represented by matrix multiplication and is
less easily inverted.

It is clear that convolution, being linear, can be repre-
sented as matrix multiplication on a vectorized form of the
input, but this will be a sparse matrix multiplication, and not
easily inverted, at least by convolutional layers. By anal-
ogy with the method implemented for fully-connected lay-
ers, we require that a final convolution will invert the effect
of a sequence of previous pseudo-random convolutions.

Not all convolutions are exactly invertible. In fact (ig-
noring edge effects) a convolution will be invertible by an-
other convolution if and only if its Fourier transform is ev-
erywhere non-zero. However, with this caveat, it is possible
to find inverse convolutions.

Rather than carrying out a string of convolutions, fol-
lowed by a single convolution to undo the previous ones, a
better strategy may be to add convolutions in pairs such as
a high-pass and low-pass filter that cancel each other out.
Exploring this topic will be the subject of further work.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S.

Susstrunk. SLIC superpixels compared to state-of-the-art su-
perpixel methods. TPAMI, 34(11):2274–2282, 2012. 1, 2, 3

[2] R. Achanta and S. Susstrunk. Superpixels and polygons us-
ing simple non-iterative clustering. CVPR, 2017. 2

[3] T. Ajanthan, A. Desmaison, R. Rudy, M. Salzmann, P.H.S.
Torr, and M.P. Kumar. Efficient linear programming for
dense CRFs. CVPR, 2017. 2

[4] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-
tour detection and hierarchical image segmentation. TPAMI,
33(5):898–916, 2010. 3, 6

[5] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A
deep convolutional encoder-decoder architecture for image
segmentation. TPAMI, 39(12):2481–2495, 2017. 2

[6] M.V. Bergh, X. Boix, G. Roig, and L.V. Gool. SEEDS: Su-
perpixels extracted via energydriven sampling. IJCV, 2015.
2

[7] L.C. Chen, J.T. Barron, G. Papandreou, K Murphy, and A.L.
Yuille. Semantic image segmentation with task-specific edge
detection using CNNs and a discriminatively trained domain
transform. CVPR, 2016. 1, 2

[8] L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A.L. Yuille. DeepLab: Semantic image segmentation with
deep convolutional nets, atrous convolution,and fully con-
nected CRFs. TPAMI, 40(4):834–848, 2017. 1

[9] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.
Encoder-decoder with atrous separable convolution for se-
mantic image segmentation. ECCV, 2018. 1, 2, 3, 7, 13

[10] T. Chen, I. Goodfellow, and J. Shlens. Net2Net: Accelerating
learning via knowledge transfer. ICLR, 2016. 3, 5, 6, 9, 13

[11] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng. A2-nets:
Double attention networks. NeurIPS, 2018. 2

[12] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and F. Li. Im-
ageNet: A large-scale hierarchical image database. CVPR,
2009. 2

[13] M. Everingham, S.M.A. Eslami, L.V. Gool, C.K.I. Williams,
J. Winn, and A. Zisserman. The pascal visual object classes
challenge a retrospective. IJCV, 2014. 3, 6

[14] D. Feng, C.H. Schutz, L. Rosenbaum, H. Hertlein, C. Glaser,
F. Tim, W. Wiesbeck, and K. Dietmayer. Deep multi-model
object detection and semantic segmentation for autonomous
driving: Datasets, methods, and challenges. IEEE Trans-
actions on Intelligent Transportation systems, pages 1–20,
2020. 1

[15] P.A. Flach and M. Kull. Precision-recall-gain curves: Pr
analysis done right. NeurIPS, 2015. 2, 6, 8

[16] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu. Dual
attention network for scene segmentation. CVPR, 2019. 2

[17] R. Gadde, V. Jampani, M. Kiefel, D. Kappler, and P.V.
Gehler. Superpixel convolutional networks using bilateral
inceptions. ECCV, 2016. 1, 2

[18] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. AISTATS, 2010.
5, 6, 13

[19] S. Gould, J. Zhao, X. He, and Y. Zhang. Superpixel graph
label transfer with learned distance metric. ECCV, 2014. 2

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CVPR, 2016. 2

[21] M. Hofmarcher, T. Unterthiner, J.A. Medina, G. Klambauer,
S. Hochreiter, and B. Nessler. Visual scene understanding for
autonomous driving using semantic segmentation. Explain-
able AI. LNCS, 11700:285–296, 2019. 1

[22] S. Hong, X. Yan, T. Huang, and H. Lee. Learning hierar-
chical semantic image manipulation through structured rep-
resentations. NeurIPS, 2018. 1

[23] G. Huang, Z. Liu, L.V.D. Maaten, and K.Q. Weinberger.
Densely connected convolutional networks. CVPR, 2017. 2

[24] P. Isola, D. Zoran, D. Krishnan, and E.H. Adelson. Crisp
boundary detection using pointwise mutual information.
ECCV, 2014. 2

15

[25] V. Jampani, D. Sun, M.Y. Liu, M.H. Yang, and J. Kautz.
Superpixel sampling networks. ECCV, 2018. 1, 2

[26] M. Jordan. Learning in graphical models. MIT Press, 1998.
2

[27] P.A. Khaire and Dr.N.V. Thakur. A fuzzy set approach for
edge detection. International Journal of Image Processing,
6(6):403–412, 2012. 2, 6, 8

[28] P. Krahenbuhl and V. Koltun. Efficient inference in fully
connected CRFs with Gaussian edge potentials. NeurIPS,
2011. 1, 2

[29] X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, and H. Liu.
Expectation-maximization attention networks for semantic
segmentation. ICCV, 2019. 2

[30] Z. Li and J. Chen. Superpixel segmentation using linear
spectral clustering. CVPR, 2015. 1, 2

[31] G. Lin, A. Milan, C. Shen, and I. Reid. RefineNet: Multi-
path refinement networks for high resolution semantic seg-
mentation. CVPR, 2017. 2

[32] T.Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,
J. Hays, P. Perona, D. Ramanan, C.L. Zitnick, and P. Dollar.
Microsoft COCO: Common objects in context. ECCV, 2014.
1, 6

[33] Y.J. Liu, C.C. Yu, M. Yu, and Y. He. Manifold SLIC: A
fast method to compute content-sensitive superpixels. CVPR,
2015. 2

[34] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. CVPR, 2015. 1, 2, 6, 7

[35] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. ICCV, 2001. 1, 3, 6

[36] R. Mottaghi, X. Chen, X. Liu, N.G. Cho, S.W. Lee, S. Fidler,
R. Urtasun, and A. Yuille. The role of context for object de-
tection and semantic segmentation in the wild. CVPR, 2014.
1, 6

[37] H. Park, J. Jeong, Y. Yoo, and N. Kwak. Superpixel-based
semantic segmentation rrained by statistical process control.
BMVC, 2017. 2

[38] N.O. Salscheider. Simultaneous object detectin and semantic
segmentation. International conference on pattern recogni-
tion applications and methods (ICPRAM), 2019. 1

[39] F. Schroff, A. Criminisi, and A. Zisserman. Object class seg-
mentation using random forests. BMVC, 2008. 2

[40] M. Schuurmans, M. Berman, and M.B. Blaschko. Efficient
semantic image segmentation with superpixel pooling. arXiv
preprint arXiv:1806.02705, 2018. 2

[41] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. ICLR, 2015. 2

[42] D. Stutz, A. Hermans, and B. Leibe. Superpixels: An eval-
uation of the state-of-the-art. Computer Vision and Image
Understanding, 166:1–27, 2018. 2, 6, 8

[43] D. Stutz, A. Hermans, and B. Leibe. Superpixels: An evalu-
ation of the state-of-the-art. CVIU, 2018. 2

[44] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the
importance of initialization and momentum in deep learning.
ICML, 2013. 6

[45] M. Thoma. A survey of semantic segmentation.
arXiv:1602.06541, 2016. 2

[46] W.C. Tu, M.Y. Liu, V. Jampani, D. Sun, S.Y. Chien, M.H.
Yang, and J. Kautz. Learning superpixels with segmentation-
aware affinity loss. CVPR, 2018. 2

[47] R. Uziel, M. Ronen, and O. Freifeld. Bayesian adaptive su-
perpixel segmentation. ICCV, 2019. 2

[48] P. Wang, G. Zeng, R. Gan, J. Wang, and H. Zha. Structure-
sensitive superpixels via geodesic distance. IJCV, 2013. 2

[49] X. Wang, T. Wang, and J. Bu. Color image segmentation us-
ing pixel wise support vector machine classification. pattern
recognition, 2011. 2

[50] F.Z. Xing, E. Cambria, W.B. Huang, and Y. Xu. Weakly su-
pervised semantic segmentation with superpixel embedding.
ICIP, 2016. 2

[51] B. Xu, N. Wang, T. Chen, and M. Li. Empirical eval-
uation of rectified activations in convolutional network.
arXiv:1505.00853, 2015. 5

[52] F. Yang, Q. Sun, H. Jin, and Z. Zhou. Superpixel segmenta-
tion with fully convolutional networks. CVPR, 2020. 2, 3, 6,
13

[53] H. Zhang, K. Dana, J. Ping, Z. Zhang X. Wang, A. Tyagi, and
A. Agrawal. Context encoding for semantic segmentation.
CVPR, 2018. 1, 7

[54] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y.
Sun, T. He, J. Mueller, R. Manmatha, M. Li, and A. Smola.
ResNeSt: Split-attention networks. arXiv:2004.08955, 2020.
1, 2, 3, 7, 8

[55] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. CVPR, 2017. 1, 7

[56] H. Zhao, Y. Zhang, S. Liu, J. Shi, C.C. Loy, D. Lin, and J.
Jia. PSANet: Point-wise spatial attention network for scene
parsing. ECCV, 2018. 2

[57] S. Zhao, Y. Wang, Z. Yang, and D. Cai. Region mutual in-
formation loss for semantic segmentation. NeurIPS, 2019.
2

[58] Shuai Zheng, S. Jayasumana, B.R. Paredes, V. Vineet, Z. Su,
D. Du, C. Huang, and P.H.S. Torr. Conditional random fields
as recurrent neural networks. ICCV, 2015. 1

[59] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Tor-
ralba. Scene parsing through ade20k dataset. CVPR, 2017.
6

[60] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso,
and A. Torralba. Semantic understanding of scenes through
ade20k dataset. IJCV, 2016. 6

16

