
7. Implementation Details
During training, we randomly crop images to 512× 512

pixels and apply data augmentation with random scaling in
{0.5, 0.75, 1.25} and random flipping. The whole pipeline
is trained for 80 epochs with a batch size 32. The number
of warm-up epochs in N is chosen to be 4. Similar to [20],
we utilize the SGD and the polynomial learning-rate decay
(1 − iter/max iter)0.9 to train the student network. The
teacher network is updated with the student network param-
eters in the same LG after each training epoch,

θt1 = γ × θt1 + (1− γ)× θs1 , (8)

where γ is chosen as 0.996. We initialize the backbone with
ImageNet pre-trained checkpoint and the head with random
numbers. The loss weight for unlabelled data (α) is 1.5.
During inference, the final segmentation mask y is produced
by the ensemble of the two teachers,

y = σ(0.5× (g1(x) + g2(x))), (9)

where σ(.) denotes the Softmax function, g1(.) denotes
the teacher output from the first LG, and g2(.) denotes the
teacher output from the second LG.

8. Noise Generation
We generate three types of noise for semi-supervised se-

mantic segmentation, including the pseudo label (PL), ran-
dom dilation and erosion (RDE) and similar class perturba-
tion (SCP). The first two types of noise are easier to under-
stand. Here, we explain the generation process of SCP and
show the visualization of all types of noise in Fig.9.

The key point of SCP is to get the classes resemble
the texture with each other. We utilize the model predic-
tion of [34] to estimate the visual similarity among dif-
ferent classes. Specifically, we first initialize a memory
M := [0]ℓ×ℓ (ℓ is the total number of classes) to save
the similarity values. Then, we get the model prediction
h(xi, j) ∈ [0, 1]ℓ for each pixel in the labelled dataset
DL = {(xi, j, yi,j)}, yi,j ∈ C based on [34]. After that,
the memory can be updated by,

Mc =
1

nc

∑
i,j

{h(xi, j) | yi,j = c}, (10)

whereMc ∈ [0, 1]ℓ is the c-th row of the memoryM, nc

is the pixel number of class c in the dataset and h(.) denotes
the model mapping to softmax scores. After updating the
memory M with all the data, we set the diagonal element
ofM as zeros. If we need to add pertubation to the label of
class c, we select another class c′ according toMc. The k-
th element ofMc are used as sampling probability to select
class k as a replacement of class c.

Table 5: The mIoU (%) of our pipeline on Pascal VOC
2012.

Labelled Data Ratio

1/16 1/8 1/4 1/2

PS-MT [20] 72.83 75.70 76.43 77.88
Ours − FM 78.41 78.61 79.82 79.90
Ours 77.75 79.31 79.14 79.54

(a) Input image (b) Clean Annotation (c) Noisy Annotation

Figure 9: The visualization of three types of noise, includ-
ing PL (the 1st row), RDE (the 2nd row) and SCP (the 3rd
row).

9. Comparison on SegTHOR

We compare our method with Base-ADELE and ADELE
on the SegTHOR dataset. The Base-ADELE consists of
a UNet which is trained with multi-scale inputs. ADELE
introduces the label correction to Base-ADELE, which can
automatically correct the noisy annotation based on model
prediction in an early training stage. In our framework, we
utilize the filter model to detect the noisy annotations and
use them in unsupervised setting.

10. Performance of FM on Clean Data

In Table 1, we remove the Filter Module (‘Ours − FM’)
when training models with clean data. We also show the
performance of the whole pipeline (‘Ours’) including the
filter module on clean data in Table 5. The filter module has
only a small adverse effect when applied on the clean data.
Hence, ‘Ours’ produces similar performance with ‘Ours −
FM’ and much better than the baseline model (‘PS-MT’).



11. Qualitative Results
We show the qualitative results of our pipeline on Pas-

cal VOC 2012 in Fig.10 and SegTHOR in Fig.11. We can
see that the proposed approach can get good segmentation
results on the two datasets.

12. Class Perturbation
In Section 3.2, we introduced Similar Class Perturbation

(SCP) as a technique for adding noise to ground-truth la-
bels. SCP involves adding class noise to the ground-truth
label by considering the visual similarity between differ-
ent classes. To generate this noise, we first create a class-
similarity array A ∈ R21×21, where each element in the
i-th row and j-th column of A represents the visual sim-
ilarity between the i-th and j-th classes. We initialize A
with zeros. We then use SEAM [34] to predict the classi-
fication probabilities for each image in the val dataset of
Pascal VOC 2012. For each pixel in an image, we obtain
a classification probability vector a ∈ R1×21 over the 21
classes. Given the ground-truth label, we compute the mean
classification probability vector for pixels belonging to each
class c and add this vector to the c-th row of A. We repeat
this process for all images in the dataset. To select similar
classes, we set the diagonal elements of A to zero and nor-
malize the elements in each row. A is used to determine the
similarity between classes. In this way, we obtain a noisy
ground-truth label that reflects the visual similarity between
classes in the dataset.



Figure 10: The visualization of the predicted segmentation masks on the validation set of Pascal VOC 2012. The model is
trained with 1/8 labelled data and 9% PL noise. The first line shows the input images. The second line presents the ground
truth. The last line denotes our model prediction. Our model can get good performance for different classes.

Figure 11: The qualitative results of our method on SegTHOR. The first line shows the input images. The second line presents
the ground truth. The last line denotes our model prediction. Our model achieves good performance.


