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Abstract
Lately, the literature on adversarial robustness spans from im-
ages to other domains such as point clouds. In this work, we
consider clustering attacks on 3D point clouds and devise a
provable defense mechanism to counter them. Specifically, we
adopt a randomized smoothing strategy for 3D point clouds
and derive a robustness certificate based on the cluster radius
rather than the number of adversarial points. Our experiments
on ModelNet40 and ScanObjectNN datasets using the Point-
Net classifier demonstrate the effectiveness of our defense
mechanism against targeted and untargeted clustering attacks
with a large number of adversarial points.

1 Introduction
Adversarial robustness is an important research topic both in
terms of understanding modern neural networks and in safety-
critical applications (Akhtar and Mian 2018). Recently, this
topic is becoming increasingly popular in domains outside of
images, including point clouds.

The recent literature on adversarial robustness on point
clouds mainly focuses on point perturbation/addition/dele-
tion attacks (Liu, Jia, and Gong 2021). However, despite
their practical importance in applications such as self-driving
cars (Cao et al. 2019; Xiang et al. 2021), the stronger cluster-
ing attacks are less studied (Xiang, Qi, and Li 2019).

In this work, we consider clustering attacks on 3D point
clouds and devise a provable defense mechanism to counter
them. Our idea is to adopt a (de)-randomized smoothing strat-
egy (Levine and Feizi 2020) for 3D point clouds. Specifically,
we divide the 3D space into equally sized voxels, and learn
a classifier on points contained in the randomly subsampled
voxels (see Figure 1). We show that such a classifier is robust
to a large number of adversarial points as long as they are
concentrated on a small set of clusters. In short, we derive a
robustness certificate that is based on the attack cluster radius
rather than the number of adversarial points.

We evaluate our approach on a synthetic ModelNet40
dataset (Wu et al. 2015) and a real ScanObjectNN
dataset (Dai et al. 2017). Our experiments demonstrate that
our defense mechanism is significantly better than the compa-
rable baselines against both targeted and untargeted clustering
attacks when the number of adversarial points grows.
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Figure 1: An illustration of our randomized subsampling
strategy. Three subsampled point clouds are created, and
one contains the adversarial points. The red circle covers the
adversarial points. Our defense method predicts the correct
label for the adversarial point cloud via majority vote.

2 Related Work
Existing adversarial attacks on 3D point clouds can be
categorized into three categories based on the attacker’s ca-
pability. The first type is point perturbation which is adopted
from image-level adversarial attacks. Xiang et al. (Xiang,
Qi, and Li 2019) used an optimization-based strategy to
generate an adversarial noise. The objective of this attack
is to find a minimal perturbation sample that can make the
classifier classify incorrectly. The perturbation measurements
include `2-norm, Hausdorff distance, and Chamfer distance.
Zhou et al. (Zhou et al. 2020) proposed a point cloud
generation-based targeted attack, which learns how to
deform the point cloud with minimal perturbation and then
mislead the classifier into a specific label.

The second type is point deletion-based attacks.
Zheng et al. (Zheng et al. 2019) proposed a gradient-based
salience and dropping points attack with the lowest salience
score. Yang et al. (Yang et al. 2019) proposed a method that is
mainly focused on PointNet architecture that utilizes the crit-



ical point property. Critical points remain active after using
max pooling, i.e., these points are important when determin-
ing the object category. Therefore missing critical points are
more likely to change the prediction output. This intuition
was used by Ying et al. (Yang et al. 2019) by iteratively
removing critical points to create an untargeted attack.

The third type of attack is point addition; this can be adding
random points, a cluster, or an object to the original point
cloud. Xiang et al. (Xiang, Qi, and Li 2019) places a set of
independent points or a limited number of point clusters and
optimizes the cluster location and the shape of the clusters.
Yang et al. (Yang et al. 2019) proposed a point-wise gradient-
based point addition attack that updates the attacked points
without changing the original points.

Several empirical defenses have been proposed to mitigate
these attacks. These defenses are mainly focused on detect-
ing attacks or training more robust classifiers. Adversarial
training (Liu, Yu, and Su 2019) is one of the most effective
methods to improve the robustness of the model by augment-
ing the training set with adversarial samples. DUP-Net (Zhou
et al. 2019) proposed a statistical outlier removal denoiser and
an upsampling network as a pre-processing strategy. Denoiser
removes noise patterns as a non-deferential layer while the up-
sampling layer generates dense point clouds. IF-Dense (Wu
et al. 2020) network proposed a solution to both point distri-
bution changes due to the point perturbation and surface dis-
tortion. They restore the original point cloud using geometric
and distribution-aware constraints. However, these networks
do not provide any theoretically proven robustness guarantee.

Randomized smoothing (Cohen, Rosenfeld, and Kolter
2019) has achieved `2-norm based certified robustness on
ImageNet (for 2D classification problem), thus overcoming
the limitations in the existing defense mechanisms against
adversarial attacks. In general, this method constructs a new
smoothed classifier g from the base classifier F where g
predicts the class which is more likely to be returned by
the F under the Gaussian noise perturbation of input. Point-
Guard (Liu, Jia, and Gong 2021) is the first defense (for 3D
point cloud classification problem) that provides provable
robustness guarantees against adversarially modified, added,
and/or deleted points. However, the certified accuracy of
PointGuard is reduced when the number of adversarial points
is increased. Thus, PointGuard is not effective under (highly
dense) cluster attacks. In this work, we propose a provable
defense mechanism against these clustering attacks.

3 Proposed Method
3.1 Preliminaries
Point Cloud Classification A point cloud is an unordered
set of 3D coordinates which are sampled from object sur-
faces. We define a point cloud P of size n as P ={
Pi | Pi ∈ R3, i ∈ {1, . . . , n}

}
, where eachPi = (x, y, z)>

is a point in 3D space. Let F denote a point-based classifier
that maps an input point cloud P ∈ Rn×3 to its correspond-
ing class label y ∈ {1, 2, . . . , c}. Also, let Fi(P ) denote
the probability that the point cloud P is classified into the
i-th class. Ideally, if i∗ is the true class label of the point
cloud P , then i∗ = arg maxi Fi(P ). Many deep learning

classifiers (e.g., (Qi et al. 2017a,b; Li et al. 2018; Wang et al.
2019)) have been proposed for point cloud classification. In
this work, we mainly consider the PointNet (Qi et al. 2017a)
classifier.

Distance Measures Let D : Rn×3 × Rn′×3 → R be a
distance metric, i.e., D(P, P ′) is some distance between two
point clouds P and P ′. Below, we define a few distance
metrics required for our purpose:

(i) `p-norm: For the original point cloud P and correspond-
ing adversarial cloud P ′, the `p-norm (for p ≥ 1) distance
between P and P ′ is defined as:

D`p(P, P ′) =
1

n

n∑
i=1

‖Pi − P ′i‖p ,

where Pi is the i-th point in P , and P ′i is its corresponding
point in P ′.

(ii) Chamfer measurement: For the original point cloud
P and its adversarial counterpart P ′, we define Chamfer
Measurement (Fan, Su, and Guibas 2017) as:

DC(P, P ′) =
1

|P ′|
∑
y∈P ′

min
x∈P

‖x− y‖22 ,

where |P ′| denotes the number of points in P ′.
(iii) Farthest distance: We define farthest distance of a

point cloud P as (Xiang, Qi, and Li 2019):

Dfar(P ) = max
x,y∈P

‖x− y‖2 .

(iv) Average distance: We define average distance of a
point cloud P as:

Davg(P ) =
1

nn

∑
x,y∈P

‖x− y‖2 .

Here we abuse the notation a little to use D to denote both
mappings Rn×3 × Rn′×3 → R and Rn×3 → R.

3.2 Clustering Attack
In this work, we consider the clustering attacks in point
clouds, where an adversary adds a limited number (m) of
adversarial shapes, as either generic primitive shapes such as
balls or meaningful shapes such as small airplane models. In
particular, we consider the targeted clustering attack model
from (Xiang, Qi, and Li 2019) and untargeted clustering at-
tack model from (Kim et al. 2021). These works showed that
PointNet (Qi et al. 2017a) can be fooled by adding a limited
number of synthesized point clusters with meaningful shapes.
The number of clusters added is hard bounded to 1-3 in our
experiments.

(i) Targeted attack model: Let P ′ be an adversarial point
cloud generated from the original point cloud P . The goal
of the attack is to mislead the classifier F to classify P ′ as a
selected target class. Let t′ ∈ {1, 2, . . . , c} be the malicious
target class of the adversary. The attack problem is formulated
as follows:

min
P ′

D(P, P ′), s.t arg max
i∈{1,2,...,c}

Fi(P ) = t′ .



The term, D(P, P ′) constrains the perceptibility of the ad-
versarial point cloud P ′ w.r.t. the original point cloud P .
Since directly solving the above constrained optimization
problem is difficult, we reformulate it into an unconstrained
optimisation problem using a Lagrange multiplier-like form
as:

min
P ′

h(P ′) + λ · D(P, P ′) ,

Here, h(P ′) = max {0,maxi 6=t′ Fi(P
′)− Ft′(P

′)} is the
adversarial loss function whose output measures the possibil-
ity of a successful attack. By optimizing over this equation,
we aim to search for adversarial examples with least 3D
perturbation.

(ii) Untargeted attack model: In the untargeted attack
model, the attacker aims to find an adversarial point cloud P ′
as follows:

min
P ′

D(P, P ′), s.t Fi∗(P ) 6= arg max
i′∈{1,2,...,c}

Fi′(P
′) ,

where i∗ is the true class label. The constraint Fi∗(P ) 6=
arg maxi′ Fi′(P

′) ensures the generated point cloud P ′ can
fool the network F , i.e., F would not classify P and P ′ into
the same class. Similar to the target attack model case, we
reformulate above problem as follows:

min
P ′

h(P ′) + λ · D(P, P ′) ,

where, h(P ′) = max {0, Fi∗(P
′)−maxi′ 6=i∗ Fi′(P

′)} and
i∗ is the true class label of P .

For the addition of adversarial shapes, we can use either
generic primitive shapes (adversarial clusters) such as balls
or meaningful shapes (adversarial objects) such as small
airplane models.

(i) Adversarial clusters: Here, we aim to minimize the
radius of the generated cluster so that the attack is a concen-
trated small cluster attached to the original object. In addition,
we also encourage the cluster to be close to the object surface.
These requirements are captured by the following distance
metric:

D(P, P ′) =

m∑
i=1

{
µ1 ·Dfar(P

(i)) + µ2 ·Davg(P (i))

+ µ3 ·DC(P, P (i))
}
,

where P is the original object, P (i) is the i-th adversarial
point cluster, P ′ = P ∪ P (1) ∪ P (2) ∪ · · · ∪ P (m), m is the
number of adversarial clusters, and µ1, µ2, µ3 > 0 balance
the different terms.

(ii) Adversarial objects: Here, we start from some mean-
ingful objects like small airplanes, slightly modify them, and
place them in the appropriate adversarial positions. We con-
sider the following distance metric to fit this attack setting:

D(P, P ′) =

m∑
i=1

{
µ1 ·D`2(P (i,org), P (i))

+ µ2 ·DC(P, P (i))
}
,

where P is the original object, P (i) is the i-th adversarial
point cluster, P (i,org) is the i-th real-world point cluster, m
is number of adversarial clusters, and µ1, µ2 > 0.

3.3 Provable Defense
Here, we formalize our defense mechanism that is closely
related to the certified defense against patch attacks for 2D
image classification (Levine and Feizi 2020) and certified
defense against point addition/deletion/perturbation attacks
for 3D point cloud classification (Liu, Jia, and Gong 2021).

Consider a sufficiently large voxel of dimension Lx×Ly×
Lz that contains the input point cloud P ∈ Rn×3. First, we
block-partition this large voxel using non-overlapping small
voxels of dimension lx × ly × lz . Let us denote Vnon(P ) as
the set of these small voxels that contain at least one point in
the point cloud P . Then, we randomly subsample k voxels
(without replacement) from the set Vnon(P ), and retain all
the points in P that are contained within each of these chosen
voxels. Following this randomized sampling strategy, we
create multiple subsampled point clouds (of size k) from P .
Finally, we provide these subsampled point clouds as the
input to the classifier F . The intuition behind our defense
mechanism is that, when the number of adversarially affected
small voxels is bounded, the majority of the subsampled point
clouds do not include any adversarial clusters and thus the
majority vote among their labels predicted by F may still
correctly predict the label of the original point cloud P . In
the limit lx → 0, ly → 0, lz → 0, our method coincides with
the PointGuard defense (Liu, Jia, and Gong 2021).

In the clustering attack model, an adversary adds a limited
number (1-3) of adversarial shapes to the original point cloud
P such that it is misclassified by the point cloud classifier
F . Let Vatt(P ) be the subset of voxels in Vnon(P ) that are
affected by the clustering attack. We consider a setting where
the number of affected voxels is very small, i.e, |Vatt(P )| �
|Vnon(P )|. However, in comparison to (Liu, Jia, and Gong
2021), we do not limit the number of points added/affected
by the adversary within a cluster. Thus, the notion of certified
perturbation size defined in (Liu, Jia, and Gong 2021) is
not applicable under the clustering attack model. Note that
typically an adversarial cluster is very dense, i.e., the number
of points in the adversarial cluster is comparable to the total
number of points in the point cloud.

Our defense mechanism is developed based on the deran-
domized smoothing technique from (Levine and Feizi 2020).
Given an input point cloud P , let Sk(P ) be the set of all
distinct randomly-ablated versions of P according to the
above described sampling strategy. For the base classifier F ,
a smoothed classifier g is defined as:

g(P ) = arg max
y∈{1,2,...,c}

ny(P ) ,

where

ny(P ) =
∑

P ′∈Sk(P )

I {F (P ′) = y} , ∀y ∈ {1, 2, . . . , c}

denotes the number of point cloud ablations that were clas-
sified as class y. Note that the resulting smoothed classifier
returns the most frequent prediction of the base classifier
over the ablation set Sk(P ). We refer to the fraction of (test)
point clouds that the smoothed classifier correctly classifies
as standard/empirical accuracy.
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Figure 2: Visualization for adding adversarial clusters/objects for both targeted and untargeted attacks on ModelNet40. Here,
type-1 and type-2 denote the two parameter settings, and the adversarial points are shown in red/green/blue color.

Robustness Certificate Here, we derive the certified ro-
bustness guarantee of our proposed defense mechanism.
When performing derandomized smoothing, we classify
all the point clouds in the ablation set Sk(P ) using
the base classifier F 1. Of these classifications, at least(|Vnon(P )|−|Vatt(P )|

k

)
will use none of the at most |Vnon(P )|

voxels which may be affected by the adversary. Therefore,
the number of classifications that may be affected by the
adversarial clustering attack is at most:

∆(P ) =

(
|Vnon(P )|

k

)
−
(
|Vnon(P )| − |Vatt(P )|

k

)
.

Since the adversary can only alter the output of ∆(P ) of the
evaluations of the base classifier F , we obtain the following
robustness guarantee for the smoothed classifier g (Liu, Jia,
and Gong 2021):
Theorem 1. For any input point cloud P , and base classifier
F , if:

ny(P ) ≥ max
y′ 6=y

ny′(P ) + 2 ·∆(P ) ,

then for any point cloud P ′ which differs from P only in
|Vatt(P )| voxels, g(P ′) = y.

When the condition in the above theorem is met, the most
frequent class (prediction of the smoothed classifier) is guar-
anteed to not change even if an adversarial cluster compro-
mises every ablation (in Sk(P )) it intersects.

1Similar to (Liu, Jia, and Gong 2021), we train the base classifier
F on subsampled point clouds instead of the original point clouds.

Remark 1. For practical purposes, we introduce two sim-
plifications to above derandomized smoothed classifier: (i)
we only consider a random subset (of size N ) of the ablation
set Sk(P ), (ii) within each voxel, we only randomly retain at
most m point cloud points.

4 Experiments
4.1 Experimental Setup
Datasets and Models We conducted experiments on Mod-
elNet40 (Wu et al. 2015) and ScanObjectNN (Dai et al. 2017)
datasets. The ModelNet40 dataset is constructed using 3D
CAD models, and each point cloud comprises of 1024 points
and belongs to one of 40 different object categories. The
standard split of 9,843 point clouds for training and 2,468
point clouds for testing is used. The ScanObjectNN dataset
consists of 14,298 point clouds obtained by scanning real
objects in indoor environments. The objects are categorized
into 15 classes, where 11,416 objects are used for training
and 2,882 for testing. Similarly to ModelNet40, 1024 points
are used per point cloud. For our approach and the compared
methods, we use the PointNet (Qi et al. 2017a) model as the
base classifier, and the publicly available code is used2.

Evaluation Protocol We follow the evaluation protocol of
the recent PointGuard (Liu, Jia, and Gong 2021) method and
compare against it on the clustering attacks discussed in Sec-
tion 3.2. A vanilla PointNet classifier trained on the respective

2https://github.com/charlesq34/pointnet

https://github.com/charlesq34/pointnet
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Figure 3: Targeted and untargeted clustering attacks on ModelNet40 with two attack parameter settings. Our defense model
voxel size l = 0.1 significantly outperforms all other methods in all the cases.
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Figure 4: Targeted and untargeted object addition attacks
on ModelNet40 point cloud dataset. In r < 75 regime, the
performance of our model (l = 0.1) and PointGuard are
roughly similar and when r increases our model maintains
the accuracy while PointGuard suffers.

dataset is used to generate the attack point clouds in the afore-
mentioned four attack models: targeted and untargeted attack
models with free-form clusters and specific objects, where the
number of adversarial points and the number of adversarial
clusters/objects are user-specified (see Figure 2).

We use the publicly available code3 for attack generation
with objective functions described in Section 3.2. We
generate two types of adversarial cluster attacks for Mod-
elNet40 with two different parameter settings. Specifically,
µ1, µ2, µ3 parameters are set to 5, 10, 0.05 and 0, 5, 0.05.
For ScanObjectNN the parameters are set to 50, 100, 0.5.
For the adversarial object attack, we set µ1, µ2 to 5, 1 for
both the datasets. Note that while these parameters are tuned
to obtain attack clusters with minimal perturbation to the
original point clouds, no hard constraint is enforced on the
attack cluster radius.

For defense mechanisms, a base classifier is trained using
sub-sampled point clouds rather than the original training set.
Specifically, each point cloud is first sub-sampled to have
k � 1024 number of points and passed to the model to opti-

3https://github.com/xiangchong1/3d-adv-pc
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Figure 5: Untargeted attacks on ScanObjectNN point cloud
dataset where the number of attack clusters is set to 3. Our
model with voxel size l = 0.1 outperforms the other methods
by a large margin. In r = 200 case both our model and
PointGuard performs similarly, this might be due to large
attack cluster radius.

mize the loss. As discussed in Section 3.3, a model is evalu-
ated by majority voting of the predictions on N sub-sampled
point clouds each with k points. The main difference between
our method and PointGuard is the sub-sampling strategy used,
which in our case is voxel-based, where PointGuard sim-
ply uses random sampling of points. In the experiments, we
also compare the baseline undefended classifier which is the
vanilla PointNet classifier evaluated on the adversarial point
clouds generated on the test set.

Unless otherwise specified, we used the default parameter
setting of PointGuard. Specifically, for both ModelNet40 and
ScanObjectNN datasets, we set N = 10, 000 and k = 16.
For our method, we experiment with different voxel sizes
l = lx = ly = lz and the models are trained and tested on a
Tesla P100 GPU.

Evaluation Metric We use the empirical accuracy (the
percentage of adversarial point clouds that are correctly
classified) as the metric to evaluate and compare different
defense mechanisms. Even though PointGuard uses certified
accuracy, it does not apply to our method as the robustness

https://github.com/xiangchong1/3d-adv-pc


certificate measurement is different. In particular, PointGuard
measures a radius of certified robustness, whereas our
method provides certified robustness on the number of
adversarial voxels/points.

4.2 Results
We evaluate both the attack variants (adversarial clusters and
adversarial objects) on targeted and untargeted settings in
ModelNet40, and since untargeted attacks are stronger, we
evaluated them on ScanObjectNN as well. We report results
for our method in three different voxel sizes, specifically,
l = 0.1, 0.3, and 0.5, and the 0.1 version consistently outper-
forms. Some visualizations of the attack clusters are illus-
trated in Figure 2. In summary, our method outperforms Point-
Guard and the undefended classifier in all the cases, espe-
cially when the number of adversarial points grows. The sig-
nificance of our method is in the regime where the number of
attack points is high but concentrated on sparse locations (typ-
ical clustering attack). We discuss the results in detail below:

Adversarial Cluster Attack In Figure 3 the empirical
accuracy as a function of number of adversarial points
(r) is reported for targeted and untargeted cluster addition
attacks with two different parameter settings. For untargeted
cluster addition attacks on ScanObjectNN are reported in
Figure 5-(a). We limit the number of attack clusters to 3
for both datasets. In all six cases, our method with l = 0.1
produces significantly better empirical accuracies than
PointGuard (almost 70% better in some cases). Our model
accuracy remains constant after r = 100 for ModelNet40
dataset while the ScanObjectNN accuracy decreases. The
empirical accuracy of the undefended classifier quickly drops
to 10− 20% while the empirical accuracy of our method is
still much higher as r increases.

Adversarial Object Attack We also compare our method
with adversarial objects addition, where we add a single ball
to the original point cloud. We evaluated targeted and un-
targeted attacks on ModelNet40 (Figure 4) and untargeted
attack on ScanObjectNN(Figure 5-b). For both the attacks,
our model maintains high empirical accuracy when voxel size
l = 0.1 and it remains constant at 75% when the number of
points in the ball increases while the PointGuard saturates at
45%. Further, when the number of points is large, empirical
accuracy measured with l = 0.3, 0.5 provides better results
compared to PointGuard. This convincingly verifies the effec-
tiveness of our defense mechanism with point addition attack.

5 Conclusions
In this paper, we have introduced a defense mechanism
for strong clustering attacks on 3D point clouds based on
a randomized smoothing strategy. Our defense mechanism
is simple, yet effective and our experiments on synthetic
and real point cloud datasets demonstrate the efficacy. We
believe adversarial robustness on point clouds and other
graph-structured data is an important research area, and we
intend to investigate better defense mechanisms for attacks
on such domains.
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