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Abstract

Structuring latent representations in
a hierarchical manner enables models
to learn patterns at multiple levels of
abstraction. However, most prevalent
image understanding models focus on
visual similarity, and learning visual
hierarchies is relatively unexplored. In
this work, for the first time, we intro-
duce a learning paradigm that can en-
code user-defined multi-level complex
visual hierarchies in hyperbolic space
without requiring explicit hierarchical
labels. As a concrete example, first,
we define a part-based image hierarchy
using object-level annotations within
and across images. Then, we introduce
an approach to enforce the hierarchy
using contrastive loss with pairwise en-
tailment metrics. Finally, we discuss
new evaluation metrics to effectively
measure hierarchical image retrieval.
Encoding these complex relationships
ensures that the learned representa-
tions capture semantic and structural
information that transcends mere vi-
sual similarity. Experiments in part-
based image retrieval show significant
improvements in hierarchical retrieval
tasks, demonstrating the capability of
our model in capturing visual hierar-
chies.

*Intern at Amazon, Australia.
ms.ziweiwang@gmail.com
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Figure 1: An illustration of part-based
image hierarchy organized in hyperbolic
space. At the highest level, we see the urban en-
vironment, composed of buildings, streets, and
sky. Zooming in, we find the building category,
which further divides into skyscrapers, mid-rise
structures, and more. Each of them has its
own visual elements, which in turn can be de-
composed into sub-elements. Best viewed when
zoomed in.

1 Introduction

Humans organize knowledge of the world into
hierarchies [32] for efficient knowledge manage-
ment. Developing models that encode such hi-
erarchies is crucial for creating systems with
holistic world understanding aligned with hu-
man perception. While this topic spans vari-
ous modalities, we focus on encoding hierarchies
in the visual domain. For many large image
datasets, objects can be organized according to
latent hierarchies [32], as evidenced by power
law distributions [42]. However, most prevalent
image understanding models [44, 20, 19, 6, 18]
focus on preserving visual similarity, and con-
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sequently, learning hierarchies in the visual do-
main remains relatively unexplored. These lim-
itations hinder models’ ability to generalize to
tasks requiring hierarchical reasoning such as
understanding scenes, object parts, and their in-
teractions at multiple levels of abstraction. We
illustrate in Fig. 1 an example that shows the
complexity of a visual hierarchy where elements
share similarities both within and across cate-
gories.

Recent works have demonstrated the utility of
hyperbolic representation spaces for capturing
hierarchical relationships in an unsupervised set-
ting [9, 40, 38]. This emergent latent structure is
appealing; nevertheless, meaningful hierarchies
are often task and data dependent, and aligning
model behavior with such human-defined hier-
archies is essential for many applications. To
this end, we introduce a learning paradigm that
can encode multi-level hierarchies as entailment
pairs in hyperbolic space. As a concrete example,
we first define a general part-based image hier-
archy using object and part level classification
annotations within and across images. Then,
we introduce a model capable of structuring the
latent space to preserve the defined hierarchy us-
ing only image/object level information. To our
knowledge, we are the first to encode multi-level
complex visual hierarchies without relying on ex-
plicit hierarchical labels or additional modalities.
Finally, we introduce an evaluation metric to
effectively measure hierarchical image retrieval.

Note that, hierarchy is an asymmetric relation-
ship and has a high branching factor (see Fig. 1).
To this end, we adopt the hyperbolic geome-
try as it provides a continuous approximation
of such tree-like structures [32, 43]. To enforce
the hierarchy, we break it into pairwise entail-
ment relationships between images, objects, and
parts, at multiple levels within an image as
well as across images at category level. For
pairwise entailment (asymmetric), we adapt the
recently proposed angle-based asymmetric dis-
tance metric [40] within the contrastive learning
paradigm, and extend it to handle cases with

multiple positive relationships. In contrast to
symmetric distances such as the inner-product
used in [33, 24, 14], this angle-based distance
offers an additional degree of freedom along the
radial axis to form emergent structures in the
latent space.

For experimentation, we build a dataset of visual
hierarchies using the bounding box annotations
of OpenImages [28]. Our dataset includes entail-
ment relationships between scenes, objects, and
parts, within a single image as well as across
images at the category level. Similarly, for hi-
erarchical retrieval evaluation, we use the full
training set to create ground truth hierarchy
trees per scene/object. Additionally, we design a
metric for evaluating hierarchical retrieval based
on the optimal transport distance between the
label distribution of the retrieval set and ground
truth label distribution within the hierarchy tree.
Combined with Recall@k metrics, this demon-
strates that our method captures semantic and
structural information, transcending mere visual
similarity. Furthermore, to the best of our knowl-
edge, our model is the first to generalize to out-
of-domain image hierarchies, achieving strong
performance on unseen and diverse datasets.

Our contributions can be summarized as follows:

• To our knowledge, for the first time, we intro-
duce a new learning paradigm to effectively
encode user-defined multi-level complex visual
hierarchies in hyperbolic space that does not
require explicit hierarchical labels.

• We adapt a contrastive loss using hyperbolic
angle-based distance metric to enforce pair-
wise entailment relationships, and empirically
demonstrate that pairwise entailment is suffi-
cient to learn complex visual hierarchies.

• We introduce an optimal transport based eval-
uation metric to measure hierarchical image
retrieval performance.

• We demonstrate superior generalization capa-
bilities of our model beyond the user-defined
hierarchies via out-of-domain unseen data eval-
uation and ablation experiments.
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2 Preliminaries

We briefly review essential concepts in hyper-
bolic geometry here. We refer the reader to
[41] for a comprehensive treatment. Hyperbolic
spaces are Riemannian manifolds with constant
negative curvature and are fundamentally dif-
ferent from Euclidean or spherical space which
has zero or constant positive curvature, respec-
tively. The negative curvature enables properties
such as divergence of parallel lines and exponen-
tial volume growth with radius [4]. This volume
growth property makes hyperbolic space an ideal
candidate for embedding hierarchical and graph
structured data [32], and has found many ma-
chine learning applications.

Lorentz Model. The Lorentz model is a way
to represent a hyperbolic space. It embeds the
d-dimensional hyperbolic space Hd with curva-
ture c within an (d+ 1)-dimensional Minkowski
space Rd,1, a pseudo-Euclidean space with one
negative dimension, as follows:

Hd =
{
x ∈ Rd,1 | ⟨x,x⟩H = −1/c, x0 > 0

}
,
(1)

where the Lorentzian inner product is defined
as,

⟨x,y⟩H = −x0y0 +

d∑
i=1

xiyi . (2)

Here, the 0-th dimension of the vector is treated
as the time component and the rest as the space
component. From the definition of Hd, the time
component can be written using the space com-
ponent as follows:

xtime = x0 =
√
1/c+ ∥xspace∥2 , (3)

where ∥ · ∥ is the Euclidean norm and
xspace = x1:d.

Tangent Spaces. The tangent space at a
point x ∈ Hd in hyperbolic space, is a Euclidean
space that locally approximates hyperbolic space
around x. Exponential and logarithmic maps
are used to project a point from a tangent space
to hyperbolic space and vice versa.

3 Enforcing User-Defined
Hierarchies

Our aim is to define a hierarchy in images and
enforce it in the latent space using hyperbolic
geometry. We first define a part-based hierarchy
in images, then discuss our approach to enforce
it, and finally introduce our hierarchical retrieval
metric.

3.1 Part-Based Image Hierarchy

Visual hierarchies can be established in different
ways, depending on the application. In this work,
we are interested in a hierarchy that encapsulates
the semantic relationship among objects in a
scene. For this, scene-object-part hierarchy is
appealing as it is useful for applications such as
fine-grained object retrieval, object localization,
and general scene understanding. This hierarchy
has also been shown to emerge in hyperbolic
image embeddings [24, 40].

Given an image dataset with bounding box and
object class annotations, we define a part-based
image hierarchy where the full scene images –
typically containing multiple objects – represent
the highest level in the hierarchy, while individ-
ual objects constitute progressively lower levels,
entailed by the full image. In this, larger bound-
ing boxes that significantly envelope smaller ones
are considered to entail those smaller ones, es-
tablishing a nested hierarchy. In this way, from
the full scene to the smallest bounding box, a
hierarchy can be defined by recursively applying
the entailment rule: if B contained in A, then
A entails B, denoted as A → B. An illustrative
example is shown in Fig. 2, where an example
hierarchy could be road scene → cyclist →
bicycle → wheels.

Pairwise Entailment. Our entailment rule
above naturally facilitates a pairwise relation-
ship. Let I ∈ I be an image, either the full scene
image or a cropped bounding box, and let B de-
note the set of all bounding boxes in the dataset.
Suppose BI be the set of bounding boxes con-
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(c). Cross-image samples for each class (a). Parent image with bounding boxes (b).  Example hierarchies
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Figure 2: An illustrative example image hierarchies. a) Image I with object-level bounding
boxes. Each bounding box is entailed by I. b) Hierarchies created via bounding box-to-bounding
box entailment within I (larger bounding boxes entail smaller ones). c) Cross-image hierarchy
created by sampling N bounding boxes with corresponding object classes from other images, which
are then entailed by I. Find details of cross-image sampling in Sec. 3.1.

tained in the image I, i.e, BI = {b ∈ B | b ⊂ I}1.
Note, each bounding box has an associated ob-
ject label denoted by bl ∈ L.

We define the following pairwise entailment re-
lationship:

if b ∈ BI , then I → b . (4)

By applying this recursively, a tree-like hierarchy
can be formed as shown in Fig. 2b. Note that our
model can encode any “user-defined hierarchy”
represented as entailment pairs in Eq. (4). Part-
based image hierarchy is one use case.

Furthermore, if I is a full scene image, we de-
fine an additional entailment relationship across
images at the object level. Specifically, for
each bounding box b in the image I, we sam-
ple K bounding boxes from other images with
the same label bl and enforce entailment with

1We use the ⊂ notation to denote contained in
relationship. In the case where I is a cropped bound-
ing box, this relationship is defined to hold if the
majority (e.g., 80%) of the small bounding box b is
contained in I.

the image I. Formally, let a ∈ L, and let
Ba
I,K ∼ {b ∈ B | b ̸⊂ I, bl = a} be the set

of K bounding boxes of label a on images other
than I. We enforce the entailment as follows:

for all b ∈ BI , if x ∈ Bbl
I,K , then I → x . (5)

This additional entailment across images rein-
forces the semantic link between scenes and sim-
ilar objects across different images (see Fig. 2c).

We posit that these relationships help to struc-
ture a hierarchical understanding of images
based on scene, object, and part relationships.

Hierarchy Tree. As noted above, the part-
based hierarchy forms a tree structure, where
an image or cropped bounding box can be tra-
versed using pairwise entailment relationships.
For evaluating hierarchical image retrieval, we
construct this hierarchy tree per scene/object
automatically using the full training set. How-
ever, the model is trained solely on pairwise
entailment relationships and does not use the
hierarchy tree.
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3.2 Angle-Based Entailment Loss

We require an asymmetric distance function to
enforce pairwise entailment relationships in hy-
perbolic space. To this end, we adapt the re-
cently proposed hyperbolic-angle-based entail-
ment loss [40], a smooth contrastive variant of
the entailment cone loss [12]. The angle-only
loss, without distance constraints on image pairs,
provides flexibility to be distributed along the
radial axis, allowing embeddings to align with
the tree structure while preserving pairwise en-
tailment.

Our loss is a bidirectional version of [40], as
illustrated graphically in Fig. 3. In particular,
given embeddings of an entailment pair, x,y ∈
Rd in the tangent space, where x entails y, we
maximize the angles β1 and α2. This enforces
entailment in a bidirectional manner. The angles
β1 and α2 can be computed using the exterior
angle as follows:

β1(x,y) = π − ext(x,y) , (6)

α2(y,x) = ext(y,x) ,

where ext(x,y) is the exterior angle between x
and y and takes the following form [9]:

ext(x,y) = cos−1

 ytime + xtime c⟨x,y⟩H

∥xspace∥
√
(c⟨x,y⟩H)2 − 1

 .

(7)
In contrast to [40], in our case an embedding can
belong to multiple entailment pairs in a batch.
This corresponds to a case of multiple positives
in the contrastive loss. Thus, we employ the
InfoNCE loss [35] to align all entailment pairs
while pushing apart the rest of the negative
pairs. Precisely, let D = {(xi,yi)} be a batch
of entailment pairs, then the InfoNCE loss for
parent-to-child can be written as:

Lp→c(D, κ) = (8)

− ED

log exp
(

κ(xi,yi)
τ

)
exp

(
κ(xi,yi)

τ

)
+

∑
y−∈Ni

exp

(
κ(xi,y

−
i )

τ

)


where Ni denotes the set of samples that do not
have an entailment relationship with the parent
embedding xi. Here, κ : Rd × Rd → R is the
similarity function, and τ is a learnable temper-
ature parameter initialized to 0.07 following [9].
Now, our bidirectional entailment loss can be
written as:

Langle(D) = Lp→c(D, β1) + Lc→p(D, α2) . (9)

Here, the similarity function κ is replaced with
angles β1 and α2 so that the contrastive loss
maximizes angles β1 and α2 for matching entail-
ment pairs in the batch D.

In our implementation, we use a shared image
encoder for both parent and child embeddings.
Following the reparametrization of [9], we encode
the space component of the Lorentz model in the
tangent space at origin and project it onto the
hyperboloid using the exponential map, enabling
contrastive entailment angle loss computation
in hyperbolic space.

Loss in Euclidean Space. This entailment
angle loss is general and can be effectively en-
forced in Euclidean space. In Euclidean space,
the exterior angles are formulated as follows:

ext(x,y)E = cos−1

(
∥y∥2 − ∥x∥2 − ∥x− y∥2

2∥x∥ · ∥x− y∥

)
.

(10)
Now, the loss can be analogously derived.

3.3 Hierarchical Retrieval Evaluation

To evaluate retrieval performance on the hier-
archy tree, we also introduce a metric that cap-
tures the label distribution in the dataset. This
is important as different labels can have different
numbers of instances and the standard metrics
such as Recall@k is agnostic to it.

To this end, consider the parent-to-child rela-
tionship, and let HI denote the hierarchy tree
originating from the query image I, containing
m labels. Then, the labels in HI are the ground
truth labels for the hierarchical retrieval for im-
age I. Now, let hI ∈ Rm be the precomputed
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Figure 3: Learning multi-level hierarchies
via contrastive entailment angle loss. Our
model first encodes parent-to-child pairs into em-
beddings with exponential mapping, then maxi-
mizes β1 and α2 using our contrastive entailment
angle loss in hyperbolic space.

label distribution of HI . Then, our optimal
transport (1-D Wasserstein) distance between
the retrieved label distribution rI and hI is:

OT(hI , rI) = Wasserstein(h̄I , r̄I) , (11)

where ·̄ ∈ Rm+1 is the label distribution with
other class added2. Note that a smaller distance
indicates better alignment.

4 Related Work

Hyperbolic geometry allows for exponential vol-
ume growth with respect to the radius [4], mak-
ing it effective for embedding hierarchical struc-
tures. This advantage has led to significant re-
search into leveraging hyperbolic representations
for various data types, including molecular struc-
tures [51], 3D [5, 21, 48], images [24, 16, 14, 25,
38], text data [45, 45, 13, 52, 22], and vision-
language data [9, 40, 26, 2].

Hyperbolic embeddings can be learned through
standard deep learning layers [23] with hyper-
bolic projection [32] or using hyperbolic neu-
ral networks [13]. Many prior NLP, computer
vision and knowledge graph studies learn hier-
archies from partially order data [13, 46, 30],
or minimizing geodesic distance or maximizing

2For hI other class has zero mass, and for rI all
labels not in HI are combined to form the other
class.

similarities [32, 33, 50, 14]. Ganea et al. [13]
introduced an angle-based entailment cone loss
which pushes child nodes into the cone ema-
nating from the parent node embedding. This
approach has been applied to both text [13] and
image data [10] with label hierarchies. Recently,
this hyperbolic entailment loss was adapted for
contrastive learning to develop representations
in vision-language models [9, 40, 2, 36]. However,
such methods remain relatively unexplored in
the image domain. We adapted the angle-based
entailment loss from [40] to encode part-based
image hierarchies. Many previous works are lim-
ited to learning hierarchies for single-class images
using predefined labeled hierarchies, such as Im-
ageNet [31, 24] or hand-labeled data [10]. In this
work, we propose a learning method that fine-
tunes pre-trained models on large-scale datasets
for general images (with multiple classes per
image) without hierarchical labels. The
most relevant approach, HCL [14], models simple
scene-to-object hierarchies, whereas we capture
more complex, multi-level part-based hierarchies
directly from image data, extending beyond vi-
sual similarity.

5 Experiments

Datasets. For training and evaluation, we con-
struct HierOpenImages, a novel dataset contain-
ing pairwise part-based image hierarchies built
from the OpenImages dataset [28]. We further
evaluate generalization on out-of-domain unseen
datasets and hierarchies on the LVIS [17] dataset
and 10 popular single-class datasets.

Models. We evaluate the performance of learn-
ing multi-level image hierarchies using two pop-
ular visual encoders 1) CLIP ViT (B/16) [39],
pretrained on large-scale image-text pairs from
the Internet, and 2) MoCo-v2 (ResNet-50) [7],
pretrained on ImageNet. Note that both CLIP
and MoCo-v2 models are fine-tuned and evalu-
ated in an image encoder only setting. We use
these pretrained image models as our baseline
and compare our proposed angle-based hyper-
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bolic method against its Euclidean counterpart.
Each model is fine-tuned for a single epoch on
HierOpenImages using the proposed contrastive
angle-based entailment loss, and † denotes fine-
tuning. The retrieval distance function (Dist.
Func.) aligns with the scoring function used
during training. For example, minimizing hyper-
bolic angles (Hyp Ang.) for CLIP-hyp† and Eu-
clidean angles (Euc Ang.) for CLIP-euc† model.

We also compare the state-of-the-art hyperbolic
hierarchical image-only model HCL [14], which
is trained on scene-to-object relationships from
the OpenImages dataset [28] in both hyperbolic
and Euclidean space. Accordingly, we evaluate
the retrieval performance of HCL [14] using both
hyperbolic distance and cosine similarity. For
completeness, we also fine-tuned HCL† [14] on
the same HierOpenImages dataset and included
it in our comparisons. Note that fine-tuning or
evaluating with a text encoder is not possible
on the current HierOpenImages dataset. Fur-
thermore, previous image-only supervised meth-
ods, trained on predefined single-class image
hierarchies [10, 24] are not directly comparable.
These methods require all image classes to be
predefined during training, which is not feasible
for complex multi-object scenes in the OpenIm-
ages [28] and LVIS [17] datasets, where images
contain multiple objects with diverse class labels.

5.1 Main Results

In same-class retrieval, we assess whether the
retrieved image belongs to the same class as
the query image. In hierarchical retrieval, we
verify if the retrieved image exists within the
hierarchy tree of the query image, specifically
evaluating the quality of the learned hierarchical
representations.

Same-Class Retrieval. Denoting the full im-
age as parent and the bounding box as child, we
evaluate retrieval tasks in both child-to-parent
and parent-to-child directions. Table 1 shows
the retrieval accuracy of top-k = {5, 10, 50, 100}.
We notice a significant and consistent improve-

Vision Encoder Model Metrics Top-5 Top-10 Top-50 Top-100

Child-to-Parent

CLIP ViT
CLIP Cos Sim. 26.73 25.95 23.69 22.70

CLIP-euc† Euc Ang. 67.83 68.37 67.12 66.04
CLIP-hyp† Hyp Ang. 73.37 72.59 69.84 68.62

HCL Cos Sim. 15.11 14.49 14.69 14.60
HCL Hyp Dist. 14.46 14.34 14.04 13.92
HCL† Hyp Dist. 14.54 14.43 14.16 14.01

MoCo-v2 MoCo Cos Sim. 17.23 16.86 16.33 16.07
MoCo-euc† Euc Ang. 54.51 54.16 51.56 49.53
MoCo-hyp† Hyp Ang. 55.53 55.31 51.53 49.51

Parent-to-Child

CLIP ViT
CLIP Cos Sim. 47.52 46.60 43.50 42.08

CLIP-euc† Euc Ang. 65.38 65.70 66.01 65.79
CLIP-hyp† Hyp Ang. 66.02 66.63 66.50 65.91

HCL Cos Sim. 16.08 15.93 15.84 15.74
HCL Hyp Dist. 16.16 16.04 15.60 15.45
HCL† Hyp Dist. 17.07 16.57 15.97 15.69

MoCo-v2 MoCo Cos Sim. 18.49 18.37 17.73 17.45
MoCo-euc† Euc Ang. 47.11 46.86 46.95 47.22
MoCo-hyp† Hyp Ang. 52.01 51.64 50.83 50.51

Table 1: Part-based same-class image re-
trieval evaluation. For child-to-parent image
retrieval, the retrieved parent must contain the
object class of the query child. For parent-to-
child image retrieval, the retrieved child must
match a class within the parent. † denotes mod-
els fine-tuned on the HierOpenImages dataset.
Our proposed method is shaded in purple.

ment with our proposed hyperbolic model, across
all metrics and model variants. This highlights
the relevance of our angle-based entailment loss
and the advantages of learning hierarchical im-
age embeddings in hyperbolic space. While for
HCL [14], only a slight performance increase was
observed after fine-tuning.

Hierarchical Retrieval via the Learned La-
tent Space Distribution. Table 2 evaluates
the hierarchical structure of the latent space
by retrieving a large number of child images
from parent images. We use recall to measure
the percentage of ground truth images that are
successfully retrieved. Moreover, we check the
alignment between the retrieved distribution and
the underlying hierarchical distribution of the
full test set. Good distribution alignment is a
desirable property for fine-grained retrieval as
the retrieved set should capture the hierarchies
present in the data distribution. We propose
to measure distribution alignment using the op-
timal transport (Wasserstein distance), with a
smaller distance indicating a closer match (see
Sec. 3.3).
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Metrics Model Dist. Func. Top-150k Top-200k Top-250k

CLIP ViT

Recall ↑
CLIP Cos Sim. 51.33 64.28 77.02

CLIP-euc† Euc Ang. 72.96 80.98 87.97
CLIP-hyp† Hyp Ang. 74.06 82.34 88.79

OT Distance ↓
CLIP Cos Sim. 23.81 24.60 25.03

CLIP-euc† Euc Ang. 17.00 20.00 22.45
CLIP-hyp† Hyp Ang. 16.36 19.27 22.21

MoCo-v2

Recall ↑

HCL Cos Sim. 46.05 61.24 76.44
HCL Hyp Dist. 46.06 61.14 76.16
HCL† Hyp Dist. 45.81 60.77 75.77
MoCo Cos Sim. 48.38 63.63 77.89

MoCo-euc† Euc Ang. 55.81 71.86 83.42
MoCo-hyp† Hyp Ang. 56.09 71.61 83.13

OT Distance ↓

HCL Cos Sim. 24.23 24.67 25.09
HCL Hyp Dist. 25.72 25.98 26.04
HCL† Hyp Dist. 26.12 26.32 26.28
MoCo Cos Sim. 24.05 24.44 24.93

MoCo-euc† Euc Ang. 13.72 16.83 20.17
MoCo-hyp† Hyp Ang. 12.41 15.29 19.09

Table 2: Part-based hierarchical evaluation
of parent-to-child image retrieval on Hi-
erOpenImages. Results are evaluated using
the ground truth hierarchy tree and the hierar-
chical distribution of the test set. Smaller OT
distance indicates better distribution alignment
(ref. Sec. 3.3).

As shown in Table 2, our hyperbolic model better
captures the hierarchical distribution of the test
set compared to the Euclidean model, achieving
better OT distance in all cases, and in 4 out of
6 instances for the recall.

All fine-tuned models using our angle-based en-
tailment loss show significant improvement over
the baseline models. Notably, even after fine-
tuning, HCL [14] shows a decline in hierarchical
retrieval performance, indicating its difficulty in
learning the complex visual hierarchies in the
training data.

Effect of Enforcing Cross Image Entail-
ment. To compare the emergent behaviors of
the hyperbolic and Euclidean models, we trained
the CLIP ViT model solely on hierarchical part-
based entailment data within individual images
(entailment pairs with high visual similarity),
omitting any cross-image image-to-bounding-
box samples.

Fig. 5 shows the Precision-Recall (PR) curve
with increasing β1 angle thresholds (0 to π) for
CLIP-hyp† and CLIP-euc†, and with cosine sim-

Hyp ZeroShot Hyp ZeroShot Hyp ZeroShot Hyp ZeroShot

Query Images

Retrieval Images

Figure 4: Example of parent-to-child re-
trieval using CLIP ViT and our CLIP-
hyp† model. Results are ordered by ascending
norms. Our model retrieves images matching the
predefined scene-object-part hierarchy, placing
high-level objects near the origin (e.g, harbor →
boart parts), and grouping semantically related
but visually distinct objects (e.g, microwave oven
& kitchen hood).

ilarity thresholds (0 to 1) for the baseline CLIP.
The proposed hyperbolic model trained without
cross-image samples substantially outperforms
the Euclidean model and even exceeds the Eu-
clidean model with cross-image samples, indicat-
ing it implicitly learns the underlying structure.
When cross-image samples are introduced, the
hyperbolic model still leads, though the perfor-
mance gap narrows.

Qualitative Results. Following [9, 15, 40],
we use parent-to-child image traversals with re-
sults ordered by increasing embedding norm, to
illustrate the latent space, which: (1) aligns
with the predefined scene-object-part hierarchy,
placing high-level objects near the origin. (2).
groups diverse objects under the same lower hier-
archical branch, even if they are visually distinct
(e.g., keyboard and monitor under the studio
image). In contrast, CLIP struggles to link large
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Figure 5: Precision-Recall curves of CLIP
ViT models on hierarchical retrieval. Dot-
ted lines show models trained only on hierarchi-
cal entailment data within the same images; solid
lines represent models trained with additional
cross-image scene-to-object samples. Angle or
cosine similarity threshold values are marked by
text.

scenes with smaller objects.

5.2 Generalization Evaluation

We evaluate the generalization of our method
through image retrieval on unseen datasets and
hierarchies. Similar to Table 1-2, Table 3
presents part-based same-class and hierarchical
retrieval performance on the out-of-domain
LVIS dataset [17], which contains 1,203 fine-
grained object classes, including many rare ob-
jects absent from the training HierOpenImages
dataset. Table 4 evaluates image retrieval perfor-
mance on 10 popular single-class datasets using
top-5 majority voting. Results demonstrate that
our visual hierarchical learning significantly en-
hances model generalization on unseen datasets
and image hierarchies.

6 Conclusion

In this work, we introduce a new learning
paradigm that effectively encodes user-defined
visual hierarchies in hyperbolic space without re-

Model Dist. Func. Top-5 Top-10 Top-50 Top-100

Child-to-Parent
CLIP Cos Sim. 2.37 2.32 2.04 1.84

CLIP-euc† Euc Ang. 19.36 18.64 16.14 14.52
CLIP-hyp† Hyp Ang. 22.33 21.40 18.50 16.42

Parent-to-Child
CLIP Cos Sim. 8.57 7.77 5.70 4.64

CLIP-euc† Euc Ang. 20.24 20.03 19.30 18.68
CLIP-hyp† Hyp Ang. 22.41 22.29 21.70 21.10

Metrics Model Dist. Func. Top-10k Top-20k Top-30k

Recall ↑
CLIP Cos Sim. 18.30 32.42 45.42

CLIP-euc† Euc Ang. 46.89 64.40 75.71
CLIP-hyp† Hyp Ang. 47.57 64.71 75.72

OT Distance ↓
CLIP Cos Sim. 7.61 8.88 9.43

CLIP-euc† Euc Ang. 5.74 7.39 8.43
CLIP-hyp† Hyp Ang. 5.74 7.38 8.40

Table 3: Out-of-domain part-based image
retrieval evaluation on the LVIS dataset:
same-class (top) and part-based hierarchical re-
trieval (bottom).
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CLIP 55.1 28.7 39.7 62.2 63.5 11.8 15.0 14.3 31.6 40.0
CLIP-euc† 80.2 44.8 31.8 78.3 93.1 29.2 23.8 4.8 11.6 7.0
CLIP-hyp† 84.1 49.7 38.3 79.7 94.7 33.3 42.3 20.5 34.4 36.9

Table 4: Unseen single-class image retrieval
(image-only model). For each query image,
retrieve the top-5 images based on cosine sim-
ilarity, and predict the class by majority vote
among these top images.

quiring explicit hierarchical labels. We present a
concrete example of defining a part-based multi-
level complex image hierarchy using object-level
annotations and propose a contrastive loss in hy-
perbolic space to enforce pairwise entailment re-
lationships. Additionally, we introduce new eval-
uation metrics for hierarchical image retrieval.
Our experiments demonstrate our model effec-
tively learns the predefined image hierarchy and
goes beyond visual similarity.
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APPENDICES

A Hierarchy Tree

Our part-based image hierarchy framework is
designed to be widely applicable to general image
datasets with bounding box annotations. In
this section, we outline the key implementation
details involved in constructing hierarchy trees.

We introduce a general method to generate
dataset-specific ground truth hierarchy trees
based on data statistics. Following the approach
outlined in Sec. 3.1 of the main paper, we begin
by identifying bounding box pairs with substan-
tial overlap. In this work, we define a bounding
box pair when at least 80% of the smaller bound-
ing box b is contained within either the full image
or a larger bounding box. We initially set the
overlap threshold at 100% and empirically ad-
justed it by evaluating the hierarchy’s validity
using text labels. For the OpenImages dataset,
80% was found to be the most suitable threshold.
This is a design choice and can be adapted for
other datasets.

These pairs are then filtered based on two cri-
teria: a frequency threshold and a proportion
threshold. For each pair, we record the frequency
of occurrences (e.g., bicycle-to-wheel relation-
ships) and calculate the proportion of instances
where a child class appears within a parent class
(e.g., the percentage of bicycle bounding boxes
containing a wheel bounding box). Only pairs
meeting both criteria, frequent occurrence and
consistent labeling, are preserved. We choose
frequency = 50 and proportion = 10% in our
experiments.

Once entailment pairs are established, they are
organized into hierarchical trees (see examples
in Fig. 6). In the evaluation of hierarchal image
retrieval, the order of the hierarchy tree is es-
sential: for parent-to-child retrieval, lower-level
concepts below the child in the hierarchy tree
are considered correct, while for child-to-parent
retrieval, higher-level concepts above the input

classes are correct.

B Experiment Details

B.1 Hyperparameters and training
details

We employ the AdamW optimizer with param-
eters (β1, β2) = (0.9, 0.999) and a learning rate
of 2× 10−5. Training was conducted using 8 ×
A10G Nvidia GPUs. For each model, we used
the largest batch size that fit in memory: CLIP
ViT was trained with a total effective batch
size of 320, and MoCo-v2 with a total effective
batch size of 800. Each model was fine-tuned
for a single epoch on HierOpenImages dataset,
taking approximately 26 hours for CLIP ViT
and 18 hours for MoCo-v2. The embeddings
are projected to dimension 128 in the final layer.
The hyperbolic model has a learnable curvature
parameter.

During training, we filter out bounding boxes
that occupy less than 1% of the full image area,
as well as pairs involving small bounding boxes
labeled as ‘IsGroupOf’ objects in the bound-
ing box-to-bounding box relationships. For data
augmentation, we apply randomly horizontal flip
(20%), vertical flip(20%), rotate (degree =15),
color jitter (brightness=0.2, contrast=0.2, sat-
uration=0.2, hue=0.1), Gaussian blur (kernel
size=5, σ = (0.3, 1.5)), and then resize each
image to 224× 224.

B.2 Part-based Image Retrieval

Data. HierOpenImages is built from the Open-
Images dataset [28], which originally contains
approximately 1.9 million images, 14 million
bounding boxes and 600 labels. We create image-
to-bounding box pairs, including one cross-image
bounding box sample for each bounding box
class in the image, and bounding box to bound-
ing box pairs where at least 80% of the smaller
bounding box is contained in the larger bounding
box.
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Figure 6: Example of a subset of hierarchical trees extracted from the OpenImages
dataset.

The HierOpenImages test set contains approxi-
mately 1 million full images and 3 million bound-
ing box images. During part-based image re-
trieval evaluation, we filter out bounding boxes
for very small or large objects that occupy less
than 5% or more than 30% of the full image
area. This reduces the candidate full images
to 59,691 and bounding box images to 330,063.
For part-based image retrieval, we randomly se-
lect a subset of 10,000 full images and 10,000
bounding box images as query images, using
the entire test set as candidates. The bounding
box images in the query set span 339 object
classes, while the full images are labeled with
516 classes. The top-50 class frequency distri-
butions for both the query and candidate sets
are shown in Fig. 7. Although the query and
candidate set distributions are similar, the class
distribution is highly imbalanced, highlighting
the importance of hierarchical retrieval evalua-
tion using combined precision-recall curves and
OT distances (Sec. 3.3; see Fig. 5 and Table 2
in the main paper).

Same-Class Retrieval. For part-to-full re-
trieval, a retrieval is considered correct if the
retrieved full image contains the same object
class as the query bounding box image. For
full-to-part retrieval, a retrieval is correct if the
retrieved bounding box image corresponds to an
object class within the query full image.

Hierarchical Retrieval. From a query parent
image, correct child classes are all classes located
at the lower level on the hierarchy tree of the
labeled classes of the parent image (see examples
in Fig. 6). For instance, when querying with
a high-level full image, such as an image of a
car, we expect to retrieve lower-level bounding
boxes associated with the car, such as the car
mirror, wheel or car plate etc. Conversely, when
querying with a bounding box image, such as
a wheel, we expect to retrieve various types of
higher-level full images that include wheels, like
cars, bicycles or cyclists etc.
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Figure 7: Bounding box class distribution in the candidate and query sets.

Hierarchal Retrieval Evaluation To com-
pute the optimal transport (1-D Wasserstein)
distance between the retrieved label distribution
and the ground truth (Table 2 and Fig. 5 in
the main paper), we construct the ground truth
distribution based on the frequency of each class
(and its hierarchical classes) in the query parent
image. We count the occurrences of each class
in the candidate set and build the ground truth
distribution by normalizing the frequencies to
sum to 1. Similarly, the retrieval distribution is
built by counting and normalizing retrieved class
occurrences, and assigning any retrieved classes
outside the ground truth hierarchy tree to an
‘others’ class. The two distributions are aligned
by class order (ground truth distribution is zero

in the ‘others’ class), and the 1-D Wasserstein
distance is computed using the scipy library.

Note that the Wasserstein distance has a closed-
form formula for 1-D data. If P and Q are
represented as discrete empirical distributions
(e.g., histograms or sorted samples of size n),
let {x1, x2, . . . , xn} to be sorted values P , and
{y1, y2, . . . , yn} to be sorted values from Q, then
the 1-D Wasserstein distance is:

Wp(P,Q) =

(
1

n

n∑
i=1

∥xi − yi∥p
)1/p

,

where p refers to the order of the distance in the
general p-Wasserstein metric.

In Table 2 of the main paper, we retrieve the
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Query N 50,000 50,000 1,829 1,829 8,000 10,000 25,250 5,794 3,669 6,149
Candidate N 10,000 10,000 7,315 7,315 5,000 100,000 75,750 5,994 3,680 1,020

Table 5: Query and candidate set sizes for each single-class unseen dataset.

Top-K results starting from approximately 50%
of the test data size. This is necessary because
each image contains an average of 5.29 distinct
classes and 61.5 classes across hierarchical trees,
requiring a large number of retrievals to accu-
rately evaluate the distribution.

Image Retrieval Interface via Gradio.
We built our image retrieval interface using Gra-
dio [1], as shown in Fig. 8. Input images can be
selected from a linked image folder, where thumb-
nail images are displayed in an image gallery,
or they can be directly uploaded by users. The
retrieval results can be sorted by the hyperbolic
angle relative to the input image or filtered using
a user-defined threshold value, after which the re-
sults are ordered by their embedding norms. Ad-
ditional functionalities can be easily integrated
into the current pipeline.

B.3 Generalization Evaluation

LVIS Dataset. We evaluate the generaliza-
tion capability of our model on the out-of-
domain LVIS dataset [17], which is designed for
long-tail instance classification and segmenta-
tion. It has a highly imbalanced distribution of
1,203 object categories and contains 897 object
categories that are absent from OpenImages [28].
The full list of these categories can be found in
the appendix. Only display the first class of
synonyms.

We construct the hierarchical evaluation set from
the validation set of the LVIS dataset [17], which
contains 19,809 images. Following the same pro-
cess as constructing HierOpenImages, we evalu-

ate bounding box images and corresponding full
images that occupy 5%-30% of the full image
area, reducing the candidate set to 14,716 full
images and 76,255 bounding box images. We
use the full reduced set for part-based image
retrieval in Table 3 in the main paper.

To construct the ground truth hierarchy tree,
we use the same pipeline as described in Sec. A.
The only difference is that we empirically choose
frequency = 5 and proportion = 5% in our ex-
periments. This adjustment is necessary be-
cause the LVIS dataset [17] has very unbalanced
classes. Here are some examples of unseen hier-
archies in LVIS [17] but not in OpenImges [28]:
{table → tablecloth → ashtray → cigarette},
{backpack → strap → belt buckle}, {toy →
teddy bear → thread → bobbin}, {sofa → blan-
ket → quilt → bedspread}.

Single-class Datasets. We use the official
splits from torchvision, designating the train-
ing set as candidates and the test/validation
set as queries. For datasets without predefined
splits on torchvision, such as SUN397 [49] and
Caltech101 [11], we randomly split the dataset
into 80% candidates and 20% queries. The sizes
of query and candidate images for each dataset
are listed in Table. 5.

For each dataset, we retrieve the top-5 most
similar images from the candidate set based on
cosine similarity and predict the class by ma-
jority vote among top images. We chose cosine
similarity instead of hyperbolic angles as our
metric, as there is no part-based relationship be-
tween the query and candidate images, and this
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Figure 8: Example of our image retrieval interface built with Gradio [1]. The interface
supports image selection/upload and retrieves results ranked by user-defined modes. Its modular
design allows for easy integration of additional functionalities.

is not an evaluation of preserving a pre-defined
hierarchy.

C Ablation Studies

In this ablation study, we evaluate the impact
of cross-image scene-to-object samples. We fine-
tuned the CLIP ViT model solely on hierarchi-
cal part-based entailment data within individ-
ual images (entailment pairs with high visual
similarity), excluding any cross-image image-to-
bounding-box samples. Fig. 5 in the main pa-
per shows that the hyperbolic model CLIP-hyp†

fine-tuned without cross-image samples signifi-

cantly outperforms the Euclidean model CLIP-
euc† and even surpasses the model trained with
additional cross-image samples. This indicates
that training in hyperbolic space enhances the
model’s ability to recognize visually dissimilar
entailment pairs.

In this supplementary material, we further eval-
uate these models on part-based same-class and
hierarchical image retrieval tasks, as shown in Ta-
ble. 6-7. The best results are highlighted in bold
and the second-best results are shown in blue.
The results clearly indicate that cross-image sam-
pling improves image retrieval performance. No-
tably, the hierarchical retrieval results align with
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Model Cross-Image Top-5 Top-10 Top-50 Top-100

Child-to-Parent
CLIP-hyp† ✓ 73.37 72.59 69.84 68.62
CLIP-euc† ✓ 67.83 68.37 67.12 66.04
CLIP-hyp† ✗ 70.47 70.29 67.89 66.38
CLIP-euc† ✗ 64.98 64.49 63.51 63.10

CLIP - 26.73 25.95 23.69 22.70
Parent-to-Child

CLIP-hyp† ✓ 66.02 66.63 66.50 65.91
CLIP-euc† ✓ 65.38 65.70 66.01 65.79
CLIP-hyp† ✗ 63.00 63.78 63.65 63.44
CLIP-euc† ✗ 60.33 60.73 61.43 61.38

CLIP - 47.52 46.60 43.50 42.08

Table 6: Part-based same-class image re-
trieval evaluation. Cross-image ✓indicates
models fine-tuned on entailment relationships
both within and across images at the category
level, while ✗ represents models fine-tuned with-
out cross-image sampling. The evaluation setup
is the same as Table 1 in the main paper. The
best results are marked in bold, and the second-
best results are in blue.

Metrics Model Cross-Image Top-150k Top-200k Top-250k

CLIP-hyp† ✓ 74.06 82.34 88.79
CLIP-euc† ✓ 72.96 80.98 87.97
CLIP-hyp† ✗ 73.52 81.58 88.10
CLIP-euc† ✗ 71.34 78.89 86.04

Recall % ↑

CLIP - 51.33 64.28 77.02

CLIP-hyp† ✓ 16.36 19.27 22.21
CLIP-euc† ✓ 17.00 20.00 22.45
CLIP-hyp† ✗ 16.95 19.77 22.55
CLIP-euc† ✗ 18.43 21.25 23.53

OT Distance ↓

CLIP - 23.81 24.60 25.03

Table 7: Part-based hierarchical evaluation
of parent-to-child image retrieval. The OT
distance is defined in Sec. 3.3 (main paper), and
the evaluation setup follows Table 2 (main pa-
per). The best results are marked in bold, and
the second-best results are in blue.

Fig. 5 in the main paper. Specifically, the hyper-
bolic model trained without cross-image samples
outperforms the Euclidean model trained with
cross-image samples in 5 out of 6 cases, as shown
in Table 7.

D More Qualitative Results

More qualitative parent-to-child retrieval results
are shown in Fig. 9 to visualize the latent space.
Bounding box images are filtered by angle (CLIP-
hyp†) or cosine similarity (CLIP ViT model)

thresholds and sorted by increasing embedding
norms. Our hyperbolic model retrieves diverse
and visually distinct lower-level objects related
to the query images, organized according to the
predefined scene-object-part hierarchy in the em-
bedding space.
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Query Images

Retrieval Images

Query Images

Retrieval Images

Figure 9: Example of parent-to-child retrieval using CLIP ViT and our CLIP-hyp†

model. Results are ordered by ascending embedding norms. Our model retrieves images matching
the predefined scene-object-part hierarchy, placing high-level objects near the origin (e.g, group of
fruits → single fruits), and grouping semantically related but visually distinct objects (e.g, chairs &
TVs). All retrieved bounding box images are scaled to the same ratio.
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Appendix
Object classes in LVIS dataset but not in OpenImage dataset

aerosol can air conditioner alcohol alligator almond amplifier

anklet antenna applesauce apricot apron aquarium

arctic armband armchair armoire armor trash can

ashtray asparagus atomizer avocado award awning

baboon baby buggy basketball back-
board

bagpipe baguet bait

ballet skirt bamboo Band Aid bandage bandanna banner

barbell barrette barrow baseball base baseball baseball cap

basket basketball bass horn bat bath mat bath towel

bathrobe batter battery beachball bead bean curd

beanbag beanie bedpan bedspread cow beef

beeper beer bottle beer can bell belt buckle beret

bib Bible visor binder birdfeeder birdbath

birdcage birdhouse birthday cake birthday card pirate flag black sheep

blackberry blackboard blanket blazer blimp blinker

blouse blueberry gameboard bob bobbin bobby pin

boiled egg bolo tie deadbolt bolt bonnet booklet

bookmark boom micro-
phone

bouquet bow bow bow-tie

pipe bowl bowler hat bowling ball boxing glove suspenders bracelet

brass plaque bread-bin breechcloth bridal gown broach broom

brownie brussels sprouts bubble gum bucket horse buggy horned cow

bulldog bulldozer bullet train bulletin board bulletproof vest bullhorn

bun bunk bed buoy business card butter button

cabana cabin car cabinet locker calendar calf

camcorder camera lens camper candle holder candy bar candy cane

walking cane canister canteen cap bottle cap cape

cappuccino railcar elevator car car battery identity card card

cardigan cargo ship carnation horse carriage tote bag carton

cash register casserole cassette cast cauliflower cayenne

CD player celery chain mail chaise longue chalice chandelier

chap checkbook checkerboard cherry chessboard chickpea

chili chinaware crisp poker chip chocolate bar chocolate cake

chocolate milk chocolate
mousse

choker chopstick slide cider

cigar box cigarette cigarette case cistern clarinet clasp

cleansing agent cleat clementine clip clipboard clippers

cloak clock tower clothes hamper clothespin clutch bag coaster

coat hanger coatrack cock cockroach cocoa coffee maker
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coffeepot coil colander coleslaw coloring mate-
rial

combination
lock

pacifier comic book compass condiment cone control

convertible cooker cooking utensil cooler cork corkboard

corkscrew edible corn cornbread cornice cornmeal corset

costume cougar coverall cowbell crabmeat cracker

crape crate crayon cream pitcher crib crock pot

crossbar crouton crow crowbar crucifix cruise ship

police cruiser crumb cub cube cufflink cup

trophy cup cupcake hair curler curling iron cushion cylinder

cymbal dalmatian dartboard date deck chair dental floss

detergent diary dinghy dining table tux dish

dish antenna dishrag dishtowel dishwasher de-
tergent

dispenser diving board

Dixie cup dog collar dollar dollhouse domestic ass doorknob

doormat dove underdrawers dress hat dress suit dresser

drill drone dropper drumstick duckling duct tape

duffel bag dumpster dustpan earphone earplug earring

easel eclair eel egg egg roll egg yolk

eggbeater eggplant electric chair elk escargot eyepatch

fan ferret Ferris wheel ferry fig fighter jet

figurine file fire alarm fire engine fire extinguisher fire hose

first-aid kit fishbowl fishing rod flagpole flamingo flannel

flap flash fleece flip-flop flipper flower arrange-
ment

flute glass foal folding chair footstool forklift freight car

French toast freshener frisbee fruit juice fudge funnel

futon gag garbage garbage truck garden hose gargle

gargoyle garlic gasmask gazelle gelatin gemstone

generator gift wrap ginger cincture glass globe

golf club golfcart gorilla gourd grater gravestone

gravy boat green bean green onion griddle grill grits

grizzly grocery bag gull gun hairbrush hairnet

hairpin halter top ham hammock hamper hand glass

hand towel handcart handcuff handkerchief handle handsaw

hardback book harmonium hatbox veil headband headboard

headlight headscarf headset headstall heart heron

highchair hinge hockey stick home plate honey fume hood

hook hookah hornet hose hot-air balloon hotplate

hot sauce hourglass houseboat hummingbird hummus icecream

popsicle ice maker ice pack ice skate igniter inhaler

iron ironing board jam jar jean jeep

jelly bean jersey jet plane jewel jewelry joystick
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jumpsuit kayak keg kennel key keycard

kilt kimono kitchen sink kitchen table kitten kiwi fruit

knee pad knitting needle knob knocker lab coat lamb

lamb-chop lamppost lampshade lanyard laptop com-
puter

lasagna

latch lawn mower leather legging Lego legume

lemonade lettuce license plate life buoy life jacket lightbulb

lightning rod lime lip balm liquor log lollipop

speaker machine gun magazine magnet mail slot mailbox

mallard mallet mammoth manatee mandarin or-
ange

manager

manhole map marker martini mascot mashed potato

masher mask mast mat matchbox mattress

meatball medicine melon microscope milestone milk can

milkshake minivan mint candy mitten money monitor

motor motor scooter motor vehicle mound mousepad music stool

nailfile napkin neckerchief needle nest newspaper

newsstand nightshirt nosebag noseband notebook notepad

nut nutcracker oar octopus octopus oil lamp

olive oil omelet onion orange juice ottoman overalls

packet inkpad pad padlock paintbrush painting

pajamas palette pan pan pantyhose papaya

paper plate paperback book paperweight parakeet parasail parasol

parchment parka passenger car passenger ship passport patty

pea peanut butter peeler wooden leg pegboard pelican

pencil pendulum pennant penny pepper pepper mill

persimmon pet pew phonebook phonograph
record

pickle

pickup truck pie pigeon piggy bank pin pinecone

ping-pong ball pinwheel tobacco pipe pipe pita pitcher

pitchfork place mat playpen pliers plow plume

pocket watch pocketknife poker pole polo shirt poncho

pony pop postbox postcard pot potholder

pottery pouch power shovel projector propeller prune

pudding puffer puffin pug-dog puncher puppet

puppy quesadilla quiche quilt race car radar

radiator radio receiver raft rag doll raincoat ram

raspberry rat razorblade reamer rearview mirror receipt

recliner record player reflector rib ring river boat

road map robe rocking chair rodent roller skate Rollerblade

rolling pin root beer router rubber band runner saddle

saddle blanket saddlebag safety pin sail salad plate salami

salmon salmon salsa saltshaker satchel saucepan

sausage sawhorse scarecrow school bus scraper scrubbing brush
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seabird seaplane seashell shaker shampoo sharpener

Sharpie shaver shaving cream shawl shears shepherd dog

sherbert shield shoe shopping bag shopping cart shot glass

shoulder bag shovel shower head shower cap shower curtain shredder

signboard silo skewer ski boot ski parka ski pole

skullcap sled sleeping bag sling slipper smoothie

soap soccer ball softball solar array soup soup bowl

soupspoon sour cream soya milk space shuttle sparkler spear

crawfish sponge sportswear spotlight stagecoach statue

steak steak knife steering wheel stepladder step stool stereo

stew stirrer stirrup brake light stove strainer

strap street sign streetlight string cheese stylus subwoofer

sugar bowl sugarcane sunflower sunhat mop sweat pants

sweatband sweater sweatshirt sweet potato Tabasco sauce table-tennis ta-
ble

table lamp tablecloth tachometer tag taillight tambourine

army tank tank top tape tape measure tapestry tarp

tartan tassel tea bag teacup teakettle telephone booth

telephone pole telephoto lens television cam-
era

television set tequila thermometer

thermos bottle thermostat thimble thread thumbtack tights

timer tinfoil tinsel tissue paper toast toaster oven

tongs toolbox toothpaste toothpick cover tortilla

tow truck towel rack tractor dirt bike trailer truck trampoline

tray trench coat triangle tricycle truffle trunk

vat turban turnip turtleneck typewriter underwear

urinal urn vacuum cleaner vending ma-
chine

vent vest

videotape vinegar vodka volleyball vulture wagon

wagon wheel walking stick wall socket wallet walrus washbasin

water bottle water cooler water heater water jug water gun water ski

water tower watering can weathervane webcam wedding cake wedding ring

wet suit whipped cream whistle wig wind chime windmill

window box windshield
wiper

windsock wine bottle wine bucket wineglass

blinder wolf wooden spoon wreath wristband wristlet

yacht yogurt yoke
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