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Abstract

Metric learning is a fundamental problem in computer
vision whereby a model is trained to learn a semantically
useful embedding space via ranking losses. Traditionally,
the effectiveness of a ranking loss depends on the minibatch
size, and is, therefore, inherently limited by the memory
constraints of the underlying hardware. While simply ac-
cumulating the embeddings across minibatches has proved
useful [40], we show that it is equally important to ensure
that the accumulated embeddings are up to date. In par-
ticular, it is necessary to circumvent the representational
drift between the accumulated embeddings and the feature
embeddings at the current training iteration as the learnable
parameters are being updated. In this paper, we model rep-
resentational drift as distribution misalignment and tackle it
using moment matching. The result is a simple method for
updating the stored embeddings to match the first and second
moments of the current embeddings at each training itera-
tion. Experiments on three popular image retrieval datasets,
namely, SOP, IN-SHOP and DEEPFASHION2, demonstrate
that our approach significantly improves the performance in
all scenarios.

1. Introduction
Metric learning has proved useful in solving a vari-

ety of problems in computer vision including image re-
trieval [43, 14], zero shot learning [3], face recognition [41],
and visual tracking [37]. The main objective in metric learn-
ing is to learn a metric space where the feature embeddings
of instances from the same class lie closer together than
those from different classes.

Since metric learning requires comparing the feature em-
beddings of different instances, the loss functions used for
this problem [7, 34, 2, 19] are commonly referred to as rank-
ing losses. Such a ranking loss is computed by comparing
the embedding of each instance in the minibatch against the
embeddings of a reference set (usually the minibatch itself).
To improve effectiveness some methods select the most in-

formative samples from the reference set via sophisticated
mining strategies [11, 36].

Increasing the size of the reference set improves the ac-
curacy of the ranking loss calculations. However, since pro-
cessing each minibatch results in a model update, previously
computed embeddings are invalidated, and the reference set
embeddings need to be recomputed after every model up-
date. Therefore, the reference set (and the minibatch) size is
limited by the memory and computational constraints of the
underlying hardware, which limits the accuracy.

Given the above, we seek a scalable approach that allows
to use a larger reference set (preferably as large as the train-
ing set) while ensuring that the corresponding embeddings
are up to date. Cross Batch Memory (XBM) [40] is a re-
cent technique to expand the reference set by accumulating
embeddings across minibatches. While this approach is effi-
cient, it does not ensure that the embeddings are up to date.
Embeddings quickly become outdated as the model evolves
during training, particularly in the early stages. Using out-
dated embeddings limits the value in comparing against a
larger reference set, and provides a contradictory supervision
signal which may lead to sub-optimal learning.

We propose here an adaptation of metric learning that
explicitly models, and compensates for representational drift.
Specifically, we adopt a Bayesian framework and model the
representational drift as a transformation of the distribution
of the embeddings. To this end, the ideal transformation to
mitigate representational drift is to ensure that the embed-
dings of the reference set (i.e., cross batch memory) follow
the same distribution as the embeddings of the full dataset at
any given iteration. For practical purposes we represent the
empirical distributions of the embeddings using their first
and second moments (i.e., mean and standard deviation).

We first introduce Cross Batch Normalization (XBN)
which simply adapts the embeddings in the reference set
to match the first and second moments of the current mini-
batch embeddings at each training iteration. Then, to better
estimate the dataset statistics at any given iteration, we adopt
a Kalman filter [17] which is well suited to modelling evolv-
ing statistics over a sequence of noisy observations. Thus,
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we use a Kalman filter to estimate the mean and standard
deviation of the dataset embeddings on the basis of the mini-
batch observations and adapt the reference set embeddings.
We refer to this approach as Adaptive Cross Batch Normal-
ization (AXBN).

We provide extensive experiments on three popular im-
age retrieval datasets, namely, SOP [29], IN-SHOP [23] and
DEEPFASHION2 [10]. Our results demonstrate significant
improvements over the XBM method in all scenarios, which
confirms that simple moment matching can alleviate rep-
resentational drift. Furthermore, while the simpler XBN
approach outperforms traditional XBM, the adaptive version
is better in the small batch regime, albeit by a small margin,
providing evidence that classical noise modelling approaches
can be useful in deep learning.

2. Preliminaries

In this section, we discuss metric learning in the context
of image retrieval, although it has a wide variety of applica-
tions. LetD = {(xi, yi)}ni=1 be the dataset where xi ∈ X is
the input image corresponding to sample i and yi ∈ Y is the
label. The objective of metric learning is to learn an embed-
ding function fw : X → Rd by optimizing the parameters
w ∈ Rm, such that images corresponding to the same label
are clustered together in the d-dimensional embedding space.
For notational convenience we write z := fw(x) ∈ Rd. Ide-
ally, for any triplet (a, p, n) with ya = yp 6= yn we want
‖za−zp‖ < ‖za−zn‖ for some appropriate distance metric
‖ · ‖. Once trained, given a set of gallery images, their cor-
responding embeddings are computed and stored1. During
testing, a new query image is passed through the embedding
function and its k-nearest neighbours in the embedding space
are retrieved from the stored gallery embeddings.

The problem of metric learning can be written as:

minimizew L(w;D) :=
1

n

n∑
i=1

`(w, (xi, yi);D) , (1)

where ` denotes the embedding function composed with a
metric learning loss. Note that in addition to w and the
sample (xi, yi), ` also depends on the full datasetD. Specifi-
cally, metric learning requires comparing the embedding of a
sample with all other embeddings to ensure that the samples
belong to the same class are clustered together while other
class samples are pushed away. For example, the commonly
used triplet loss [34] computes

`triplet(w, (xi, yi);D) := (2)
1

|Ti|
∑

(i,p,n)∈Ti

[
‖zi − zp‖2 − ‖zi − zn‖2 + α

]
+
,

1The set of gallery embeddings are sometimes referred to as the index.

where Ti denotes the set of all triplets for sample i such that
yi = yp 6= yn, α ≥ 0 is a margin, ‖ · ‖2 is the L2 norm, and
[·]+ projects onto the nonnegative real numbers.

Since the dataset is large, it is infeasible to compare all
the samples in a dataset at each iteration. To this end, the
standard approach is to use a reference set Rk ⊂ D in
place of the whole dataset for each optimization iteration k.
Additionally, minibatch based Stochastic Gradient Descent
(SGD) is employed to optimize the loss function. Putting
these two together, the SGD update equation at iteration k
can be written as:

wk+1 = wk − ηk∇L
(
wk;Bk,Rk

)
, (3)

L
(
wk;Bk,Rk

)
:=

1

|Bk|
∑

(x,y)∼Bk

`
(
wk, (x, y);Rk

)
.

(4)

Here, ηk > 0 is the learning rate, Bk is the minibatch, and
Rk is the reference set. In almost all metric learning sce-
narios the minibatch itself is used as the reference set, i.e.,
Rk = Bk.

2.1. Cross Batch Memory (XBM)

The idea of XBM [40] is to expand the reference set be-
yond the minibatch. To alleviate the computational complex-
ity of performing the forward pass on a larger reference set,
the insight is to store the embeddings computed during the
previous iterations and use them as the reference set.

Let B̄k = {(zk := fwk(x), y) | (x, y) ∈ Bk} ⊂ Rd × Y
denote the embeddings and their labels corresponding to the
minibatch Bk at iteration k. Then the analogous reference
set of embeddings R̄k is the union of the most recent M
embeddings2, where |R̄k| ≤M is the limit on reference set
size. In certain cases, M can be as large as the dataset itself.
These accumulated embeddings R̄k are used to optimize
the loss function, specifically the XBM loss function at each
iteration k can be written as L

(
wk;Bk, R̄k

)
.

The benefit of XBM relies heavily on the assumption
that the embeddings evolve slowly. In the XBM paper, it
is empirically shown that the features evolve slowly after a
certain number of training iterations (refer to Fig. 3 in [40]),
where feature drift at iteration k is defined as:

D(x, k,∆k) :=
∥∥zk − zk−∆k

∥∥
2
, (5)

where zk is the embedding vector for the image x, ∆k is
the iteration step, and ‖ · ‖2 is the L2 norm. We note that
this quantity is merely an empirical diagnostic and is not
practical to compute during training to determine whether
the features have become outdated or not. Furthermore,
even though the features may change slowly in absolute

2For brevity we refer to R̄k as the reference set embeddings, however it
contains the embeddings and the corresponding labels.



terms, the drift accumulates over time (large ∆k), which is
problematic when the minibatch size is small, relative to the
size of the cross batch memory. Altogether this could lead
to an inaccurate supervision signal from the ranking loss.

As noted in [40], the slow-drift assumption is violated
in the early phase of training. While we believe the initial
training phase is most important, as discussed above, the
embeddings in the reference set R̄k can become outdated
even in the slow-drift regime. Such outdated embeddings not
only limits the full potential of using a larger reference set,
but also provides contradicting supervision signal degrading
performance.

Therefore, we believe, it is important to ensure that the
embeddings in the reference set are up to date throughout
the whole training process.

3. Adapting the Cross Batch Memory

Our idea is to adapt the embeddings in the cross batch
memory at each iteration to circumvent the representa-
tional drift between the embeddings in the reference set
R̄k and the current minibatch B̄k. Here the term represen-
tational drift refers to the notion that statistics computed
on batches of embeddings vary as training progresses since
fwk(x) 6= fwk′ (x) where wk′ 6= wk are model parameters
from some previous iteration k′ < k. We model the represen-
tational drift as a (linear) transformation of the distribution
of the embeddings. Then, the ideal transformation to miti-
gate representational drift is to ensure that the embeddings
of the reference set (i.e., cross batch memory) follow the
same distribution as the embeddings of the full dataset at any
given iteration.

For practical purposes, we represent the empirical distri-
butions of embeddings with their respective first and second
moments (i.e., mean and standard deviation). To this end,
at any iteration, we intend to ensure that the mean and stan-
dard deviation of the embeddings of the reference set match
the mean and standard deviation of the embeddings of the
dataset at that iteration.

3.1. Cross Batch Normalization (XBN)

In this section, we outline our algorithm with a simplify-
ing assumption that the minibatch statistics match the statis-
tics of the dataset. In the subsequent section, we discuss an
approach to circumvent this assumption.

Since we only have access to a minibatch of data at each
iteration, we simply adapt the embeddings of the reference
set to have the mean and standard deviation of the embed-
dings of the current minibatch. Suppose E[·] and σ[·] denote
the mean and standard deviation of the embeddings, then

Cross Batch Normalization (XBN) can be written as:

ẑk =
zk − E

[
R̄k
]

σ
[
R̄k
] σ

[
B̄k
]
+E
[
B̄k
]
, for each (zk, y) ∈ R̄k .

(6)
Here, the division and multiplication are performed elemen-
twise. After the adaptation, the current batch embeddings
are added to the cross batch memory and the combined set is
used as the reference set to compute the metric learning loss.
This updated reference set is stored in memory and used in
the subsequent iteration, ensuring that at every iteration, the
cross batch memory is only an iteration behind the current
batch.

Note that, this is just one additional line to the XBM code,
but as can be seen in the experiments, it improves the results
significantly.

3.1.1 Justification for XBN

Let z = fw(x) and z′ = fw′(x) be two embeddings for the
same image x computed using different parameters of the
model, w and w′, respectively. Assume that z′ = g(z) for
some unknown function g := fw′ ◦ f−1

w .3 We can approxi-
mate z′ by the first-order Taylor expansion of g around an
arbitrary point z0 as follows:

z′ ≈ g(z0) +∇g(z0)T (z− z0) , (7)
= Az + b .

To estimate coefficients A and b we need quantities that can
be estimated independently from either the minibatch or the
cross batch memory. By the method of moments [5],

µ′ = E[z′] = E[Az + b] = Aµ + b , (8)

Σ′ = E
[
(z′ − µ′)(z′ − µ′)T

]
(9)

= E
[
A(z− µ)(z− µ)TAT

]
= AΣAT .

Here, µ and Σ denote the mean and the covariance and the
expectations are taken over samples drawn from the same
distribution. However, in practice, we estimate µ and Σ from
the reference set R̄k, and µ′ and Σ′ from the minibatch B̄k,
at each iteration k. Solving for A and b we have,

A =
(
Σ′Σ−1

) 1
2 , (10)

b = µ′ −
(
Σ′Σ−1

) 1
2 µ . (11)

Assuming independence in components of z we can con-
sider scalar equations:

z′j = Ajj zj + bj =
σ′j
σj
zj + µ′j −

σ′j
σj
µj = σ′j

zj − µj

σj
+ µ′j ,

(12)

3The function g may not actually exist if f is not injective, which is
typically the case. Nevertheless, we can still estimate the approximation to
a notional g.



where σj := Σ
1
2
jj is the standard deviation. This is same

as our adaptation formula (Eq. (6)). Here, we are taking a
linear approximation of the transformation function g. Nev-
ertheless, higher-order Taylor series expansions, requiring
higher-order moments to be calculated, may give better re-
sults with increased complexity, but we do not consider that
direction further in this paper.

As we shown above, XBN is a moment matching approach
that considers the first and second moments of the features.
This can be shown to minimize the KL-divergence between
the reference set and minibatch embeddings when the dis-
tributions are assumed to be Gaussian [20]. This provides
further theoretical justification for our approach.

3.2. Adaptive Cross Batch Normalization (AXBN)

Note that, we intend to circumvent the representational
drift by adapting the statistics of the reference set to match
the statistics of the dataset at each iteration. Since we only
have access to a minibatch of data at each iteration, we only
have a noisy estimation of the dataset statistics. Therefore,
we adopt a Bayesian framework to model the process of esti-
mating dataset statistics from minibatches. With the dataset
statistics in hand, we can simply transform the reference set
embeddings to match the estimated dataset statistics.

3.2.1 Kalman Filter based Estimation of Dataset Statis-
tics

The Kalman filter is a special case of recursive Bayesian filter
where the probability distributions are assumed to be Gaus-
sians [17, 32]. To this end, we first briefly review Bayesian
filtering and then turn to the Kalman filter.

Recursive Bayesian Filter. Let u be the random variable
correspond to a dataset statistic (e.g., mean or standard de-
viation of the embeddings) that we want to estimate and
v be that statistic computed using the minibatch of data.
Bayesian filtering assumes the Markovian property where
the probability of the current state given the previous state
is conditionally independent of the other earlier states [6].
With this assumption, let p(uk | u0:k−1) = p(uk | uk−1)
be the process noise distribution and p(vk | uk) be the mea-
surement noise distribution at iteration k. Since u is hidden
and we only get to observe v, one can estimate the dataset
statistic at iteration k given the past observations as:

p(uk | v1:k−1) =

∫
p(uk | uk−1)p(uk−1 | v1:k−1)duk−1 .

(13)
Now, with the current observation vk the updated estimation
becomes:

p(uk | v1:k) =
p(vk | uk)p(uk | v1:k−1)

p(vk | v1:k−1)
. (14)

Once p(uk | v1:k) is estimated, the mean of the distribution
can be taken as the estimated value. This is a general form of
Bayesian filtering and depending on the application, certain
assumptions have to be made (e.g., the type of probability
distributions, their initial values, etc.)

Kalman Filter. As noted earlier, the Kalman filter [17] as-
sumes the distributions are Gaussians and for simplicity we
assume a static state model. Let us consider the case where
we estimate the mean of the embeddings of the dataset at
iteration k. Then uk,vk ∈ Rd. Let ûk be the estimate
of uk and Q,R,P ∈ Rd×d be the process covariance, the
measurement covariance and the estimation covariance, re-
spectively. Now, the distributions used in Eq. (14) take the
following forms:

p(uk | uk−1) = N (uk−1,Qk) , (15)
p(vk | uk) = N (uk,Rk) , (16)

p(uk−1 | v1:k−1) = N (ûk−1,Pk−1) , (17)

where N (µ,Σ) denotes the multi-variate Gaussian distribu-
tion. The Kalman filtering steps are then:

ûk,k−1 = ûk−1 , predicted state (18)
Pk,k−1 = Pk−1 + Qk , predicted variance (19)

Kk = Pk,k−1(Pk,k−1 + Rk)−1 , Kalman gain (20)
ûk = ûk,k−1 + Kk(vk − ûk,k−1) , updated state (21)
Pk = (I−Kk)Pk,k−1 . updated variance (22)

Here, ûk,k−1 and Pk,k−1 denote the intermediate state and
noise variance estimates. In our approach, we assume that
the dimensions are independent so that Q, R, and P are
diagonal matrices (and each dimension can be processed
independently), which has computational advantages for
high dimensional spaces.

For our estimation model, we need to initialize the esti-
mation variance P and most importantly the process noise
Q and measurement noise R needs to be identified. Even
though there are some heuristic approaches to estimate these
noise covariances [28], for simplicity, we treat them as con-
stant hyperparameters in our implementation and use the
same hyperparameter value for all dimensions to limit the
number of hyperparameters. In summary, there are three
hyperparameters p0, q, and r, where P0 = po I,Qk = q I
and Rk = r I.

It is known that the initial estimation variance p0 is not
important as the Kalman filter converges quickly. Moreover,
for scalar systems, it can be shown that the static system
depends on λ = r/q [9]. Therefore, essentially there is only
one hyperparameter to be tuned. In our case, measurement
noise is inversely proportional to the minibatch size. There-
fore, we use r/|Bk| as the measurement noise, tune r only,
and the same value can be used with different minibatch



sizes. Note that, when the measurement noise is assumed to
be zero (r = 0), this process specializes to directly using the
minibatch statistics (refer to Section 3.1). Our final update
in its simplest form is provided in the appendix.

3.2.2 Adaptation

Suppose µ̂k and σ̂k be the estimated mean and variance of
the dataset at iteration k from the Kalman filter. Then the
adaptation can be written as:

ẑk =
zk − E

[
R̄k
]

σ
[
R̄k
] σ̂k + µ̂k , for each (zk, y) ∈ R̄k ,

(23)
where E

[
R̄k
]

and σ
[
R̄k
]

denote the mean and standard
deviation of embeddings in the reference set. After the
adaptation, the current batch embeddings are added to the
cross batch memory and the combined set is used as the
reference set to compute the metric learning loss.

We would like to emphasize that our approach does not
add any overhead to the memory and computational require-
ments of the XBM method. Furthermore, our adaptation is a
simple change to the XBM code which results in significant
performance improvements.

4. Related Work
Metric Learning Methods. Metric learning is a popular
problem in machine learning with applications varying from
image retrieval [43] to visual tracking [37]. Recent advances
in metric learning are mostly on improving the effective-
ness of learning by modifying the loss function and/or the
example mining strategy. Based on how embeddings of
different instances are compared against each other, the
loss functions can be broadly categorized into 1) pair/triplet
based approaches [7, 34, 35, 39, 18], 2) methods that di-
rectly optimize average precision [4, 2], and 3) proxy-based
losses [25, 31, 19]. It is worth noting that the differences
in these loss functions impact the learning effectiveness,
however, they are theoretically equivalent.

Apart from the loss, example mining strategy is important
to ensure that the deep learning model focuses more on the
informative examples. In addition to the popular (semi)-hard
mining, there are many sophisticated strategies have been
developed recently [15, 11, 36, 39]. We only mentioned a
few works here and we refer the interested reader to [26,
27] for a comprehensive list of metric learning losses and
example mining strategies.

In contrast to these works, we focus on expanding the ref-
erence set which allows us to compare more examples across
minibatches while benefiting from these recent advances.

Using External Memory. Using external memory in met-
ric learning is not new [38, 21, 46, 40]. However, an im-

portant distinction is that we use an external memory to
expand the reference set and ensure that those embeddings
are kept up to date so that they can be used for effective
learning. Similarly, in self-supervised learning, Momentum
Contrast (MOCO) [12] uses an external memory along with
a separate encoding network to compute the features and
uses momentum based updates to ensure slow-drift of en-
coder parameters. Another conceptually similar approach is
cross iteration batch normalization [44, 16], which estimates
minibatch statistics across training iterations using first order
information. In contrast to both of these methods, we simply
store the feature embeddings at each iteration and directly
tackle the representational drift by adapting the distribution
parameters for effective metric learning.

5. Experiments
We first describe the experimental setup and the datasets

and then discuss the results.

5.1. Experimental Setup

We follow the standard approach and use an Ima-
geNet [33] pretrained ResNet-50 [13] backbone and set the
embedding dimension d to 512. ResNet-50 architecture is
used as is and therefore batch normalization [16] layers
are enabled. We implemented our code in the PyTorch
framework [30] and made use of the Pytorch Image Mod-
els (TIMM) [42] library for training pipeline including data
augmentations and pretrained weights. For metric learning
specific components including the implementation of XBM,
we used the Pytorch Metric Learning (PML) [27] library.

For all experiments we use the supervised contrastive
loss [18] with a pair margin miner, where the default values
are used, i.e., pos_margin=0.2 and neg_margin=0.8 [27].
Default data augmentations in the TIMM library are used
along with RandAugment [8] profile rand-m9-mstd0.5,
reprob is set to 0.2 and mixed precision training. The em-
beddings are L2-normalized and cosine similarity is used
as the distance metric for training and evaluation. We used
AdamW optimizer [24] with initial learning rate 0.0001 and
the learning rate is multiplied by 0.33 at every 15 epochs.
We train for a total of 50 epochs and the best model with
respect to Recall@1 on the validation set is selected. We used
a custom sampler to ensure that there are four images per
class in each minibatch.

To ensure that the feature embeddings are stable, for all
methods, we employ a pre-warmup stage to finetune the
randomly initialized last layer4 which projects the backbone
features to a 512 dimensional embedding. Specifically, we
finetune this layer for 2 epochs with the standard supervised
constrastive loss. For this stage, SGD with the learning rate
of 0.001 is used.

4Note that the rest of the network is pretrained on ImageNet.



For our AXBN method, the noise hyperparameters are set
as follows: q = 1, p0 = 1, and r = 0.01. We did a small
grid search on the SOP dataset for batch size 64 to obtain r
and other parameters are not tuned. The same value of r is
used for all datasets and all batch sizes. In addition to this,
we also tune the interval at which to update the Kalman gain
(Eq. (20)). We found the value 100 to work well for SOP
and IN-SHOP, and the value 10 is used for DEEPFASHION2.
While it may possible to tune these hyperparameters for each
setting individually to squeeze out a bit more performance,
we did not do that in our experiments. All our experiments
are performed on a V100 GPU in the AWS cloud.

As noted earlier, our technique is a simple modification to
the XBM approach and we implemented it as a custom loss in
the PML library. Our code will be released upon publication.

5.2. Datasets

We evaluated on three large-scale datasets for few-shot
image retrieval following the standard data splits provided
by the respective papers.

Stanford Online Products. Stanford Online Products
(SOP) [29] contains 120,053 online product images in 22,634
categories. There are only 2 to 10 images for each category.
Following [29], we use 59,551 images (11,318 classes) for
training, and 60,502 images (11,316 classes) for testing.

In-shop Clothes Retrieval. In-shop Clothes Retrieval (IN-
SHOP) [23] contains 72,712 clothing images of 7,986 classes.
Following [23], we use 3,997 classes with 25,882 images
as the training set. The test set is partitioned to a query set
with 14,218 images of 3,985 classes, and a gallery set having
3,985 classes with 12,612 images.

Deep Fashion 2. Deep Fashion 2 (DEEPFASHION2) [10]
consumer to shop retrieval dataset contains 217,778 cloth
bounding boxes that have valid consumer to shop pairs. We
use ground truth bounding boxes in training and testing. We
follow the evaluation protocol described in [10] and use
the validation set for evaluation. It has 36,961 items in the
gallery set and 12,377 items in the query set. We consider a
pair is unique if the pair_id, category_id, and style match,
following the original paper. To this end, there are about
31,517 unique labels in the training set, 7,059 labels in the
gallery set, and 3,128 labels in the query set. Note that, in
contrast to the other two datasets, DEEPFASHION2 is much
larger and there is a domain gap between the images in query
and gallery sets.

5.3. Results

Following the paradigm of [26], we compare our ap-
proach against the original XBM method and the one without
any cross batch memory while keeping everything else the

same for fair comparison. In this way, we can clearly demon-
strate the benefits of ensuring the reference set (i.e., cross
batch memory) is up to date.

In Fig. 1, we plot the performance of different methods
by varying the batch size and varying the cross batch mem-
ory size. We can clearly see that our methods significantly
outperform XBM in all cases, validating our hypothesis that
it is important to ensure that the reference set embeddings
are up to date. Furthermore, while our simpler XBN method
is powerful, our adaptive method yields slightly better per-
formance for the smaller minibatches where the sampling
noise is higher.

In Table 1, we summarise results for a particular setting
with batch size 64 and reference set size is 50% of the train-
ing set for SOP and IN-SHOP and 100% for DEEPFASHION2.
We repeat the experiments three times and report the mean
and standard deviation of the results. In all cases, our meth-
ods significantly outperform XBM, confirming the merits
of tackling representational drift. Furthermore, the XBM
results have large standard deviations for repeated experi-
ments, which we believe indicates its training instability due
to outdated embeddings.

5.3.1 Additional Comparisons

On the smaller SOP and IN-SHOP datasets we perform further
experiments to understand the benefits of a larger and up to
date reference set. To this end, in Table 2 we provide the
results of No-XBM version with a larger minibatch size. Even
with the 8× larger minibatch, the performance is worse than
our approach. Note that, larger minibatch size significantly
increases the required GPU memory, whereas storing the
embeddings adds little overhead [40].

Furthermore, we include the performance of a modified
XBM method where the XBM loss is summed with the loss
on the minibatch to stabilize training. This is a trick used
in the original XBM code5 but was not mentioned in the
paper. While this helps the XBM performance, it is still
worse than both of our methods. Clearly this trick diminishes
the value of using a larger reference set and confirms our
hypothesis that it is necessary to ensure that the reference set
embeddings are up to date.

In the plots and table above, XBM is sometimes worse
than not using the cross batch memory. We believe this is
due to outdated embeddings providing inaccurate supervi-
sion signal. Note that, when the loss on minibatch is added
to the XBM loss, performance improves and the standard
deviation of repeated experiments decreases. For our meth-
ods, we did not observe any improvements when adding the
minibatch loss as our adaptation handles the representational
drift effectively.

5https://github.com/msight-tech/research-xbm

https://github.com/msight-tech/research-xbm


Figure 1: Top: Recall@1 vs. batch size where cross batch memory size is fixed to 50% (SOP and IN-SHOP) or 100%
(DEEPFASHION2) of the training set. Bottom: Recall@1 vs. cross batch memory size with batch size is set to 64. In all cases,
our algorithms significantly outperform XBM and the adaptive version is better than the simpler XBN method especially for
smaller batch sizes.

Algorithm
SOP IN-SHOP DEEPFASHION2

Recall@1 Recall@10 Recall@1 Recall@10 Recall@1 Recall@10

No-XBM 75.94± 0.03 89.74± 0.05 88.76± 0.15 97.76± 0.13 36.45± 0.06 61.44± 0.31
XBM 76.80± 2.65 89.34± 1.90 86.17± 0.18 96.58± 0.28 41.22± 2.96 62.24± 3.54

O
ur

s XBN 80.62± 0.17 91.85± 0.11 91.49± 0.07 98.31± 0.10 45.12± 0.08 66.32 ± 0.17
AXBN 80.73 ± 0.30 91.98 ± 0.15 91.51 ± 0.20 98.35 ± 0.09 45.33 ± 0.28 66.26± 0.63

Table 1: Summary of results for a particular setting where batch size is 64 and the cross batch memory size is 50% (SOP and
IN-SHOP) or 100% (DEEPFASHION2) of the training set. This corresponds to a point in each plot provided in the top row of
Fig. 1. The experiments are repeated three times and the mean and standard deviation are reported. Best numbers are in bold
and the second best numbers are underlined. In all cases, our methods significantly outperform XBM. The larger standard
deviations for XBM indicate its training instability.

More experiments comparing other normalization tech-
niques are provided in the appendix.

5.3.2 Feature Drift Diagnostics

We measure feature drift (refer to Eq. (5)) for XBM and our
XBN method for the SOP dataset in Fig. 2. We fix ∆k = 1
and measure the drift on a minibatch of training samples
with batch size 64. The maximum or mean drift is computed
on the minibatch and the respective quantities are averaged
over the epoch. Our method has much smaller feature drift
for the most part of the training compared to XBM and yields
improved performance on the validation set.

Note that, XBM* also reduces feature drift similar to our

method, however, its performance is inferior to our approach
as reported in Table 2 and Fig. 2. We hypothesize that,
even though XBM* shows slow-drift, adding minibatch loss
diminishes the value of using a larger reference set, leading
to inferior performance.

As opposed to our approach which directly tackles feature
drift, the slow-drift phenomenon is emergent for XBM* (also
for No-XBM as shown in [40]), and the reason is not well
understood. We believe relying on a principled approach to
handle feature drift while optimizing the correct loss is valu-
able and as shown in the experiments our approach yields
superior performance.

We would like to clarify that low feature drift does not
always mean high accuracy. A trivial example for this is,



Algorithm
SOP IN-SHOP

Recall@1 Recall@10 Recall@1 Recall@10

No-XBM 75.94± 0.03 89.74± 0.05 88.76± 0.15 97.76± 0.13
No-XBM512 79.63± 0.13 91.76± 0.02 90.39± 0.01 98.18± 0.03
XBM 76.80± 2.65 89.34± 1.90 86.17± 0.18 96.58± 0.28
XBM* 79.53± 0.09 91.64± 0.01 90.91± 0.10 98.20± 0.03

O
ur

s XBN 80.62± 0.17 91.85± 0.11 91.49± 0.07 98.31± 0.10
AXBN 80.73 ± 0.30 91.98 ± 0.15 91.51 ± 0.20 98.35 ± 0.09

Table 2: Additional comparisons on smaller datasets where batch size is 64 and memory size is 50% of the training set. Here,
No-XBM512 denotes No-XBM with batch size 512 and XBM* denotes adding the loss on the minibatch to the XBM loss to
stabilize training. The experiments are repeated three times and the mean and standard deviation are reported. Best numbers
are in bold and the second best numbers are underlined. In all cases, our methods clearly outperform both versions of XBM.

Figure 2: Maximum and mean feature drift on a minibatch of samples on the SOP dataset for XBM and our XBN method, and
the corresponding performance on the validation set. Our method has much smaller feature drift for most of the training
period compared to XBM and yields improved performance on the validation set.

when one does not optimize the parameters, the drift will
be zero, however, the accuracy will also be low. Therefore,
when comparing feature drift, all other factors (e.g., loss,
optimiser, learning rate, architecture, etc.) should be kept
the same across the compared methods. Since the loss is
different between XBM* and XBN, merely comparing feature
drift is meaningless and the validation accuracy should also
be considered.

6. Discussion

We have introduced an efficient approach that adapts
the embeddings in the cross batch memory to tackle repre-
sentational drift. This enables us to effectively expand the
reference set to be as large as the full training set without
significant memory overhead. Our simple XBN approach
significantly outperforms the standard XBM method, demon-
strating the importance of ensuring that the reference set
embeddings are up to date. Furthermore, the adaptive ver-
sion (labelled AXBN), which uses Kalman filter to model
the noisy estimation process, performs slightly better than
the simpler XBN method for smaller batch sizes. We believe
the methods offer useful additions to the standard toolset
for metric learning due to their simplicity and effectiveness.

Indeed, other applications where accumulation of examples
over many minibatches is needed may also benefit from our
approach.

6.1. Limitations and Societal Impact
XBN applies a linear transformation function to tackle rep-

resentational drift. Nevertheless, as noted earlier, it is possi-
ble to incorporate higher-order terms and/or cross-correlation
among the elements of the embeddings. Additionally, in
AXBN, it is not clear how to choose the Kalman filter noise
variances as they are problem dependent. Currently we treat
them as hyperparameters. However, it would be interesting
to come up with an automatic mechanism to obtain these
variances depending on the dataset and architecture. We also
made some simplifying assumptions for this method such as
independence among the dimensions. While our resulting
method works well in our experiments, the full potential of
our approach may be limited due to these assumptions.

Our method focuses on improving the learning effective-
ness in metric learning by ensuring the cross batch memory
embeddings are up to date. As with any method that opti-
mises for performance on the training data, our method may
amplify dataset bias, however, methods that combat dataset
bias may also benefit from the better training signal. Overall,



our method may contribute to the societal impact of deep
metric learning, both positive and negative.
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A. Comparison to other Normalizations

We experiment with Batch Normalization (BN) [16], Mo-
mentum Batch Normalization (MBN) [45], and Layer Nor-
malization (LN) [1] to normalize the feature embeddings and
the results on the SOP dataset with batch size 64 are reported
in Table 3. Here, the nomalization approach is preceded
by L2 normalization to mimic the protocol of our approach.
For BN and MBN the best validation performance is ob-
tained during the warmup stage and we found the networks
with BN/MBN for embedding normalization untrainable.
While networks with BN and MBN yield poor results, LN
improves over the standard XBM method. Nevertheless, our
approach (XBN) improves further and the best performance
of our method is attained when neither BN nor LN is used
for embedding normalization.

Even though we are unaware of any work that used BN to
normalize feature embeddings, we used BN for embedding
normalization in various settings (with/without L2 normal-
ization, freezing/not freezing BN parameters, and with/with-
out tracking running statistics) and the resulting networks
were untrainable for a range of learning rates and attained
poor results. We hypothesize that BN is not designed to
be used for embedding normalization and it would require
deeper analysis and modifications to it if one wants to use
it. Similar behaviour is observed even for MBN where we
used the recommended hyperparameters and tested with two
batch sizes: 64 (with m0 = 128) and 16 (with m0 = 32). In
both the settings the behaviour is similar to BN.

B. MoCo with XBN

MOCO [12] is a self-supervised learning approach that
uses an external memory similar to XBM and uses a mo-
mentum based encoder to handle representational drift. To
understand if our approach is beneficial despite the pres-
ence of the momentum encoder, we experimented MOCO on
CIFAR-10/100 datasets with our XBN approach to adapt the
stored embeddings. Specifically, we followed the MOCO ex-

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


Algorithm
L2 + BN L2 + MBN L2 + LN L2

Recall@1 Recall@10 Recall@1 Recall@10 Recall@1 Recall@10 Recall@1 Recall@10

No-XBM 48.96 65.06 48.96 65.06 75.77 89.54 75.94 89.74
XBM 48.96 65.06 48.96 65.06 79.51 91.17 76.80 89.34

XBN 48.96 65.06 48.96 65.06 80.58 91.77 80.62 91.85

Table 3: Experiments with BN, MBN, and LN for emebedding normalization and compared against our method on the SOP
dataset. While networks with BN and MBN yield poor results, LN improves over the standard XBM method. Nevertheless,
our approach (XBN) improves further and the best performance of our method is attained when only L2 is used for embedding
normalization. Note, the best results for BN and MBN are achieved during the warmup stage and hence identical.

Algorithm CIFAR-10 CIFAR-100

MOCO 82.96 56.02
MOCO+XBN 83.22 55.90

Figure 3: MOCO with and without our XBN approach. The left two figures show the the training curves for the first 50 epochs
and the right table shows the final k-NN accuracy after 200 epochs. XBN clearly improves the training of MOCO early in the
training demonstrating the benefit of adapting stored embeddings even when a momentum encoder is used.

ample provided in PML6 including all hyperparameter values
except the batch size, which is set 128.

As shown in Fig. 3, our approach indeed improves the
training of MOCO especially early in the training (e.g.,∼ 4%
improvement at epoch 15 for both datasets) where features
are adapted quickly. Note this improvement is on top of
the momentum encoder where the momentum parameter is
set to 0.99. Even though the gap is reduced towards the
end of training, this clearly demonstrates the benefits of our
approach outside of metric learning.

C. More on the AXBN Method

Since we have made several simplifying assumptions to
the Kalman filter based noise estimation, we provide the
update in its simplest form in Algorithm 1.

Note that, Exponential Moving Average (EMA) can be
thought of as a special case of our final AXBN approach
where the Kalman gain is replaced with a constant through-
out training. To this end, we perform an experiment with
EMA on the SOP dataset with batch size 64 using ResNet-50
architecture. We varied the momentum parameter within
the range {0.1, 0.2, ..., 0.9} (where 0 corresponds to XBN)
and the best performance is obtained when the momentum
parameter is 0.1. The results are reported in Table 4.

6https://github.com/KevinMusgrave/
pytorch-metric-learning/blob/master/examples/
notebooks/MoCoCIFAR10.ipynb

Algorithm 1 AXBN update at iteration k

Require: R̄k−1, B̄k, µ̂k−1, σ̂k−1,Kk−1, pk−1, q, r
Ensure: R̄k, µ̂k, σ̂k,Kk, pk

1: pk,k−1 ← pk−1 + q . Predicted noise estimate
2: Kk ← pk,k−1/ (pk,k−1 + r) . Kalman gain
3: pk ← (1−Kk) pk,k−1 . Updated noise estimate
4: µ̂k ← µ̂k−1 +Kk

(
E
[
B̄k
]
− µ̂k−1

)
. Mean est.

5: σ̂k ← σ̂k−1 +Kk

(
σ
[
B̄k
]
− σ̂k−1

)
. Variance est.

6: for (zk−1, y) ∈ R̄k−1 do . Normalization
7: zk ←

(
zk−1 − E

[
R̄k−1

])
σ̂k/σ

[
R̄k−1

]
+ µ̂k

8: end for
9: R̄k ← {(zk, y)} . Store the updated reference set

Algorithm
SOP

Recall@1 Recall@10

XBN 80.62 91.85
XBN+EMA 80.48 91.95
AXBN 80.73 91.98

Table 4: Results with EMA version of our approach. The
results are competitive to both of our methods but estimating
the Kalman gain performs slightly better.

As discussed in Sec. 5.3, the AXBN approach is useful
when the sampling noise due to minibatches is high. There
are two factors that affect the sampling noise: 1) minibatch

https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/notebooks/MoCoCIFAR10.ipynb
https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/notebooks/MoCoCIFAR10.ipynb
https://github.com/KevinMusgrave/pytorch-metric-learning/blob/master/examples/notebooks/MoCoCIFAR10.ipynb


Algorithm
Batch size = 16 Batch size = 32

Recall@1 Recall@10 Recall@1 Recall@10

No-XBM 77.80 90.70 81.81 92.91
XBM 61.18 76.95 86.99 95.39

O
ur

s XBN 86.25 94.89 87.59 95.57
AXBN 86.40 94.96 87.74 95.66

Table 5: SwinTransformer results on the SOP dataset with batch size 16 and 32. As expected, in both cases our approaches
clearly outperform XBM and our adaptive version AXBN is slightly better than the simple XBN method.

Algorithm
SOP

Recall@1 Recall@10

No-XBM 78.69 91.21
XBM 78.38 90.39

O
ur

s XBN 79.96 91.02
AXBN 80.31 91.31

Table 6: Results with batch size 256. The gap between
different methods decreased compared to smaller batch sizes.

size, and 2) the stability of the embedding network. The
adaptive method may not be necessary when one has a stable
embedding network (a network that shows slow feature-drift)
and/or the minibatch size is large.

D. Large Model Experiments
All the experiments in the main paper are provided with

ResNet-50 architecture. Here, we experiment with much
larger SwinTransformer [22]. Similar to other experiments in
the paper ImageNet pretrained weights are used to initialize
the network. The results are provided in Table 5. The be-
haviour is similar to ResNet-50 and our approaches clearly
outperform the original XBM. However, even with small
batch sizes the improvement due to the adaptive version is
marginal. We hypothesize that these large models are sta-
ble pretrained models and therefore the noise in minibatch
based feature statistics is small, and Kalman filter based
noise estimation does not improve significantly.

E. Larger Batch Sizes
We performed an experiment with batch size 256 on the

SOP dataset (maximum batch size allowed by our A10G GPU
with 25GB memory) and the results are reported in Table 6.
From these results and Fig. 1 top-row in the main paper,
one may extrapolate that larger batch sizes tend to lead to
smaller gap between the methods. This is expected as when
the batch size is large enough, cross batch memory may not
be required.

Nevertheless, the point of our paper is not about when to
use cross batch memory (which has already been established
in [40]), rather in cases where cross batch memory is relevant,

our approach is the most effective way to use it.


