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Abstract—Multi-label submodular Markov Random Fields (MRFs) have been shown to be solvable using max-flow based on an
encoding of the labels proposed by Ishikawa, in which each variable X is represented by ¢ nodes (where ¢ is the number of labels)
arranged in a column. However, this method in general requires 2 ¢2 edges for each pair of neighbouring variables. This makes it
inapplicable to realistic problems with many variables and labels, due to excessive memory requirement. In this paper, we introduce a
variant of the max-flow algorithm that requires much less storage. Consequently, our algorithm makes it possible to optimally solve
multi-label submodular problems involving large numbers of variables and labels on a standard computer.
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1 INTRODUCTION

Ishikawa [1] introduced a max-flow-based method to
globally minimize the energy of multi-label MRFs with con-
vex edge terms. In [2], this method was extended to energy
functions satisfying the multi-label submodularity condition,
analogous to the submodularity condition for MRFs with
binary labels. In the general case, however, this method
requires 2 (? directed edges for each pair of neighbouring
variables. For instance, for a 1000 x 1000, 4-connected
image with 256 labels, it would require approximately
1000 x 1000 x 2 x 256% x 2 x 4 ~ 1000 GB of memory
to store the edges (assuming 4 bytes per edge). Clearly, this
is beyond the storage capacity of most computers.

In this paper, we introduce a variant of the max-flow
algorithm that requires storing only two ¢-dimensional vec-
tors per variable pair instead of the 2 /> edge capacities of
the standard max-flow algorithm. In the example discussed
above, our algorithm would therefore use only 4 GB of
memory for the edges. As a result, our approach lets us
optimally solve much larger problems. Note that, in con-
trast to [3] that considers higher-order potentials, our work
focuses on multi-label submodular MRFs with clique size 2.

More specifically, in contrast to the usual augmenting
path algorithm [4], we do not store the residual edge ca-
pacities at each iteration. Instead, our algorithm records
two /-dimensional flow-related quantities for every pair of
neighbouring variables. We show that, at any stage of the
algorithm, the residual edge capacities can be computed
from these flow-related quantities and the initial edge ca-
pacities. This, of course, assumes that the initial capacities
can be computed by some memory-efficient routine, which
is almost always the case in computer vision.
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The optimality of Ishikawa’s formalism made it a
method of choice as a subroutine in many approxi-
mate energy minimization algorithms, such as multi-label
moves [5], [6] and IRGC [7]. Since our approach can simply
replace the standard max-flow algorithm [8] in Ishikawa-
type graphs, it also allows us to minimize the energy of
much larger non-submodular MRFs in such approximate
techniques. Furthermore, due to the similarity to standard
max-flow, our algorithm can easily be extended to handle
dynamic MRFs [9] and also be accelerated using the parallel
max-flow technique [10].

We demonstrate the effectiveness of our algorithm on the
problems of stereo correspondence estimation and image
inpainting. Our experimental evaluation shows that our
method can solve much larger problems than standard max-
flow on a standard computer and is an order of magnitude
faster than state-of-the-art message-passing algorithms [11],
[12], [13]. Our code is available at https://github.com/
tajanthan/memf.

A preliminary version of this paper is appeared in [14].
In addition to the original MEMF algorithm [14] that does
not have the polynomial time guarantee, this extended ver-
sion contains a polynomial time version of MEMF, a discus-
sion on the equivalence with min-sum message passing and
an experiment to evaluate the empirical time complexity.

2 PRELIMINARIES

Let X; be a random variable taking label z; € L. A pairwise
MRF defined over a set of such random variables can be
represented by an energy of the form

B(x) = 0i(x)+ Y Oi(wi,z;), @)

i€V (i,5)€E

where 6; and 6;; denote the unary potentials (i.e., data costs)
and pairwise potentials (i.e., interaction costs), respectively.
Here, V is the set of vertices, e.g., corresponding to pixels
or superpixels in an image, and £ is the set of edges in the
MRE, e.g., encoding a 4-connected or 8-connected grid over
the image pixels.



Fig. 1: Example of an Ishikawa graph. The graph incorporate edges
with infinite capacity from U;. to U;:x41, not shown in the graph.
Here the cut corresponds to the labeling x = {1,2} where the
label set L = {0,1,2,3}.

In this work, we consider a pairwise MRF with an
ordered label set £L = {0,1,---,¢{ — 1}, and we assume
that the pairwise terms satisfy the multi-label submodularity
condition [2]:

0i; (N, 1) + 05 (N, 1) — 0i5(N, ) — 0i;(N ') >0, (2)

for all A, N, pu, i/ € L, where A\ < XN and p < p'.
Furthermore, we assume that the pairwise potentials can
be computed either by some routine or can be stored in
an efficient manner. In other words, we assume that the
pairwise potentials satisfy 6;;(\, u) = w;; (A, ). In this
case, the space complexity of pairwise terms is O(|€] + £2).
Note that, in computer vision, this comes at virtually no loss
of generality [15], [16].

2.1 The Ishikawa Graph

Ishikawa [1] introduced a method to represent the multi-
label energy function (1) in a graph. The basic idea behind
the Ishikawa construction is to encode the label X; = z; of a
vertex ¢ € V using binary-valued random variables U;., one
for each label A € L. In particular, the encoding is defined as
u;:» = lif and only if z; > A, and 0 otherwise. The Ishikawa
graph is then an st-graph G = (VU{0, 1}, €)!, where the set
of nodes and the set of edges are defined as follows:

V={Umn|ieV, e {l, - £-1}}, 3)
E=E,U¢E,,

Eo ={(Usr,Uns1) | i€V, e {1, £ —1}},

Ee = {(Uin, Uji), Ujes Uin) | (i) € E,Uiix, Ujop € VY,

where é'v is the set of vertical edges and é’c is the set of cross
edges. Note that, the nodes U;., and Uy, are identified as
node 0 and node 1 respectively. We denote the Ishikawa
edges by e;j.n, € & (contains edges in both directions)
and their capacities by ¢;;.n,. We also denote by e;.) the
downward edge (Ui:at+1,Ui:x). An example of an Ishikawa
graph is shown in Fig. 1.

In an st-graph, a labeling x is represented by a “cut” in
the graph (a “cut” partitions the nodes in the graph into two
disjoint subsets f)o and )}1, with 0 € ]>0 and 1 € \}1). Then,

1. Some authors denote the nodes 0 and 1 by s and ¢.
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the value of the energy function E(x) is equal to the sum
of the capacities on the edges from ]}0 to f/l. In an Ishikawa
graph, if the downward edge e;., is in the “cut”, then vertex
1 takes label A. In MRF energy minimization, each vertex
1 takes exactly one label x;, which means that exactly one
edge e;.) must be in the min-cut of the Ishikawa graph. This
is ensured by having infinite capacity for each upward edge
€iiaAt1, B, Piiane1 = oo for all 4 € V and A € L. Note
that, by construction of the Ishikawa graph, the capacities
¢ and the energy parameters 0 are related according to the
following formula:

0;(A) = diiat1r = dix 4)
91]()‘7/1') = Z ¢ij:/\’u’ + Z ¢ji:;/)\/ .
N>\ N <A
w<p W

Finding the minimum energy labeling is a min-cut prob-
lem, which can be solved optimally using max-flow [4]
when the edge capacities are non-negative. As shown in [2],
a multi-label submodular energy function can be represented
by an Ishikawa graph with non-negative edge capacities ¢
and can therefore be minimized optimally by max-flow.

2.2 Max Flow

The most popular max-flow algorithm in computer vi-
sion [8] is an augmenting path algorithm that finds a path
from node 0 to node 1 through positive edges (called an
augmenting path) and then pushes the maximum flow with-
out exceeding the edge capacities (called augmentation). The
augmentation operation changes the edge capacities in the
graph, and therefore, the residual graph needs to be stored.
That is, when applied to the Ishikawa graph, the max-
flow algorithm stores 2 ¢? values per pair of neighbouring
variables. For large number of labels and of variables, the
memory requirement is high and, in many practical prob-
lems, exceeds the capacity of most computers.

2.3 Ourldea

Let us assume that the max-flow algorithm is applied to the
Ishikawa graph. As the algorithm proceeds, the capacities
on the edges in the graph change in response to the flow.
Here, instead of storing the residual graph, we propose
recording the flow that has been applied to the graph.

However, since storing the flow would also require
2 ¢? values per variable pair, we propose recording two /-
dimensional quantities related to the flow between pair of
variables. More precisely, for each directed edge? (i,7) €
ET, we record the sum of outgoing flows from each node
Ui.n to the nodes Uj., for all p € {1,---,¢ — 1}. We
call this quantity an exit-flow, denoted by ;. (defined
below in Eq. 6). We show that these exit-flows allow us to
reconstruct a permissible flow (defined below in Def. 3.3),
which in turn lets us compute the residual edge capacities
from the initial ones. Importantly, while flow reconstruction
is not unique, we show that all such reconstructions are
equivalent up to a null flow (Def. 3.4), which does not affect
the energy function. Note that this idea can be applied to
any augmenting path algorithm, as long as the residual
graph can be rapidly constructed.

2. £ denotes the set of directed edges between the vertices in the
MRE, i.e., if (i,) € € then, (i,j) € £T and (j,i) € £T.



For increased efficiency, we then show how finding an
augmenting path can be achieved in a simplified Ishikawa
graph (called block-graph) that amalgamates the nodes in
each column into blocks. We then perform augmentation,
which translates to updating our exit-flows, in this block-
graph. As a side effect, since an augmenting path in our
block-graph corresponds to multiple augmenting paths in
the Ishikawa graph, our algorithm converges in fewer itera-
tions than the standard max-flow implementation of [8].

3 MEMORY EFFICIENT FLOW ENCODING

Before we introduce our memory efficient max flow algo-
rithm, let us describe how the cumulative flow can be stored
in a memory efficient manner. This technique can be used in
any augmenting path flow algorithm, by reconstructing the
residual edge capacities whenever needed.

Let us assume that the max-flow algorithm is applied to
the Ishikawa graph. At some point in the algorithm, flow
has passed along many of the edges of the graph.

Definition 3.1. A flow is a mapping ¢ : £ — IR, denoted by
Yij:ap for the edges e;;:x,, that satisfies the anti-symmetry
condition ;;:n, = —¥ji.ux forall €5, € E.

A flow is called conservative® if the total flow into a node
is zero for all nodes, except for the source and the terminal,

ie., S
Z Yizur =0 YUy V. )
doplejiun€E
Given 1, the residual capacities of the Ishikawa graph
are updated as ¢ = ¢° — 1), where ¢" represents the
initial edge capacities. Furthermore, the flow restricted to

each column is called column-flows, which we denote by
wi;)\; 1eV,Ne L.

At first sight, it might seem that, to apply the max-flow
algorithm, it is necessary to keep track of all the values
Yij:an, Which would require the same order of storage
as recording all the edge capacities. Below, however, we
show that it is necessary to store only O(¥) values for each
(i,7) € £, instead of O(£2).

To this end, the flow values that we store in our algo-
rithm, namely source-flows and exit-flows are defined below.

Definition 3.2. 1) For each i € V), the flow out from the
source node ;.1 is called a source-flow.
2) For each (i,5) € EY and A € {1,--- ,¢ — 1}, we define

an exit-flow as
Eij:)\ = Zwij:)\ﬂ . (6)
"

We will show that these source-flows and exit-flows
permit the flow 1 to be reconstructed up to equivalence.
Now, let us define some additional properties of flow,
which will be useful in our exposition.
Definition 3.3. A flow ¢ is called permissible if ¢?

A Y
Yijoa > 0 for all e;;.5,, € E.

Definition 3.4. A flow 9 is called null if the total flow into
a node is zero for all nodes including the source and the
terminal, i.e., satisfies Eq. 5 for all U;.» € YU {0,1}.

Note that a null flow does not change the energy func-
tion represented by the st-graph and it is identical to passing
flow around loops. Also, if 1 is a null flow then so is —1.

3. A conservative flow is often referred to as a flow in the literature.

(b) v’
Fig. 2: An example of two equivalent flow representations with
the same exit-flows. Note that each red arrow represents the
value 5.5, and the opposite arrows ;..\ are not shown.
Furthermore, the exit-flows X are shown next to the nodes and
the initial edges ¢° are not shown. In (c), the flow 4’ is obtained
from 1) by passing flow around a loop.

Furthermore, note that the energy function encoded by
an st-graph is a quadratic pseudo-boolean function [17], and
a reparametrization of such a function is identical to a null
flow in the corresponding st-graph.

Lemma 3.1. Two sets of capacities ¢ and ¢’ represent the same
energy function exactly (not up to a constant), written as Ey =
Ey, if and only if ¢' — ¢ is a null flow.

Proof. This lemma is a restatement of the reparametrization
lemma of [11], [18] in the context of st-graphs. O

Let ¢ and ¢’ be two sets of residual capacities obtained
from an initial set of capacities ¢° by passing two flows v
and ¢, ie, ¢ = ¢ — ¢ and ¢’ = ¢° — . If ¢ and ¢’ are
equivalent, then, by Lemma 3.1, (¢° —t)) — (¢° —4') = ¢/ —
is a null flow. Hence ¢’ can be obtained from ¢ by passing
flow around loops in the graph. See Fig. 2.

We can now state our main theorem.

Theorem 3.1. Let ¢° be the initial capacities of an Ishikawa
graph, and let Y be a set of exit-flows. Suppose that ¢ and +)' are
two conservative flows with identical source-flows, then Ego_y, =
Ego_y. Furthermore, if both the flows are compatible with 3,
meaning that (6) holds for both v and v, then 1 and ' have
identical column-flows.

The idea is then as follows. If a permissible conservative
flow v is obtained during an augmenting path flow algo-
rithm, but only the exit-flows X;;., are retained for each
(i,j) € £ and label A, then one wishes, when required, to
reconstruct the flow 1 on a given edge (¢, j) € £. Although
the reconstructed flow ¢’ may not be identical with the flow
1), the two will result in equivalent energy functions (not just
equal up to a constant, but exactly equal for all assignments).
In the augmenting path algorithm, the current flow values
are only needed temporarily, one edge at a time, to find a
new augmenting path, and hence do not need to be stored,
as long as they can be rapidly computed.

Now we prove Theorem 3.1.

Proof. First we prove the equivalence. Note that, if two
conservative flows v and v’ have identical source-flows,
then from Definition 3.4, ¢’ — 1) = (¢° — ) — (¢ —4)') isa
null-flow. Therefore, from Lemma 3.1, Ego_y = Ego_y.

Now we prove that ¢ and ¢’ have identical column-
flows. For a conseryative flow

Yix = [Yinc1+ D Sy | =0, @)

(i,5)eE+
foralli € Vand A € {1,...,¢ — 1}. Since ¢ and v’ are
compatible with ¥ and have identical source-flows, ;.\ =
Y. foralli € V and A = L. This completes the proof. [



Fig. 3: Given ¢° and X (shown in boxes) (left), flow reconstruc-
tion is formulated as a max-flow problem (right). Here the nodes
with positive exit-flows are connected to the source (0) and those
with negative exit-flows are connected to the terminal (1).

3.1 Flow Reconstruction

Note that, from Eq. 7 it is clear that given the source-
flows ;.0_1; 1 € V, the column-flows ¢;.,; 1 € V,A € L
can be computed in a top-down fashion. Now, for a given
(1,7) € &, permissible flows along the cross-edges e;;:x,
can be obtained by solving a small max-flow problem as
illustrated in Fig. 3. Let us explain this below.

Given the set of exit-flows X, the objective is to find a
permissible flow ¢’ satisfying Eq. 6. Note that there exists
a permissible conservative flow i compatible with ¥ and
hence we find ¢’ such that ¢’ — 1) is a null flow. Considering
all the nodes U;. and Uj., for a given pair (i, ), we join
them with edges with initial capacities d)?j: au- Nodes with
positive exit-flow XJ;;.) are joined to the source with edges
of capacities |%; J: |- Similarly, those with negative exit-flow
are joined to the terminal. See Fig. 3.

Note that, in this network, the edges from the source can
be thought of as “supply” and the edges to the terminal
can be thought of as “demand”. Since the total supply
equals the total demand in this network and there exists
a permissible flow 1;; compatible with ¥ (i.e., satisfying
the supply-demand equality), the maximum flow solution
of this network v;; is compatible with ¥, i.e., satisfies Eq. 6.
In fact we are interested in non-negative residual capacities

= d)?j — 1b;; which are readily available in this network.

This problem can be solved using a greedy augmenting
path algorithm. While this graph has O(¢) nodes and O(¢?)
edges, this remains perfectly tractable, since we only con-
sider one edge (i,j) at a time. Therefore, ultimately, flow
reconstruction can be done efficiently.

At this point, given the initial capacities ¢, the source-
flows Y;0—1; % € V and the set of exit-flows X, we have
shown how to reconstruct the non-negative residual edge
capacities ¢'. This requires O(|V|+|£] ¢) values to be stored.

4 PoLYNOMIAL TIME MEMF

We now introduce our polynomial time Memory Efficient
Max Flow (MEMF) algorithm, which minimizes multi-
label submodular MRF energies with pairwise interactions.
Our algorithm follows a similar procedure as the standard
Edmonds-Karp algorithm [19], in that it iteratively finds the
shortest augmenting path and then pushes the maximum flow
through it without exceeding the edge capacities. However,
instead of storing the residual graph, we store exit-flows as
proposed in Section 3, which, at any stage of the algorithm,
would allow us to compute the residual graph. Below, we
discuss how one can find an augmenting path and update
the exit-flows, i.e., perform augmentation, without storing
the full Ishikawa graph.

4.1 Finding an Augmenting Path
Our algorithm finds an augmenting path in a subgraph
of the Ishikawa graph, called lower-graph. In particular, the
lower-graph contains only a subset of Ishikawa edges which
satisfy the lowest-cross-edge property.

Definition 4.1. Consider a directed edge (i,j) € £T. For
each node U;.», the lowest-cross-edge is defined as, the edge
€ij:au Where 1 is the smallest value such that ¢;;., > 0.

More specifically, in addition to the vertical edges &,,
the lower-graph contains the lowest-cross-edges. Therefore,
we only store O(¢) edges per variable pair (i,;j). Now,
the relationship between augmenting paths in the original
Ishikawa graph and the lower-graph can be characterized
by the following theorem.

Theorem 4.1. Given the Ishikawa graph, there is an augmenting
path in the lower-graph if and only if there exists an augmenting
path in the Ishikawa graph.

Proof. Since the lower-graph is a subgraph of the Ishikawa
graph, if there is an augmenting path in the lower-graph,
then there exists an augmenting path in the Ishikawa graph.

We will now prove the converse. Consider a directed
edge (i,7) € ET. Let e;5.5, and e;;.a, be two positive
capacity edges from U;.x and e;;.5, be the lowest-cross-
edge. Then, due to the upward infinite capacity edges
from Uj.,, ~» Uj.,, there is a positive capacity path from
Uix ~ Uj., through the lowest-cross-edge e;j.y,/. This
proves the theorem. O

This enables us to find all the augmenting paths in the
Ishikawa graph by searching in a smaller graph that has
O(¢) edges per variable pair (4, j).

Note that, as mentioned earlier, we find the shortest
augmenting path in this lower-graph. However, by contrast
to the Edmonds-Karp algorithm [19], the path distance is
computed considering zero distance for the infinite capacity
edges and unit distance for other edges, instead of unit dis-
tance for all the edges. The intuition for this modification is
that, the infinite capacity edges will never become saturated
(or eliminated from the graph) for the entire course of the
algorithm. Note that, with this definition of path distance,
the augmenting paths in both lower-graph and Ishikawa
graph have same length. This will enable us to prove the
polynomial time bound of our algorithm in a similar manner
as the standard Edmonds-Karp algorithm. Note that, even in
this case, the shortest augmenting path can be found using
a Breadth First Search (BFS) scheme.

4.2 Augmentation

Now, given an augmenting path p, we want to push the
maximum permissible flow through it. The edges in the
augmenting path p are updated in the similar manner as in
the usual max-flow algorithm. In addition to that, for each
cross edge e;;.x, € & that is in the augmenting path, the
exit-flows are updated as follows:

Yija = 2+ a, (8)

Yjiw = Djiy — 0,

where « is the maximum possible flow along the path p.
After the flow augmentation, the lower-graph needs
to be updated to maintain the lowest-cross-edge property.



Algorithm 1 MEMF - Polynomial Time Version

Require: ¢° > Initial Ishikawa capacities
YX«0 > Initialize exit-flows
¢ + lower-graph(¢?) > Store the lowest-cross-edges
repeat

P shortest_augmenting_path(q@) > Sec. 4.1
(6, + augment(p, }) > Sec. 4.2
for each edge e;;.», becomes saturated do
Pij compute_edges(¢°, ¥, i, 5) > Sec. 3.1
¢i; < lower-graph(¢;;, 1, j) > Sec. 4.1
until no augmenting paths possible
return get_labelling(gz_ﬁ) > Find the cut using BFS

Note that the lowest-cross-edge property may be violated
due to the following reasons:

1) A new lowest-cross-edge €., is created due to a flow
along the edge €;;. 1.

2) A new lowest-cross-edge e€;;.), is created due to a
saturating flow along e;;.»,/ for some w < pu,ie., the
edge e;;.5, disappears from the Ishikawa graph.

Note that, during an augmentation, if a new lowest-
cross-edge is created due to a flow in the opposite direction
(case-1 above), then the new lowest-cross-edge is known
and the lower-graph can be updated directly, i.e., the new
lowest-cross-edge can be stored.

On the other hand, if a cross edge becomes saturated
(case-2), then we need to run the flow reconstruction al-
gorithm to find the new lowest-cross-edge and update the
lower-graph. This can be done in a memory efficient man-
ner, since it only involves one edge (i, j) € £ at a time.

4.3 Summary
Our polynomial time memory efficient max flow is given in
Algorithm 1. Let us briefly explain the subroutines below.
lower-graph: Given the initial Ishikawa edge capac-
ities ¢°, this subroutine constructs the lower-graph (with
edge capacities ¢) by retaining the lowest-cross-edges from
each node U;., € V, for each directed edge (i,7) € €T
(see Sec. 4.1). If the input to this subroutine is the Ishikawa
capacities ¢;; corresponding to the edge (i,j) € &, then it
retains the lowest-cross-edges ¢;;.
shortest_augmenting_path: Given the lower-graph
parameters ¢, this subroutine finds the shortest augmenting
p using BFS, as discussed in Section 4.1.
augment: Given the path p, this subroutine finds
the maximum possible flow through the path and updates
the lower-graph and the set of exit-flows, as discussed in
Section 4.2. In addition, if a new lowest-cross-edge is created
due to a flow in the opposite direction (case-1 in Sec. 4.2),
then it also updates the lower-graph capacities ¢.
compute_edges: Given the initial Ishikawa edge ca-
pacities ¢° and the set of exit-flows X, this subroutine
computes the non-negative residual Ishikawa capacities ¢;;
corresponding to the given edge (4, 7). This is accomplished
by solving a small max-flow problem (see Sec. 3.1).
get_labelling: This subroutines finds the partition of
the lower-graph by running BFS.

As discussed above, the exit-flows ¥ require O(¢) stor-
age for each edge (4, j) € £.In addition, the lower-graph can
have at most O(|V|¢) nodes and O(|€|¢) edges. Further-
more, recall that we assume that the initial Ishikawa edge
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capacities @Y can be stored efficiently. Therefore, ultimately,
the space complexity of our algorithm is O((|V| + |£]) £) =
O(|€] £). Let us now prove the polynomial time bound of
our algorithm.

4.4 Time Complexity Analysis

We follow the time complexity analysis of the standard
Edmonds-Karp algorithm [19] to derive a polynomial time
bound on our algorithm. In particular, first the analysis
proves that the shortest path distance from source (node
0) to any node is monotonically increasing with each flow
augmentation. Then, it derives a bound on the number of
augmentations. In fact, the number of augmentations of our
MEMF algorithm also has the same bound as the Edmonds-
Karp algorithm.

Theorem 4.2. If MEMF is run on the Ishikawa graph G=(Wu
{0, 1}, &) with source 0 and terminal 1, then the total number of
augmentations performed by the algorithm is O(|V||£]).

Proof. The proof follows the steps of standard proof of the
Edmonds-Karp algorithm. See Appendix A for details. [

Let us analyze the time complexity of each sub-
routine below. Note that, both the subroutines short-
est_augmenting_path and augment runs in O(|E|{) time,
since, in the worst case, both subroutines need to check each
edge in the lower-graph. However, compute_edges required
to run the flow reconstruction algorithm which takes O(¢3)
time for each variable pair (7,7) (assuming a small max-
flow problem with 2/ nodes and ¢* edges, solved using
the most efficient algorithm [20], see Sec. 3.1). Also lower-
graph requires O(¢?) time for each variable pair (4, 5), since
it needs to check each of the Ishikawa edges. Hence, the
worst case running time of each iteration (i.e., augmentation
step) is O(|E| 0+ K (34 02)) = O(|E] L+]|E| £3) = O(IE] £3),
where K is the maximum number of flow-reconstructions
(i.e., saturated cross edges) at an augmentation step. Since
the number of augmentations is bounded by O(|V||€|), the
worst case running time of the entire execution of the MEMF
algorithm is O(|V|£|E] % |E|63) = O(|V||E]? £°). This is
O(¢) slower than the standard Edmonds-Karp algorithm
on the Ishikawa graph. Note that, however, MEMF requires
O(¢) less memory. Note that, our time complexity bound
is tight in the worst case, as the proof is very similar to
the standard Edmonds-Karp algorithm [19]. Nevertheless,
the O({) factor increase in the worst case time complexity
can be explained by the cubic time requirement of the com-
pute_edges subroutine, which is necessary to achieve O({)
factor reduction in memory.

5 EFFICIENT ALGORITHM

In the previous section, we have provided a general purpose
polynomial time max-flow algorithm that is also memory
efficient. However, for computer vision applications, the BK
algorithm [8] is shown to be significantly faster than the
standard max-flow implementations, even though it lacks
the polynomial time guarantee. The basic idea is to maintain
a search tree throughout the algorithm instead of building
the search tree from scratch at each iteration.

Motivated by this, we also propose doing search-tree-
recycling similar to the BK algorithm. Since we lose the poly-
nomial time guarantee, for increased efficiency, we further



Fig. 4: To find an augmenting path in a memory efficient manner,
we simplify the Ishikawa graph using blocks corresponding to
consecutive non-zero edges in each column i.

simplify the Ishikawa graph. In particular, we find an aug-
menting path in a block-graph, that amalgamates the nodes
in each column into blocks. Since an augmenting path in
our block-graph corresponds to a collection of augmenting
paths in the Ishikawa graph, our algorithm converges in
fewer iterations than the BK algorithm.

5.1 Efficiently Finding an Augmenting Path
As mentioned above, we find an augmenting path in a
block-graph?, whose construction is detailed below.

Given the parameters ¢, we rely on the fact that there
exists a label \ such that ¢;., = 0 for each i € V. In fact, it
is easy to see that in each column ¢, if all ¢;.) are positive,
then there exists a trivial augmenting path from U;.¢ to U0,
and the minimum along the column can be subtracted from
each ¢;.n. Now, at each column 7, we partition the nodes
Ui forall A € {1,---,¢— 1} into a set of blocks, such that
each node in a block is connected with positive edges ¢;. .
Let us denote these blocks by B;., where + is indexed from
bottom to top starting from 0. Note that there is no edge
from B;., 1 to B;.,. As depicted by Fig. 4, our block-graph
contains only the blocks and the edges between the blocks.

The edges in the block-graph are obtained as follows.
Let us consider a directed edge (i, j) € £T. We add an edge
B;., = Bj.5, where ¢ is the smallest value such that ¢;;.5,, >
0 for some U;.\ € B;., and U;., € Bj.s. While doing this,
we also enforce that there is no edge B;.,, — Bj.s such
that v/ > ~v and ¢ < . The reasoning behind this is that,
because of the upward infinite-capacity edges between the
nodes U;. and U;.x+1, we have the following;:

1) If Uj.,, can be reached from U;. through positive edges,
then the nodes Uy, for all i’ > i, can also be reached.
2) Ifanode Uj., can be reached from U;. 5 through positive
edges, then it can also be reached from the nodes U;.»/,
for all M < \.
Hence, an edge B;., — Bj.5 indicates the fact that there is
some positive flow possible from any node U;.» € B;., for
all v" < v, to any node Uj.,, € Bj.s, for all 0’ > ¢; meaning,
the set of edges obtained by this procedure is sufficient.

Now, the relationship between augmenting paths in the
original Ishikawa graph and in our block-graph can be
characterized by the following theorem.

4. We called this a simplified graph in [14].
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Theorem 5.1. Given the set of Ishikawa graph parameters ¢,
there is an augmenting path in the block-graph if and only if there
exists an augmenting path in the Ishikawa graph.

Proof. The basic idea of this proof is the same as the proof
of Theorem 4.1. See Appendix B. O

Note that the block-graph can only be used to find an
augmenting path; the quantity of the maximum permissible
flow cannot be determined in this graph. Therefore, the
capacity of an edge B;., — Bj.s is not important, but it
is important to have these edges. Note also that the block-
graph is constructed incrementally for each edge (i, j) € €.
Hence, it only requires us to store the Ishikawa graph pa-
rameters ¢;; corresponding to the edge (¢, j). Furthermore,
since the block-graph G, is sparse, an augmenting path can
be found fairly quickly.

Furthermore, similar to the BK algorithm, we find an
augmenting path P, using BFS and maintain the search
tree throughout the algorithm, by repairing it whenever
the block-graph is updated. However, since the block-graph
needs to be reconstructed after each augmentation, for
simplicity, we maintain a single tree®. More specifically, we
grow the search tree from source (node 0), in a breadth first
manner, and if sink (node 1) is reached, then the augmenting
path P, is found.

5.2 Augmentation in the Block-graph

Now, given an augmenting path P} in the block-graph, we
want to push the maximum permissible flow through it.
More specifically, since P, corresponds to a set of augment-
ing paths {py} in the Ishikawa graph, we will push the
maximum flow through each path p;, until no such path
exists. This could be achieved by constructing the subgraph
GP of the Ishikawa graph corresponding to the augmenting
path P,, and then finding each of the augmenting path p;, by
searching in G”. This would require us to either store G (not
memory efficient) or call the flow reconstruction algorithm
too many times.

Instead, we propose breaking down the augmentation
operation in the block-graph into a sequence of flow-loops
and a subtraction along a column. Then, the maximum
flow through the path can be pushed in a greedy manner,
by pushing the maximum flow through each flow-loop.
Before describing this procedure in detail, we introduce the
following definitions.

Definition 5.1. A flow-loop m(\, p, ) in the Ishikawa
graph is defined as the following sequence of operations:
First, a value « is pushed down the left column from U,
to U;.», then across from U;.y to Uj.,, and finally up the
right column from Uj.,, to Uj;... Thus, applying the flow-
loop m(A, i1, &) corresponds to replacing ¢ by ¢ + A, where

Air = —a YN >\,
Aijoay = —a,
Ajiur = a,

Ajy=a Yu' >p.

5. The BK algorithm maintains two trees, source-tree and sink-tree,
but we only maintain the source-tree.
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Fig. 5: An example flow-loop (1,0, ov;;) in the block-graph (left)
is equivalent to the summation of two flow-loops m(3,1, 1) and
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Fig. 6: An augmentation operation is broken down into a sequence
of flow-loops (7, 6, ), and a subtraction along the column k.
The augmenting path Py is highlighted in red.

Definition 5.2. A flow-loop (7, d, «) in the block-graph
Gy is defined by the following sequence of operations: First
a value « is pushed down the left column from U;, to
Bi;., then across from B,;., to Bj.s5, and finally up the right
column from Bj.s to Uj.¢. See Fig. 5 for illustration.

Note that, for a flow-loop m(v,d, @) to be permissible,
block B;., must contain node U;.,_1. Note also that the flow-
loop (7,0, ) can be thought of as a summation of flow-
loops m(A, p, @), where U;.x € B;., and Uj.,, € Bj.s, for
all ' > ¢ (see Fig. 5).

Given these definitions, one can easily see that the aug-
mentation operation along the path P, can be broken down
into a sequence of flow-loops m(y,d,«) and a subtraction
along the last column k, as illustrated in Fig. 6. Now, we
push the maximum permissible flow through P, using the
following greedy approach.

For each edge B;., — Bj.s that is part of the path
Py, we apply a flow-loop m(v,d, ;), where c;; is the
maximum permissible flow through the edge B;., — Bj:s.
In fact, applying this flow-loop translates to reconstructing
the Ishikawa edge capacities ¢;; corresponding to edge (i, 5)
and then applying flow-loops m(, i, ') for all A > A and
W > i, starting from X and fi, until no permissible flow-
loop m(\, i1, ') exists, with A and /i the smallest values
such that U;.y € B;., and U;.,, € Bj.s. Finally, in the last
column £, all the values ¢ are positive, and the minimum
along column k is subtracted from each ¢y . It is easy to see

Algorithm 2 MEMF - Efficient Version

Require: ¢° > Initial Ishikawa capacities
N 0,T+0 > Initialize exit-flows and search tree
Gy « block-graph(¢?) > Initial block-graph
repeat

(T, Py) < augmenting_path(Gy, T) > Sec. 5.1
¥« augment(P, ¢°, X)) > Sec. 5.2
for each edge (i, j) € £ affected by augmentation do
Dij compute_edges(¢?, X, i, j) > Sec. 3.1
G, « block-graph(¢;;,, 7) > Sec. 5.1
T < repair_tree(T, Gy) > Repair search tree
until no augmenting paths possible
return get_labelling(7T') > Read from search tree

that this approach pushes the maximum permissible flow
through the path F,.

Since, for each edge (i,j), we do not store all the 2 /2
capacities, but only the 2/ exit-flows ¥, augmentation must
then also update these values. Fortunately, there is a direct
relation between the flow-loops and X. To see this, let us
consider the example flow-loop (1,0, a;;) shown in Fig. 5.
Applying this flow-loop updates the corresponding exit-
flows as

Yiji3 = 2ijiz + a1, )
Y1 = Xjil — Qq
Yijia = Nijua + a2,
Yjia = Bjia — Q2.

Similar updates can be done for all flow-loops in our proce-
dure. Note that the edge B;., — Bj.s represents a collection
of possible paths from all the nodes U;.» € B;., to all the
nodes Uj., € Bj.s, for all ¢ > 4. Therefore, unlike in the
full Ishikawa graph, after applying a flow-loop, the portion
of the graph G,’ corresponding to edge (i,j) € £ needs to
be reconstructed. This, can be done in a memory efficient
manner, since it only involves one edge (4, j) at a time.

5.3 Summary

Our efficient memory efficient max-flow is given in Algo-
rithm 2. Let us briefly explain the subroutines below.

block-graph: Given the initial Ishikawa parameters
#°, this subroutine constructs the block-graph by amalga-
mating nodes into blocks as described in Section 5.1. If
the input to the subroutine is the Ishikawa capacities ¢;;
corresponding to the edge (4,j) € £, then it constructs the
block-graph portion G,”.

augmenting_path: Given the block-graph G; and the
search tree T, this subroutine finds an augmenting path P,
by growing the search tree, as discussed in Section 5.1.

augment: Given the path P, this subroutine pushes
the maximum permissible flow through it by applying flow-
loops m(7, d, &) and then subtracting the minimum from the
last column, as discussed in Section 5.2.

compute_edges: This is the same subroutine as in
Algorithm 1. (see Sec. 4.3).

repair_tree: This is similar to the adoption stage of
the BK algorithm. Given the reconstructed block-graph, the
search tree T is repaired by checking for valid parent for each
orphan node. See Section 3.2.3 in [8] for more detail.
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Fig. 7: Example of a multi-label grpah. Here the nodes represent
the unary potentials ;.5 and the edges represent the pairwise
potentials 0;;.x,,.

get_labelling: This subroutine directly reads the op-
timal labelling from the search tree T'.
As discussed Section 4.3, the space complexity of our
algorithm is O(|€| £). For the rest of the paper, this efficient
version of the algorithm is referred to as MEMF.

6 EQUIVALENCE WITH MESSAGE PASSING

In this section, we give a more insightful interpretation
of our max-flow algorithm, by showing equivalence with
the min-sum message passing algorithm. Note that this
equivalence was observed in [21] for binary submodular
MRFs. Here we discuss it in the context of multi-label
submodular MRFs and also show the relationship between
the set of exit-flows and the set of messages. In particular,
first we will characterize the notion of an augmenting path
in the message passing context. Then, we will show that,
the max-flow algorithm is, in spirit, equivalent to min-sum
message passing, for multi-label submodular MRFs. Finally,
we observe the relationship between the set of exit-flows
in our algorithm and the set of messages in the message
passing algorithm. To this end, first let us define the multi-
label graph which will be used to explain the equivalence.

6.1 The Mutli-label Graph

An alternative way of representing the multi-label energy
function (1) is by defining indicator variables x;.» € {0,1},
where z;., = 1if and only if 2; = A. For a given ¢, exactly
one of ;.5 ; A € L can have value 1. In terms of the indicator
variables, the energy function (1) may be written as

EQ(X) = Z Z 9i:>\ Tix + Z Z oij:)\u LTi:X Loy

i€V AeL (4,)EE €L
(10)

where the values 6 are a particular set of parameters de-
termining the energy function. One may define a graph,
called a multi-label graph, with nodes denoted by X;.»; i €
V, A € L, as shown in Fig. 7. This graph represents the
energy function. Given a labelling x, the value of the energy
function is obtained by summing the weights on all nodes
with z;., = 1 (in other words z; = A) plus the weights 0;;.x,
such that z;., = 1 and z;., = 1.

Furthermore, given the Ishikawa edge capacities ¢ the
parameters 6 can be calculated using Eq. 4. Note that, in
this case, Ey(x) = Eg(x) for all labellings x.

6.1.1 Reparametrization

The energy function (10) can be written in different ways
as a sum of unary and pairwise terms . In particular, there
may exist a different set of parameters ¢’ such that Ep(x) =
Ey (x) for all x, denoted as Ey = Ejy.. The conditions under
which Ey = FEy: are well known [11], [18].

Lemma 6.1. Two energy functions Ey and Ey are equivalent if
and only if there exist values myj.» and mj;., for (i,5) € € and
A, € L such that
gj;AM = eij:)\u — Mg\ — Myji:p s
Oy =Oix+ > Mikx -
(kyi)eEr

The values of m;;.) constitute a message m;; passed from
the edge (i,j) to the node 4; it may be thought of as a
message vector (indexed by A). A message m;; causes values
m;j.x to be swept out of all the edges 6;;.,, and adds onto
the nodes 6;.,. Messages are passed in both directions from
an edge (4, 7).

Note that, reparametrization provides an alternative way
of implementing the min-sum message passing algorithm.
In particular, the objective of min-sum message passing is
to reparametrize the energy function so that the constant
term 0. is maximized, while keeping the parameters ¢ non-
negative, where the constant term is defined as follows:

90 = IGZV I)?elg 01:)\ .
For more details see [11], [22].
6.2 The Notion of an Augmenting Path

1)

We will now give an equivalent notion of an augmenting
path in the context of the multi-label graph. To this end,
we will first understand the motivation behind finding an
augmenting path in the Ishikawa graph.

Let us consider an augmenting path in the Ishikawa
graph. If it is a trivial augmenting path, i.e., it is an aug-
menting path along a column from nodes Uj., to U;.o, then
pushing the maximum flow along the path translates into
subtracting the minimum value from each ¢;.5; A € L. In
the multi-label graph, it is trivially equivalent to subtracting
the minimum from each 6.5 ; A € L.

Let us consider a more interesting augmenting path in
the Ishikawa graph, which contains at least one cross edge
€ijiap € f:'c. Similar to the discussion in Section 5.2, one can
easily see that, the augmentation operation can be broken
down into a sequence of flow-loops m(A\, y1, &) (see Def. 5.1)
and a subtraction along a column. This intuitively suggests
that an augmenting path in the Ishikawa graph can be
translated into a trivial augmenting path by passing flow
around loops, i.e., they differ by a null flow. Therefore, the
motivation of finding an augmenting path, is to pass flow
around loops to get a trivial augmenting path.

Note that, the notion of a trivial augmenting path in the
multi-label graph is,

fir>0 YAEL, 12)

for some ¢ € V. Furthermore, by Lemma 3.1 and by
Lemma 6.1, a flow-loop (or null flow) corresponds to a
reparametrization of the multi-label energy function. Hence,
the notion of an augmenting path in the multi-label graph
can be characterized as, finding a set of reparametrizations
that makes 0;.5 positive for all A € £ for some ¢ € V.



6.3 Equivalence of Max-flow and Message Passing

Note that, as we have discussed above, an augmenting
path in the Ishikawa graph can be translated into a triv-
ial augmenting path by passing flow around loops. Fur-
thermore, pushing the maximum flow through a trivial
augmenting path is simply a subtraction of the minimum
value minyc, ¢;.n from each ¢;.). In fact, one can accu-
mulate the total flow passed from source to sink, which is
exactly the constant term defined in Eq. 11. Hence, max-
flow tries to maximize 6., by passing flow around loops
(i.e., reparametrizing), while keeping the edge capacities
¢ non-negative. This is, in spirit, equivalent to the min-
sum message passing algorithm. Note that, the optimality
of min-sum message passing for the case of multi-label
submodular MRFs, is observed in [18], [23].

6.4 Flow-loop as a Reparametrization

As mentioned above, from Lemma 3.1 and Lemma 6.1, it is
clear that, a flow-loop corresponds to a reparametrization of
the multi-label energy function. In this section, we will find
the equivalent reparametrization of a flow-loop m(A, i, @).
This will later allow us to understand the relationship
between the set of exit-flows and the set of messages. Let
us now state and prove our theorem.

Theorem 6.1. Applying a flow-loop m(A, p, &) in the Ishikawa
graph is equivalent to a reparametrization in the multi-label
graph, with messages

mijv =—a YN >N,
Mjizp = & v:u/ >

(13)

Proof. Let the Ishikawa parameters be ¢ and the multi-label
graph parameters be 6 and assume that the flow is applied
between columns ¢ and j. Also after the flow the parameters
be ¢’ and 0 respectively. Since 6 can be calculated from
¢ using Eq. 4, £y = L. Similarly Ey = FEyg/. Also from
Lemma 3.1, £y = FEy . Hence, By = Ey = Ey = Egr. Now
from Definition 5.1,

B = i —a VN > X, (14)
G = Gy + 0 V' > g1,
Grjry = Pigian — Qs
97591';/“\ = Qjipn T+ .
Substituting in Eq. 4,
O =0y —a YN > X, (15)

Ojr = Ojr + V' > pu,
v = Oijive —a YN <A @ >,
i = Oigonvw o YN >N 0 <

0

Now, since Ey = Eyg/, by Lemma 6.1, there exists messages
M4 .x and my;., such that,
QM,L = 91‘3‘:)\# — My — Myip s (16)
Oy =0ix+ D> My -
(kj)e€Et

With a little bit of calculation, one can see that, the messages
take the following form

mijyv = —a YN > X,
Mjiw = V' >p.

17)

0i:0

(€
g

Fig. 8: A flow m(2,1, «) in the Ishikawa graph (left) and its
equivalent reparametrization in the multi-label graph (right).
Note that, the exit-flow vectors (£;5, % ;) and the corresponding
message vectors (m;;, mj;) are shown next to the nodes.

Note that, for a permissible flow m(A, i, @), the parameters
¢’ and 0’ are non-negative. O

This equivalence is shown in Fig. 8 for an example
flow-loop m(2,1, ). Note that, as shown in the figure, the
flow « through an edge ¢;;.), may be recorded in the set
of exit-flows X. Furthermore, as shown in the figure, the
relationship between the set of exit-flows and the set of
messages can be written as,

Yijia = Mijia—1 — Mijix VA€ {l,--- -1},
Vpe{l,---, £—1}.

(18)
ij = Myi:p—1 — Myi:p

7 RELATED WORK

The approaches that have been proposed to minimize multi-
label submodular MRFs can be roughly grouped into two
categories: Those based on max-flow and those based on
an LP relaxation of the problem. Below, we briefly review
representative techniques in each category.

7.1 Max-flow-based Methods

The most popular method to minimize a multi-label sub-
modular MRF energy is to construct the Ishikawa graph [1]
and then apply a max-flow algorithm to find the min-cut
solution. Broadly speaking, there are three different kinds of
max-flow algorithms: those relying on finding augmenting
paths [4], the push-relabel approach [24] and the pseudo-
flow techniques [25]. Even though numerous implementa-
tions are available, the BK method [8] is arguably the fastest
implementation for 2D and sparse 3D graphs. Recently,
for dense problems, the IBFS algorithm [26] was shown to
outperform the BK method in a number of experiments [27].
All the above-mentioned algorithms, however, require the
same order of storage as the Ishikawa graph and hence scale
poorly. Two approaches have nonetheless been studied to
scale the max-flow algorithms. The first one explicitly relies
on the N-D grid structure of the problem at hand [28], [29].
The second one makes use of distributed computing [10],
[30], [31]. Unfortunately, both these approaches require ad-
ditional resources (disk space or clusters) to run max-flow
on an Ishikawa graph. By contrast, our algorithm lets us
efficiently minimize the energy of much larger Ishikawa-
type graphs on a standard computer. Furthermore, using
the method of [10], it can also be parallelized.
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Fig. 9: Left and right images of the stereo instance from the
KITTI dataset. The images are of size 1241 x 376, and we set
the number of labels to 40. This image pair was chosen arbitrarily
as a representative of the dataset.

7.2 LP Relaxation-based Methods

One memory-efficient way to minimize a multi-label sub-
modular MRF energy consists of formulating the problem
as a linear program and then maximize the dual using
message-passing techniques [22]. Many such algorithms
have been studied [11], [12], [13], [18]. Even though these
algorithms are good at approximating the optimal solu-
tion (also theoretically optimal for multi-label submodular
MRFs [23]), as evidenced by the comparison of [16] and by
our experiments, they usually take much longer to converge
to the optimal solution than max-flow-based techniques.

8 EXPERIMENTS

We evaluated our algorithm on the problems of stereo
correspondence estimation and image inpainting. For stereo
correspondence estimation, we employed six instances from
the Middlebury dataset [32], [33]: Tsukuba, Venus, Saw-
tooth, Map, Cones and Teddy, and one instance from the
KITTI dataset [34] (see Fig. 9). For Tsukuba and Venus, we
used the unary potentials of [15], and for all other stereo
cases, those of [35]. For inpainting, we used the Penguin
and House images employed in [15], and we used the same
unary potentials as in [15]. In all the above cases, we used
pairwise potentials that can be expressed as

(19)

where, unless stated otherwise, the regularizer §(|x; — /)
is the quadratic function. Furthermore, we employed a 4-
connected neighbourhood structure, in all our experiments.

We compare our results with two max-flow implemen-
tations: the BK algorithm [8] and Excesses Incremental
Breadth First Search (EIBFS) [36] (which we ran on the
Ishikawa graph), and three LP relaxation-based algorithms:
Tree Reweighted Message Passing (TRWS) [11], Subgradient
based Dual Decomposition (DDSG) [12] and the Adaptive
Diminishing Smoothing algorithm (ADSal) [13]. For DDSG
and ADSal, we used the Opengm [37] implementations. For
the other algorithms, we employed the respective authors’
implementations.

In practice, we only ran the BK algorithm and EIBFS if
the graph could be stored in RAM. Otherwise, we provide
an estimate of their memory requirement. For LP relaxation-
based methods, unless they converged, we ran the algo-
rithms either for 10000 iterations, or for 50000 seconds,
whichever occurred first. Note that the running times re-
ported for our algorithm include graph construction. All our
experiments were conducted on a 3.4 GHz i7-4770 CPU with
16 GB RAM.

The memory consumption and running times of the al-
gorithms are provided in Table 1. Altogether, our algorithm
lets us solve much larger problems than the BK algorithm
and EIBFS, and is an order of magnitude faster than state-
of-the-art message-passing algorithms.

0ij (i, 25) = wij O(|2; — z5])
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Fig. 10: Lengths of augmenting paths found by our algorithm for
the Tsukuba stereo instance (see Sec. 8.1). Each bar indicates the
proportion of paths of a certain length. For example, out of all
augmenting paths 28% of them were of length 2. The red arrow
indicates the median length.

8.1 MEMF analysis

In this section, we empirically analyze various properties
of our algorithm. First, note that, at each iteration, i.e.,
at each augmentation step, our algorithm performs more
computation than standard max-flow. Therefore, we would
like our algorithm to find short augmenting paths and to
converge in fewer iterations than standard max-flow. Below,
we analyze these two properties empirically.

In Fig. 10, we show the distribution of the lengths of the
augmenting paths found by our algorithm for the Tsukuba
stereo instance. Note that the median length is only 5. As
a matter of fact, the maximum length observed over all
our experiments was 1073 for the KITTI data. Nevertheless,
even in that image, the median length was only 15. Note
that, since our algorithm finds augmenting paths in the
block-graph, the path lengths are not directly comparable
to those found by other max-flow-based methods. In terms
of number of augmentations, we found that our algorithm
only required between 35% and 50% of the total number of
augmentations of the BK algorithm.

Next, we fixed the number of labels but varied the image
size and compare the running times of the max-flow algo-
rithms, for Tsukuba and Penguin instances in Fig. 11a, 11b.
Similarly, we fixed the image size but varied the number of
labels and report the running times in Fig. 11c, 11d. By doing
this, we try to estimate the empirical time complexity of our
algorithm. Note that, similar to other max-flow algorithms,
MEMEF exhibited near-linear performance with respect to the
image size and near-cubic performance with respect to the
number of labels, in these experiments.

Finally, we report the percentage of time taken by each
subroutine of our algorithm, for Tsukuba and Penguin in
Fig. 12. Note that the individual time complexities of the
subroutines compute_edges and block-graph are O(¢3) and
O(¢?), respectively. Therefore, they become dominant when
the number of labels is large, and hence the corresponding
percentages of time are high, particularly for Penguin.

8.2 Minimizing Non-submodular MRFs

Since our algorithm can simply replace standard max-flow
in Ishikawa-type graphs, we replaced the BK method with
our MEMF procedure in the IRGC algorithm [7], which
minimizes MRFs with some non-convex pairwise poten-
tials (or regularizers) by iteratively building and solving
an Ishikawa graph. This lets us tackle much larger non-
submodular problems. In particular, we computed inpaint-
ing results on Penguin by using all 256 labels, as opposed to
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Problem Memory [MB] Time [s]

BK EIBFS DDSG ADSal TRWS | MEMF | BK EIBFS DDSG ADSal TRWS | MEMF
Tsukuba 3195 2495 258 252 287 211 | 14 4 >9083 >7065 198 28
Venus 7626 5907 424 418 638 396 | 35 9 >18156 1884 206 59
Sawtooth 7566 5860 415 415 633 393 | 31 8 >16238 10478 455 35
Map 6454 4946 171 208 494 219 | 57 9 >9495 >1679 187 36
Cones *72303 *55063 657 939 5024 1200 - - >50000 >17866 1095 364
Teddy *72303 *55063 659 939 5025 1200 - - >50000 >50000 6766 2055
KITTI *88413 *67316 1422 1802 6416 2215 - - >50000 >50000 >45408 18665
Penguin *173893 *130728 236 1123 215 663 - - >50000 >50000 >50000 6504
House *521853 *392315 689 2389 643 1986 - - >50000 >50000 >50000 9001

TABLE 1: Memory consumption and runtime comparison with state-of-the-art baselines for quadratic regularizer (see para. 2 of Sec. 8,
for details on the algorithms). A “*” indicates a memory estimate, and “>" indicates that the algorithm did not converge to the
optimum within the specified time. Note that our algorithm has a memory consumption O({) times lower than the max-flow-based
methods and is an order of magnitude faster than message-passing algorithms. Compared to EIBFS, our algorithm is only 4 — 7 times
slower, but requires 12 — 23 times less memory, which makes it applicable to more realistic problems. In all stereo problems, TRWS
cached the pairwise potentials for faster retrieval, but in the case of inpainting, it was not possible due to excessive memory requirement.
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Fig. 11: Running time plots (in log scale) by changing the image size (a, b) and by changing the number of labels (c, d), for Tsukuba
and Penguin (see Sec. 8.1). The dashed lines provide the reference slopes. Note that, all algorithms exhibited near-linear performance
with respect to the number of pixels and near-cubic performance with respect to the number of labels, but MEMF required O({) less
memory. The plots of BK algorithm and EIBFS are not complete, since we could not run them due to excessive memory requirement.

(b) Penguin (d) Penguin

I Tsukuba, 16 labels
Il Penguin, 256 labels
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Fig. 12: Percentage of time taken by each subroutine (see Sec. 8.1).
Note that, in Penguin, due to large number of labels, the percent-
ages of time spend on compute_edges and block-graph are high.

8.3 Robust Regularizer

Since robust regularizers are highly effective in computer
vision, we tested our algorithm by choosing Huber loss
function [38] as the regularizer,

O(Jai-a;)) = {

where 6 is the Huber value. The results are summarized in
Table 3. In this experiment, the Huber value was set to 4
for Tsukuba, Venus and Sawtooth, 6 for Map, 20 for Cones
and Teddy, 10 for KITTI and 25 for Penguin and House.
Note that, the Ishikawa graph for a Huber regularizer is
significantly smaller, i.e., the number of edges per variable
pair is O(8¢), instead of O(¢?). Even in this case, our

%‘aﬁi—l‘j‘Q 1f\xz—a:j\§6

§ (|Jzi —zj| — 36) otherwise , 20)

Problem Memory [MB] Time [s] algorithm lets us solve much larger problems than the BK

; IO 4E§ ‘ MEI;g ;;IZ \ Mgg/gg algorithm and EIBFS, and is an order of magnitude faster
enguin- -of-the- . i i

House-64/15 3877 498 106 409 than state-of-the-art message-passing algorithms.

Penguin-256/20 *17143 663 - 17748

House-256/60 *137248 1986 N 19681

TABLE 2: Memory consumption and runtime comparison of
IRGC+expansion with either the BK method or our MEMF
algorithm as subroutine (see Sec. 8.2). Here, “Penguin-128/10"
corresponds to the Penguin problem with 128 labels and the trun-
cated quadratic function with truncation value 10 as reqularizer.
A " indicates a memory estimate. Compared to BK method,
MEMF is only 4 — 11 times slower but requires 13 — 18 times less
memory, which makes it applicable to much larger MRFs.

the down-sampled label sets used in [7]. The results of the
IRGC+expansion algorithm, with the BK method and with
MEMF are summarized in Table 2.

8.4 Parallelization

We parallelized our algorithm based on the dual-
decomposition technique of [10] and evaluated on the same
six stereo instances from the Middlebury dataset [32], [33].
The relative times t,,/ts, where t,, stands for the multi-
thread time and ¢s for the single-thread one, are shown
in Fig. 13 for two and four threads. In this experiment,
for all problems, the image grid was split vertically into
two and four equally-sized blocks, respectively. Note that
this spliting strategy is fairly arbitrary, and may affect the
performance of the multi-threaded algorithm. In fact finding
better splits may itself be a possible future direction.
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Problem Memory [MB] Time [s]

BK EIBFS TRWS | MEMF | BK EIBFS TRWS | MEMF
Tsukuba 1715 1385 287 211 8 3 198 28
Venus 3375 2719 638 396 17 5 211 57
Sawtooth 3348 2698 633 393 15 4 467 34
Map 2680 2116 494 219 22 5 >2953 36
Cones *42155  *32167 5025 1200 - - 1118 363
Teddy *42155  *32167 5025 1200 - - 6879 2064
KITTI *42161  *32627 6416 2215 - - >30165 18923
Penguin *33487  *25423 215 663 - - >50000 6277
House *100494  *76295 643 1986 - - >50000 8568

TABLE 3: Memory consumption and runtime comparison with state-of-the-art baselines for Huber regularizer (see Sec. 8.3). A “*”
indicates a memory estimate, and “>" indicates that the algorithm did not converge to the optimum within the specified time. Note
that our algorithm has a much lower memory consumption than the max-flow-based methods and is an order of magnitude faster
than message-passing algorithms. Compared to EIBFS, our algorithm is 7 — 11 times slower, but requires 7 — 10 times less memory,
which makes it applicable to more realistic problems. In all stereo problems, TRWS cached the pairwise potentials in an array for faster
retrieval, but in the case of inpainting, it was not possible due to excessive memory requirement.

11 Il 2-threads 1
OE) Il 4-threads
©
205
©
o)
o

0

Coneg Teddy

TSUkuba Venus
Fig. 13: Our algorithm can be accelerated using the parallel max-
flow technique (see Sec. 8.4). The relative times ranged from 0.56
to 0.99 with 2-threads and from 0.39 to 0.83 with 4-threads.
In Teddy, in the case of 2-threads, the multi-threaded algorithm
performs almost the same as the single-threaded algorithm, which
may be due to bad splits.

SawfoO th Map

9 CONCLUSION

We have introduced a variant of the max-flow algorithm
that can minimize multi-label submodular MRF energies
optimally, while requiring much less storage. Furthermore,
our experiments have shown that our algorithm is an order
of magnitude faster than state-of-the-art methods. We there-
fore believe that our algorithm constitutes the method of
choice to minimize Ishikwa type graphs when the complete
graph cannot be stored in memory.

APPENDIX A

TIME COMPLEXITY ANALYSIS OF THE POLYNOMIAL
TIME VERSION OF MEMF

Let us denote the Ishikawa graph with G = (f)AU {0,1},€)
and the lower-graph with G* = (V U {0,1},£%)°. In this
section, we denote the nodes with u, v, etc. Also the notation
u1 < u means, the node u; and u are in the same column
where u; is below u. Let ,C';; denotes the residual graph of

the lower-graph after the flow f and similarly & + denotes
the set of non-zero residual edges. Let ds(u,v) denotes the
shortest path distance from u to v calculated by MEMF.

Lemma A.1. If the MEMF algorithm is run on the Ishikawa
graph G = (V U {0, 1}, &) with source 0 and terminal 1, then
for any node v € 'V, the shortest path distance dy(0,v) in the
residual lo?oer-graph G} increases monotonically with each flow
augmentation.

6. The superscript s is used to restate the fact, that the lower-graph is
a subgraph of the Ishikawa graph.

Proof. We will suppose that for some node v € V, there is
a flow augmentation that causes the shortest path distance
from 0 to v to decrease, and then we will derive a contradic-
tion. Let f be the flow just before the first augmentation that
decreases some shortest path distance, and let f’ be the flow
just afterward. Let v be the node with the minimum d (0, v)
whose distance was decreased by the augmentation, so that
dy(0,v) < df(0,v). Let p = 0 ~» u — v be a shortest path
from 0 to v in é;,, so that (u,v) € é;, and

df’ (O7 ’U) = { df’(07 u) ifu<wv (ll’lfll’llte edge)

ds(0,u) +1 otherwise .
Because of how we chose v, we know that the distance of
node u from the source 0 did not decrease, i.e.,
We claim that (u,v) ¢ é; Why? If we had (u,v) € 5}, then
we would also have
df(07v) < df(O,u) +1,
< df/(O,u) +1,
= df’(ov U) )

21)

(23)

which contradicts our assumption that d; (0,v) < ds(0,v).
The above argument simply follows even if (u,v) is an
infinite capacity edge. Hence (u,v) ¢ & ;-

How can we have (u,v) ¢ f:'; and (u,v) € £5? Note
that, in this case, (u,v) cannot be an infinite capacity edge.
There can be two reasons:

1) A new lowest edge (u,v) is created due to the flow
from v to u. That means the augmentation must have
increased the flow from v to u. The MEMF algorithm
always augments flow along shortest paths, and there-
fore the shortest path from 0 to v in C;]"‘Z has (v, u) as its
last edge. Therefore,

df(O,'U)de((Lu)—l, (24)
<dgp(0,u) =1,
= df/(O,’U) -2 5

which contradicts our assumption that ds (0,v) <
d f (0, ’U) .

A new edge (u,v) is created due to a saturating flow
from u to v; for some v; < v. The MEMF algorithm
always augments flow along shortest paths, and there-
fore the shortest path from 0 to v in G ¢ has (u,v1) asits

2)



last edge. Since d¢(0,v) < d¢(0,v1), due to the upward
infinite capacity edges, we have,
ds(0,v) <dg(0,v1),
=dy (0,u) +1,
<dp(0,u)+1,
= ds(0,v)

(25)

which contradicts our assumption that dy (0,v) <
d f (0, U) .
We conclude that our assumption that such a node v exists
is incorrect. O

The next theorem bounds the number of iterations of the
MEMF algorithm.

Theorem A.1. If the MEMF algorithm is run on the Ishikawa
graph G = (V U {0, 1}, E) with source O and sink 1, then the
total number of augmentations performed by the algorithm is

O(VI[E]).

Proof. We say that an edge (u, v) in a residual lower-graph
G# is critical on an augmenting path p if the residual capacity
of p is the residual capacity of (u,v), i.e., if ¢f(p) = cf(u,v).
After we have augmented flow along an augmenting path,
any critical edge on the path disappears from the residual
graph. Moreover, at least one edge on any augmenting path
must be critical. We will show that each of the \f:' | edges can
become critical at most |V|/2 + 1 times. Furthermore, note
that, an infinite capacity edge cannot be critical at any point
of the algorithm.

Let u and v be nodes in V U {0, 1} that are connected by
an edge in £°. Since augmenting paths are shortest paths,
when (u, v) is critical for the first time, we have

df(O,v):df(O,u)Jrl. (26)

Once the flow is augmented, the edge (u, v) disappears from
the residual graph. Since we maintain the lowest-cross-edge
property, there cannot be an edge (u,v7) in Q} for some
v1 < v. Therefore, the edge (u,v) cannot reappear later on
another augmenting path until after the flow from u to v;
for some v; < v is decreased, which occurs only if (vy,u)
appears on an augmenting path. If f’ is the flow when this
event occurs, then we have

df/(07u) de/(()ﬂ)l)-i-l . (27)

Since dy (0,v) < ds(0,v1), due to the upward infinite
capacity edges, and d¢(0,v) < dy (0,v) by Lemma A.1, we
have
df/((),u) = df/(O,vl) +1,
> df/(OJ)) +1,
> df(O, ’U) +1,
= df(O, u) +2.

(28)

Consequently, from the time (u, v) becomes critical to the
time when it next becomes critical, the distance of « from
the source increases by at least 2. The distance of u from
the source is initially at least 0. The intermediate nodes on
a shortest path from 0 to u cannot contain 0, u or 1 (since
(u, v) on an augmenting path implies that u # 1). Therefore,
until v becomes unreachable from the source, if ever, its
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distance is at most |V|. Thus, after the first time that (u,v)
becomes critical, it can become critical at most |V|/2 times
more, for a total of [V|/2 + 1 times. Since there are O(|€])
pairs of nodes that can have an edge between them in a
residual graph, the total number of critical edges during the
entire execution of the MEMF algorithm is O(|V||£|). Each
augmenting path has at least one critical edge, and hence
the theorem follows. O

APPENDIX B
PROOF OF THEOREM 5.1

Theorem. Given the set of Ishikawa graph parameters ¢, there is
an augmenting path in the block-graph if and only if there exists
an augmenting path in the Ishikawa graph.

Proof. First, we will prove that, if there is an augmenting
path in the block-graph, then there exists an augmenting
path in the Ishikawa graph. It is clear that an augmenting
path in the block-graph contains an edge from node 0 to
a block and then a sequence of edges B;., — Bj.s and
finally an edge from a block to node 1. Note that an edge
from node 0 to a block B;., corresponds to a positive edge
e;:¢—1 in the Ishikawa graph; similarly an edge from a block
Bj.s to node 1 corresponds to a positive edge e;.0. Now,
consider an edge B;., — Bj.s in the augmenting path.
Corresponding to this, there exists a positive edge e;;.\u
such that U;.x € B, for some v > v and U;., € Bj;s
in the Ishikawa graph. Also along the column ¢, there are
upward infinite capacity edges, and nodes corresponding to
a block are also connected with positive bidirectional edges.
Hence, there exists an augmenting path in the Ishikawa
graph, corresponding to the augmenting path in the block-
graph.

Now, we will prove the converse. Consider an augment-
ing path in the Ishikawa graph. The path may contain a
sequence of positive edges e;.», €;5:1, and infinite capacity
edges e;i:ax+1. Note that, by construction, the e;., edges
either will be in the same block B;. in the block-graph, or
will be between a block and node 0 or node 1. Furthermore,
the infinite capacity edges either will be in the same block,
or there will be an edge B;., — Bj.s in the block-graph
to represent them. Finally, if e;;.5, is a positive edge, then,
by construction of the block-graph, there exists an edge
B;.» — Bj.s» where U;.» € B;., and Uj.,, € B;.5 with ¢’ < 4.
Hence, if there is an augmenting path in the Ishikawa graph,
then there exists an augmenting path in the block-graph. [
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