
Iteratively Reweighted Graph Cut for Multi-label MRFs with Non-convex Priors

Thalaiyasingam Ajanthan, Richard Hartley, Mathieu Salzmann, and Hongdong Li

Australian National University & NICTA
Canberra, Australia

Abstract

While widely acknowledged as highly effective in com-
puter vision, multi-label MRFs with non-convex priors are
difficult to optimize. To tackle this, we introduce an algo-
rithm that iteratively approximates the original energy with
an appropriately weighted surrogate energy that is easier
to minimize. Our algorithm guarantees that the original en-
ergy decreases at each iteration. In particular, we consider
the scenario where the global minimizer of the weighted
surrogate energy can be obtained by a multi-label graph
cut algorithm, and show that our algorithm then lets us han-
dle of large variety of non-convex priors. We demonstrate
the benefits of our method over state-of-the-art MRF energy
minimization techniques on stereo and inpainting problems.

1. Introduction

In this paper, we introduce an algorithm to minimize the
energy of multi-label Markov Random Fields (MRFs) with
non-convex edge priors. In general, minimizing a multi-
label MRF energy function is NP-hard. While in rare cases
a globally optimal solution can be obtained in polynomial
time, e.g., in the presence of convex priors [10], in most sce-
narios one has to rely on an approximate algorithm. Even
though graph-cut-based algorithms [6] have proven suc-
cessful for specific problems (e.g., metric priors), there does
not seem to be a single algorithm that performs well with
different non-convex priors such as the truncated quadratic,
the Cauchy function and the corrupted Gaussian.

Here, we propose to fill this gap and introduce an it-
erative graph-cut-based algorithm to minimize multi-label
MRF energies with a certain class of non-convex priors.
Our algorithm iteratively minimizes a weighted surrogate
energy function that is easier to optimize, with weights
computed from the solution at the previous iteration. We
show that, under suitable conditions on the non-convex pri-
ors, and as long as the weighted surrogate energy can be
decreased, our approach guarantees that the true energy de-

creases at each iteration.
More specifically, we consider MRF energies with arbi-

trary data terms and where the non-convex priors are con-
cave functions of some convex priors over pairs of nodes. In
this scenario, and when the label set is linearly ordered, the
solution at each iteration of our algorithm can be obtained
by applying the multi-label graph cut algorithm of [10].
Since the resulting solution is optimal, our algorithm guar-
antees that our MRF energy decreases.

In fact, our method is inspired by the Iteratively
Reweighted Least Squares (IRLS) algorithm which is well-
known for continuous optimization. To the best of our
knowledge, this is the first time that such a technique is
transposed to the MRF optimization scenario.

We demonstrate the effectiveness of our algorithm on
the problems of stereo correspondence estimation and im-
age inpainting. Our experimental evaluation shows that
our method consistently outperforms other state-of-the-art
graph-cut-based algorithms [6, 24], and, in most scenarios,
yields lower energy values than TRW-S [13], which was
shown to be one of the best-performing multi-label approx-
imate energy minimization methods [22, 12].

1.1. Related work

Over the years, two different types of approximate MRF
energy minimization methods have been proposed. The first
class of such methods consists of move-making techniques
that were inspired by the success of the graph cut algorithm
at solving binary problems in computer vision. These tech-
niques include α-expansion, α-β swap [6] and multi-label
moves [24, 23, 11]. The core idea of these methods is to
reduce the original multi-label problem to a sequence of bi-
nary graph cut problems. Each graph cut problem can then
be solved either optimally by the max-flow algorithm [5]
if the resulting binary energy is submodular, or approxi-
mately via a roof dual technique [4] otherwise. The second
type of approximate energy minimization methods consists
of message passing algorithms, such as belief propagation
(BP) [8], tree-reweighted message passing (TRW) [25, 13]
and the dual decomposition-based approach of [14], which
TRW is a special case of.



As mentioned above, our algorithm is inspired by the
IRLS method. Recently, several methods similarly moti-
vated by the IRLS have been proposed to minimize differ-
ent objective functions. For instance, in [2], the Lq norm
(for 1 ≤ q < 2) was minimized by iteratively minimizing
a weighted L2 cost function. In [16], an iterated L1 algo-
rithm was introduced to optimize non-convex functions that
are the sum of convex data terms and concave smoothness
terms. More recently, a general formulation (not restricted
to weighted L2 or L1 minimization) was studied, together
with the conditions under which such iteratively reweighted
algorithms ensure the cost to decrease [1]. In the next sec-
tion, we propose an extension of this formulation that will
later allow us to tackle the case of multi-label MRFs.

2. Iteratively reweighted minimization
Given a set X and functions fi : X → D and hi : D →

IR, where D ⊆ IR, let us assume that we want to minimize
an objective function of the form

Ch(x) =

k∑
i=1

hi ◦ fi(x) , (1)

and, without loss of generality, that we have a method to
minimize a weighted cost function of the form

Cw(x) =

k∑
i=1

wi fi(x) . (2)

For instance, in the IRLS algorithm, fi(x) is a squared cost.
Our goal is to study the conditions under which Ch can

be minimized by iteratively minimizing Cw. To this end,
we first give the definition of a supergradient, which we will
rely upon in the following discussion.

Definition 2.1. Let D be a subset of IR. A supergradient of
a function h : D → IR at a point c is a value hs(c) ∈ IR
such that h(d) ≤ h(c) + (d− c)hs(c) for any point d.

A supergradient hs is called a strict supergradient if the
inequality is strict for any point d 6= c. If the function is dif-
ferentiable, then the supergradient at a point is unique and
equal to the derivative. A concave function defined on a
subset of the real numbers has a supergradient at each inte-
rior point.

In [1], the following lemma was provided to study the
behavior of iteratively reweighted minimization methods.

Lemma 2.1. Let h(x) be a concave function defined on a
subset D of the real numbers and hs(ci) be a supergradient
at ci. If ci and di in D satisfy

k∑
i=1

di h
s(ci) ≤

k∑
i=1

ci h
s(ci) ,

then
k∑
i=1

h(di) ≤
k∑
i=1

h(ci) .

If the first inequality is strict, so is the second.

Proof. See [1].

Note that Lemma 2.1 only considers the case where the
function h is the same for all the elements in the sum. This
is in contrast with our definition of the cost in Eq. 1, where
we want to allow h to be indexed on i. To handle this more
general scenario, we introduce the following lemma.

Lemma 2.2. Given a set X , functions fi : X → D and
concave functions hi : D → IR, with D ⊆ IR, such that,

k∑
i=1

wti fi(x
t+1) ≤

k∑
i=1

wti fi(x
t) ,

where wti = hsi (fi(x
t)) and xt is the estimate of x at itera-

tion t, then
k∑
i=1

hi ◦ fi(xt+1) ≤
k∑
i=1

hi ◦ fi(xt) .

If the first inequality is strict, so is the second.

Proof. Let us define ci = fi(x
t) and di = fi(x

t+1). Since
hsi is a supergradient,

hi(di) ≤ hi(ci) + (di − ci)hsi (ci) ,

for all i. Summing over i gives,
k∑
i=1

hi(di) ≤
k∑
i=1

hi(ci) +

k∑
i=1

(di − ci)hsi (ci) .

The sum
∑k
i=1(di − ci)h

s(ci) =
∑k
i=1 w

t
i fi(x

t+1) −∑k
i=1 w

t
i fi(x

t) is non-positive by hypothesis, which com-
pletes the proof.

It is important to note that this lemma holds for discrete
subsetsD, as well as continuous ones, and that the functions
hi do not need to be differentiable.

Therefore, for concave functions hi, by choosing the su-
pergradients of hi as weights at each iteration, we can min-
imize the objective function Ch(x) of Eq. 1 by iteratively
minimizing the cost Cw(x) of Eq. 2. This general proce-
dure is summarized in Algorithm 1.

Algorithm 1 is applicable to any minimization problem,
as long as the objective function takes the form of Eq. 1
with concave functions hi. Furthermore, to minimize the
surrogate cost of Eq. 2, any algorithm (either exact or ap-
proximate) can be used, as long as it decreases this cost.

We would like to point out that, at each iteration, we min-
imize

∑k
i=1 h

s
i (fi(x

t)) fi(x), which in general is not an
upper bound of

∑k
i=1 hi ◦ fi(x). Therefore, our algorithm

does not fall into the “majorize-minimize” framework.



Algorithm 1 Iteratively reweighted minimization

Ch(x)←
∑k
i=1 hi ◦ fi(x) . Concave functions hi

Initialize x
repeat

wti ← hsi (fi(x
t))

xt+1 ← argmin
x

∑k
i=1 w

t
i fi(x)

until convergence of Ch(x)
return xt+1

3. An iteratively reweighted scheme for MRFs
Recall that our goal is to tackle the problem of MRF en-

ergy minimization. Here, we show how this can be achieved
by exploiting Algorithm 1.

To this end, let V be the set of vertices (or nodes) of
an MRF, e.g., corresponding to the pixels or superpixels in
an image, and L be a finite set of labels. Furthermore, let
x = [x1, · · · , xn]T , n = |V| , xp ∈ L denote the vector
that assigns one label to each node. Finding the best label
assignment for each node in an MRF then translates to min-
imizing the energy of the MRF. In general, the energy of an
MRF can be expressed as

E(x) =

|C|∑
i=1

θi(xi) , (3)

where C is the set of cliques in the graph (i.e., the groups of
connected nodes), xi represents the set of variables corre-
sponding to the nodes in clique i, and θi : L|xi| → IR is the
energy (or potential) function associated with clique i.

Let us now assume that each potential function can be
written as

θi(xi) = hi ◦ fi(xi) , (4)

where hi is a concave function and fi an arbitrary one. This
lets us rewrite the MRF energy of Eq. 3 as

E(x) =

|C|∑
i=1

hi ◦ fi(xi) , (5)

which has the form of Eq. 11. Therefore, we can employ
Algorithm 1 to minimize E(x), and iteratively minimize
the surrogate energy

Ẽ(x) =

|C|∑
i=1

wifi(xi) , (6)

with weight wi taken as the supergradient of hi evaluated
using the previous estimate of x.

1Note that fi(xi) can be equivalently written as fi(x), where the vari-
ables xp /∈ xi (i.e., not in clique i) simply have no effect on the function.

It is important to note, however, that for this algorithm
to be effective, the minimization of Ẽ(x) at each iteration
must be relatively easy, and at least guarantee that the sur-
rogate energy decreases. Furthermore, while in practice any
existing MRF energy minimization algorithm (either exact
or approximate) can be utilized to minimize Ẽ(x), the qual-
ity of the overall solution found by our algorithm may vary
accordingly. In the next section, we discuss a special case of
this general MRF energy minimization algorithm, which, as
depicted in our experiments, is effective in many scenarios.

4. Iteratively reweighted graph cut
In this section, we introduce an iterative algorithm for

the case of multi-label MRFs with pairwise node interac-
tions. In particular, we propose to make use of the multi-
label graph cut of [10] at each iteration of our algorithm.
The multi-label graph cut yields an optimal solution under
the following two conditions: 1) the label set must be or-
dered; 2) the pairwise potential must be a convex function
of the label difference. In practice, such convex priors have
limited power due to their poor ability to model noise. In
contrast, while still relying on the first condition, our al-
gorithm allows us to generalize to non-convex priors, and
in particular to robust norms that have proven effective in
computer vision.

4.1. MRF with pairwise interactions

In an MRF with pairwise node interactions, the energy
can be expressed as

E(x) =
∑
p∈V

θup (xp) +
∑

(p,q)∈N

θbpq(xp, xq) , (7)

where θu and θb denote the unary potentials (i.e., data cost)
and pairwise potential (i.e., interaction cost), respectively,
and N is the set of edges in the graph, e.g., encoding a 4-
connected or 8-connected grid over the image pixels.

As discussed in Section 3, to be able to make use of Al-
gorithm 1, we need to have potential functions of the form
given in Eq. 4. Under this assumption, we can then rewrite
the energy of Eq. 7 as

E(x) =
∑
p∈V

hu ◦ fp(xp) +
∑

(p,q)∈N

hb ◦ fpq(xp, xq) , (8)

where hu and hb are concave functions.
Following Algorithm 1, we minimize this energy by iter-

atively minimizing a surrogate energy of the form (at itera-
tion t+ 1)

Ẽ(x) =
∑
p∈V

hsu
(
fp(x

t
p)
)
fp(xp) (9)

+
∑

(p,q)∈N

hsb
(
fpq(x

t
p, x

t
q)
)
fpq(xp, xq) ,



Algorithm 2 Iteratively Reweighted Graph Cut (IRGC)

E(x)←
∑
p∈V fp(xp) +

∑
(p,q)∈N hb ◦ g (|xp − xq|) . Convex function g and non-decreasing concave function hb

w0
pq ← 0.5 . Initialize the weights

repeat
if t 6= 0 then wtpq ← hsb

(
g
(∣∣xtp − xtq∣∣)) end if . Update the weights except at the first iteration

xt+1 ← argmin
x

∑
p∈V fp(xp) +

∑
(p,q)∈N w

t
pq g(|xp − xq|) . Minimize using the multi-label graph cut

until E(xt+1) = E(xt) . Convergence of E(x)
return xt+1

where hsu and hsb are the supergradients of hu and hb, re-
spectively, and xtp denotes the estimate of xp at the previous
iteration.

Since our goal is to employ the multi-label graph cut
algorithm [10] to minimize Ẽ(x), we need to define the
different functions hu, hb, fp and fpq so as to satisfy the
requirements of this algorithm. To this end, for the unary
potential, we choose hu to be the identity function. That is,

θup (xp) = hu ◦ fp(xp) = fp(xp) . (10)

This implies that no reweighting is required for the unary
potentials, since the supergradient of hu is always 1. The
multi-label graph cut having no specific requirement on the
form of the data term, fp can be any arbitrary function.

In contrast, for the pairwise potentials, the multi-label
graph cut requires fpq to be a convex function of the label
difference. That is, for a convex function g defined on a
subset of IR,

fpq(xp, xq) = g(|xp − xq|) . (11)

In addition, because the energy Ẽ(x) depends on a weighted
sum of pairwise terms, we need the weights to satisfy some
conditions. More precisely, to be able to use the max-flow
algorithm within the multi-label graph cut, the weights need
to be non-negative. Since these weights are computed from
the supergradient of hb, this translates into a requirement
for hb to be non-decreasing. Note that, in the context of
smoothness potentials in an MRF, this requirement comes
at virtually no cost, since we hardly expect the potentials to
decrease as the label difference increases.

Under these conditions, the surrogate energy to be min-
imized by the multi-label graph cut at each iteration of our
algorithm can be written as

Ẽ(x) =
∑
p∈V

fp(xp) +
∑

(p,q)∈N

wtpqg(|xp − xq|) , (12)

where g is a convex function, and wtpq = hsb
(
fpq(x

t
p, x

t
q)
)
,

with hb a concave, non-decreasing function. In the first it-
eration, we set the weights w0

i to some constant value2 to
2We setw0

pq = ε, where 0 ≤ ε ≤ 1, so that the effect of the edge terms
is smaller for the first estimate. In our experiments, we found ε = 0.5 to
work well and thus always use this value.

Figure 1: Multi-label graph construction. Constraint edges
are highlighted in red.

make the algorithm independent of any initial estimate x0.
Our overall Iteratively Reweighted Graph Cut (IRGC) algo-
rithm is summarized in Algorithm 2.

Multi-label graph cut. Here, we briefly describe the
multi-label graph cut algorithm employed at each iteration
of Algorithm 2. Note that, although equivalent, our graph
construction slightly differs from that of [10].

The multi-label graph cut works by constructing a graph
such as the one illustrated in Fig. 1 for two neighboring
nodes p and q of the original MRF, and applying graph
cut to this graph. More specifically, let the label set L =
{0, 1, 2, · · · , l − 1}. For each node p ∈ V , the new graph
contains l − 1 nodes denoted by p0, p1, · · · , pl−2. Further-
more, two additional nodes, the start and end nodes denoted
by 0 and 1, are included in the graph.

For each node p and each i ∈ L, there is a directed hori-
zontal edge from pi−1 to pi, where p−1 and pl−1 denote the
start and end nodes, respectively. Additionally, the graph
contains constraint edges with infinite weights going in the
opposite direction. Since the graph cut algorithm partitions
the set of nodes into two disjoint subsets V0 and V1, where
0 ∈ V0 and 1 ∈ V1, the constraint edges ensure that for
each p ∈ V exactly one horizontal edge is present in the
minimum cut. If an edge pi−1 → pi is in the minimum
cut, then it can be interpreted as node p taking the label i.
Therefore, the horizontal edges directly represent the unary
potentials and are given a weight Epi = fp(i).

Furthermore, for any (p, q) ∈ N and for each i, j ∈
{0, 1, · · · , l − 2} there is a directed edge from pi to qj and



vice versa. The weight of the edge pi → qj is defined as

Epqij =


0 if i < j
wt

pq

2 g′′(|i− j|) if i = j
wtpq g

′′(|i− j|) if i > j ,

(13)

where g′′(|z|) = g(|z + 1|) + g(|z − 1|) − 2 g(|z|), which
is positive for a convex function g.

In our scenario, with our condition that wtpq be non-
negative, the multi-label graph contains no negative edges.
Therefore, the global minimum of the corresponding energy
can be found in polynomial time using the max-flow algo-
rithm. Note that for a sparsely connected graph, e.g., 4 or
8-connected neighborhood, the memory requirement of a
general multi-label graph is O(|V| · |L|2). However if g is
linear, then only the vertical edges pi → qi will have non-
zero weights and the memory required drops toO(|V| · |L|).

4.2. Choice of functions g and hb

While, in Section 4.1, we have defined conditions on
the functions g and hb (i.e., g convex and hb concave,
non-decreasing) for our algorithm to be applicable with the
multi-label graph cut, these conditions still leave us a lot of
freedom in the actual choice of these functions. Here, we
discuss several such choices, with special considerations on
the memory requirement of the resulting algorithm.

In the context of computer vision problems with ordered
label sets, e.g., stereo and inpainting, it is often important to
make use of robust estimators as pairwise potentials to bet-
ter account for discontinuities, or outliers. Many such ro-
bust estimators belong to the family of functions with a sin-
gle inflection point in IR+. In other words, they can be gen-
erally defined as non-decreasing functions θpq(|xp − xq|)3,
such that for a given λ ≥ 0, θ(z) is convex if z ≤ λ,
and concave otherwise. Such functions include the trun-
cated linear, the truncated quadratic and the Cauchy func-
tion θ(z) = λ2/2 log

(
1 + (z/λ)2

)
[9]. Note that any con-

vex or concave function on IR+ also belongs to this family.
For a given such function θ, according to our algorithm,

we need to write

θ(z) = hb ◦ g(z) , (14)

with a concave, non-decreasing function hb and a convex
function g. Note that the multi-label graph structure is de-
termined by the function g. Therefore, to make the graph
as sparse as possible, and thus limit the required memory,
we need to choose g such that the second order difference
g′′(z) is zero for as many values z as possible. Table 1 gives
the functions g and hb such that g′′(z) is zero ∀z ≥ λ while
satisfying Eq. 14 and the necessary conditions on hb and

3Note that, here, since we only consider pairwise terms, we dropped
the superscript b in θb for ease of notation.

y = g(z) hb(y)

z ≤ λ θ(z) y ≤ θ(λ) y

z ≥ λ θ′(λ)(z − λ)
+θ(λ)

y ≥ θ(λ) θ
(
y+λ θ′(λ)−θ(λ)

θ′(λ)

)
Table 1: Functions g and hb corresponding to a given θ(z),
such that θ(z) is convex if z ≤ λ and concave otherwise. It
can easily be verified that θ(z) = hb ◦ g(z), and that g is
convex and hb is concave, as well as that both functions are
non-decreasing, because θ is non-decreasing. Here θ′(λ) is
the derivative of θ at λ, or its left derivative θ′(λ−) if θ is
not differentiable at λ. See Fig. 2(a-b) for example plots.

g. Fig. 2(a-b) provide the plots corresponding to the trun-
cated linear and Cauchy function. For a function g derived
according to Table 1, the memory requirement of the multi-
label graph is O(|V| · |L| · λ).

Note that our method is not limited to the family of func-
tions described above. As an example, we consider the case
of another robust estimator, the corrupted Gaussian function
θG(z) = − log(α exp(−z2)+(1−α) exp(−z2/β2)/β) [9],
which does not follow the definitions of the functions de-
scribed before. However, since θG(

√
·) is concave, we

can minimize θG(z) by choosing g(z) = z2 and hb(y) =
θG(
√
y). The corresponding plots for the corrupted Gaus-

sian are provided in Fig. 2(c).

4.3. Hybrid strategy

While our algorithm guarantees that the energy value de-
creases at each iteration, it remains prone to getting trapped
in local minima (with respect to the iterative reweighting
scheme). Here, we propose a hybrid optimization strategy
that combines IRGC with a different minimization tech-
nique, and helps us escape from some of the local minima
of the energy.

In particular, here we make use of α-expansion [6] as an
additional minimization technique. At each iteration of our
algorithm, instead of updating xt → xt+1 in one step, our
hybrid strategy performs the following steps:

1. Update xt → x′ by minimizing the surrogate energy
using the multi-label graph cut.

2. Improve the new estimate x′ → xt+1 using one
pass of α-expansion with the true energy, such that
E(xt+1) ≤ E(x′).

For non-metric pairwise potentials, for which regular α-
expansion does not apply, we truncate the non-submodular
terms as suggested in [19]. Note that this still guarantees
that the energy will decrease. We found that the variety
in the optimization strategy arising from this additional α-
expansion step was effective to overcome local minima.
Since both algorithms guarantee to decrease the energy
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(c) θ - Corrupted Gaussian

Figure 2: Plots of θ, g and hb with θ(z) = hb ◦ g(z), when θ is (a) the truncated linear, (b) the Cauchy function and (c) the
corrupted Gaussian. Here g is convex and hb is concave. In (a) and (b), the functions g and hb are derived from Table 1. In
(c), g(z) = z2 and hb(y) = θ(

√
y).

E(x) at each step, our hybrid algorithm also decreases the
energy at each iteration. In our experiments, we refer to this
hybrid algorithm as IRGC+expansion.

Note that other methods, such as α-β swap, or any algo-
rithm that guarantees to improve the given estimate can be
employed. Alternatively, one could exploit a fusion move
strategy [15] to combine the estimates obtained by the two
different algorithms. However, this would come at an addi-
tional computation cost, and, we believe, goes beyond the
scope of this paper.

5. Experiments

We evaluated our algorithm on the problems of stereo
correspondence estimation and image inpainting. In those
cases, the pairwise potentials typically depend on additional
constant weights, and can thus be written as

θbpq(xp, xq) = γpq φpq(|xp − xq|) , (15)

where γpq are the constant weights. As long as γpq ≥ 0, our
algorithm is unaffected by these weights, in the sense that
we can simply multiply our weights wtpq by these additional
constant weights. Note that since the main purpose of this
paper is to evaluate the performance of our algorithm on dif-
ferent MRF energy functions, we used different smoothing
costs φ(·) for different problem instances without tuning the
weights γpq for the specific smoothing costs.

We compare our results with those of α-expansion, α-
β swap [6], multi-label swap [24] and TRW-S [13]. For
fairer comparison, we improved the results of TRW-S us-
ing α-expansion which is denoted as TRW-S+expansion.
For α-expansion, we used the max-flow algorithm when
the pairwise potentials were metric, and the QPBOP algo-
rithm [4, 18] (denoted as α-expansionQ) otherwise. In the
latter case, if a node in the binary problem is unlabeled then
the previous label is retained. For our comparison, we used
the publicly available implementation of α-expansion, α-β
swap, QPBO and TRW-S, and implemented the multi-label
swap algorithm as described in [24].

All the algorithms were initialized by assigning the label
0 to all the nodes (note that in [24] multi-label swap was

Problem γpq φ(·) λ

Teddy
{

30 if∇pq ≤ 10
10 otherwise Truncated

linear
8

Map 4 6
Sawtooth 20 Truncated

quadratic
3

Venus 50 3
Cones 10

Cauchy
function

8

Tsukuba
{

40 if ∇pq ≤ 8
20 otherwise 2

Table 2: Pairwise potential θbpq(xp, xq) = γpq φ(|xp − xq|)
used for the stereo problems. Here φ(z) is convex if z ≤ λ
and concave otherwise, and∇pq denotes the absolute inten-
sity difference between the pixels p and q in the left image.

initialized using α-expansion). For multi-label swap the pa-
rameter t was fixed to 2 in all our experiments (see [24]
for details). The energy values presented in the following
sections were obtained at convergence of the different algo-
rithms, except for TRW-S which we ran for 100 iterations
and chose the best energy value.4 All our experiments were
conducted on a 3.4GHz i7-4770 CPU with 16 GB RAM,
and no effort was made to exploit the multiple cores.

Stereo:
Given a pair of rectified images (one left and one right),
stereo correspondence estimation aims to find the disparity
map, which specifies the horizontal displacement of each
pixel between the two images with respect to the left image.
For this task, we employed six instances from the Middle-
bury dataset [20, 21]: Teddy, Map, Sawtooth, Venus, Cones
and Tsukuba. For Tsukuba and Venus, we used the unary
potentials of [22], and for the other cases, those of [3]. The
pairwise potentials are summarized in Table 2. Note that we
do not explicitly model occlusions, which should be han-
dled by our robust potentials.

The final energies and execution times corresponding to
the stereo problems are summarized in Table 3. The dispar-
ity maps found using our IRGC+expansion algorithm and
energy vs time plots of the algorithms for some of the prob-
lems are shown in Fig. 3 and Fig. 4(a-c), respectively. Note

4While the energy of TRW-S decreases slightly by running more itera-
tions, the algorithm becomes very slow.



Algorithm Teddy Map Sawtooth Venus Cones Tsukuba
E[103] T[s] E[103] T[s] E[103] T[s] E[103] T[s] E[103] T[s] E[103] T[s]

α-β swap 2708.1 35 149.5 2 1079.5 7 3219.7 8 4489.9 135 409.1 6
α-expansion 2664.6 21 144.4 2 1067.5 15 3201.5 16 2480.7 183 403.3 8

Multi-label swap 5502.3 236 470.6 13 1660.6 103 5740.1 163 - - - -
TRW-S 2652.7 318 143.0 34 1038.8 52 3098.6 50 2304.8 311 395.8 19

TRW-S+expansion 2646.8 326 142.9 35 1034.4 56 3083.4 53 2303.7 322 395.5 21
IRGC 2687.8 65 144.0 9 1042.1 93 3081.4 49 2301.4 397 397.3 20

IRGC+expansion 2650.3 44 143.2 4 1034.9 32 3078.8 26 2301.4 204 396.1 14

Table 3: Comparison of the minimum energies (E) and execution times (T) for stereo problems. IRGC+expansion found
the lowest energy or virtually the same energy as TRW-S+expansion. For the truncated linear prior (Teddy and Map)
IRGC+expansion was 8 times faster than TRW-S+expansion. For the truncated quadratic and the Cauchy prior IRGC
outperformed all other graph-cut-based algorithms and found a lower energy than TRW-S for Venus and Cones.

(a) Teddy,
Tr. linear

(b) Venus,
Tr. quad.

(c) Tsukuba,
Cauchy

Figure 3: Disparity maps obtained with IRGC+expansion.
The corresponding ground-truth is shown above each dis-
parity map.

Algorithm Tsukuba
E[103] T[s]

α-β swap 568.3 10
α-expansionQ 555.2 10

TRW-S 550.0 20
TRW-S+expansion 548.9 24

IRGC 614.3 55
IRGC+expansion 549.3 40

Table 4: Comparison of the minimum energies (E) and
execution times (T) on Tsukuba with a corrupted Gaus-
sian prior. While IRGC was trapped in a local minimum,
IRGC+expansion found a lower energy than TRW-S.

that, in most cases, IRGC outperforms the other graph-cut-
based algorithms. Note also that IRGC+expansion yields
the lowest energy or an energy that is virtually the same as
the lowest one.

To illustrate the fact that our algorithm can also exploit
priors that are not first convex and then concave, we em-
ployed a corrupted Gaussian pairwise potential (with pa-
rameters α = 0.75 and β = 50) on the Tsukuba stereo pair,
and the results are shown in Table 4.

Algorithm House Penguin
E[103] T[s] E[103] T[s]

α-β swap 2488.9 14 4562.8 10
α-expansionQ 2510.0 531 4486.4 18

Multi-label swap 2399.9 1457 4520.6 395
TRW-S 2400.1 113 4269.5 138

TRW-S+expansion 2400.0 116 4230.7 141
IRGC 2399.9 155 4696.9 1045

IRGC+expansion 2399.9 108 4238.9 222

Table 5: Comparison of minimum energies (E) and exe-
cution times (T) for the truncated quadratic prior on two
inpainting problems. On House, IRGC and multi-label
swap also achieved the same lowest energy, but the lat-
ter was roughly 15 times slower than IRGC+expansion.
On Penguin, while IRGC was trapped in a local minimum,
IRGC+expansion was able to find a lower energy than
TRW-S and yield an energy similar to TRW-S+expansion.

Inpainting:
Image inpainting tackles the problem of filling in the miss-
ing pixel values of an image, while simultaneously de-
noising the observed pixel values. In our experiments,
we used the Penguin and House images employed in [22].
Due to memory limitation, however, we down-sampled
the labels from 256 to 128 for Penguin and from 256
to 64 for House. We used the same unary potential as
in [22], i.e., fp(xp) = (Ip − xp)2 if the intensity Ip is ob-
served, and fp(xp) = 0 otherwise. As pairwise potentials,
we employed the truncated quadratic cost θbpq(xp, xq) =

γpq min
(
(xp − xq)2, λ2

)
. For Penguin, γpq = 20 and λ =

10, and for House γpq = 5 and λ = 15. The final energies
and execution times are summarized in Table 5, with the
inpainted images shown in Fig. 5. Furthermore, in Fig. 4d,
we show the energy as a function of time for the different al-
gorithms. Note that, for both images, our IRGC+expansion
method outperforms other graph-cut-based algorithms and
performs similarly to TRW-S+expansion.
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Figure 4: Energy vs time (seconds) plots for the algorithms for (a) - (c) some stereo problems and (d) an inpainting problem.
The plots are zoomed-in to show the finer details. IRGC+expansion algorithm outperformed all the other algorithms and
found the lowest energy within 2–5 iterations. IRGC found a lower energy than α-expansion for Map.

(a) Input (b) α-β swap (c) α-expQ (d) Multi-swap

(e) Ground-truth (f) TRW-S (g) IRGC (h) IRGC+exp.

Figure 5: Inpainted images for Penguin. Note that multi-
label swap was not able to completely inpaint the missing
pixels. IRGC+expansion produced smoother results than
QPBOP based α-expansion (see the bottom of the penguin)
while preserving the finer details compared to TRW-S (see
the neck of the penguin). See Table 5 for the energy values.

Summary:
To evaluate the quality of the minimum energies, we fol-
lowed the strategy of [22], which makes use of the lower
bound found by TRW-S. This quality measure is computed
as

Q =
E − Eb
Eb

100% , (16)

where Eb is the largest lower bound of TRW-S and
E is the minimum energy found by an algorithm. In
Table 6, we compare the resulting values of our al-
gorithms with TRW-S, which, from the previous sur-
veys [22, 12] was found to be the best-performing base-
line. Note that our IRGC+expansion algorithm yields a
better quality measure than TRW-S on average. TRW-
S+expansion yields a slightly better average quality mea-
sure than IRGC+expansion, namely 0.1873%. Note, how-

Problem TRW-S IRGC IRGC+exp.
Teddy 0.3040% 1.6289% 0.2102%
Map 0.0511% 0.7387% 0.1728%

Sawtooth 0.6452% 0.9621% 0.2616%
Venus 0.9096% 0.3498% 0.2625%
Cones 0.1551% 0.0065% 0.0074%

Tsukuba 0.0910% 0.4678% 0.1679%
Tsu. cor. Gau. 0.3926% 12.1226% 0.2736%

House 0.0154% 0.0058% 0.0058%
Penguin 1.5556% 11.7218% 0.8259%
Average 0.4577% 3.1116% 0.2431%

Table 6: Quality of the minimum energies according to
Eq. 16. IRGC+expansion clearly yields better quality en-
ergies than TRW-S on average.

ever, that our algorithm was 1.5 – 8 times faster than TRW-
S+expansion on stereo problems, except for the corrupted
Gaussian prior.

6. Conclusion

We have introduced an Iteratively Reweighted Graph Cut
algorithm that can minimize multi-label MRF energies with
arbitrary data terms and non-convex priors. We have shown
that, while the basic algorithm sometimes gets trapped in
local minima, our hybrid version consistently outperforms
(or performs virtually as well as) state-of-the-art MRF en-
ergy minimization techniques. Due to our use of the multi-
label graph cut at each iteration of our algorithm, mem-
ory requirement is the current bottleneck of our approach.
Note, however, that this can be overcome by replacing the
multi-label graph cut with the convex formulation of α-
expansion [7], or the approach of [17]. In the latter case,
this would further extend the applicability of IRGC to con-
tinuous label spaces. Finally, and as discussed in the paper,
IRGC really is a special case of an iteratively reweighted ap-
proach to MRF, and even continuous, energy minimization.
In the future, we therefore intend to study the applicability
of such an approach to other types of problems.
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